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I. APPENDIX

Notation: For all B∈Md(R), the Frobenius norm is denoted as ‖B‖ given by ‖B‖ :=
√

tr(BB>).

A. Scalar case

The scalar case is analyzed using elementary means and is useful to both introduce the
characteristic equation as well as highlight the difference between the [λ = 0] and the [λ = 0+]
problems.

Theorem 1. Consider the terminal cost optimal control problem (4) for the scalar (d = 1) case
with R > 0 and Σ0 = E[X2

0 ]> 0 given. If At is a minimizer then

At ≡ C, Xt = etCX0 (I.1)

where the constant C is a solution of the characteristic equation

λC= eTC(R− eTC)Σ0 (I.2)

Conversely a solution C of the characteristic equation (I.2) defines a critical point (I.1) of the
optimal control problem (4).

The following is a complete characterization of the solutions C of the characteristic equa-
tion (I.2) as a function of parameters (λ ,R,Σ0,T ) ∈ R+×R+×R+×R+:

(i) For λ ∈ [0,2e3Σ0T ] there exists a unique solution. The associated solution obtained
using (I.1) is a minimizer.

(ii) In the asymptotic limit as λ ↓ 0, the minimizer is given by an asymptotic expansion

C=
1
T

log(R)−λ
log(R)
T 2R2Σ0

+O(λ 2) (I.3)

The unique solution for the λ = 0+ problem, obtained by retaining the first order term, is
given by C= 1

T log(R).
(iii) For λ > 2e3Σ0T , there exists an interval such that for R∈ [R1(λ ),R2(λ )] there are exactly

3 solutions of the characteristic equation. For R > R2(λ ) or R < R1(λ ) there exists exactly
one solution.

Proof. In the scalar case, the state is given by the explicit formula Xt = e
∫ t

0 As dsX0. Therefore,
the objective function

J[A] = λ

∫ T

0
A2

t dt +(e
∫ T

0 At dt−R)2
Σ0

Using the Jensen’s inequality

J[A]≥ λ

T
(
∫ T

0
At dt)2 +(e

∫ T
0 At dt−R)2

Σ
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with an equality iff At ≡ C, a constant. Therefore

min
A∈L2

J(A) = min
C∈R

λTC2 +(eTC−R)2
Σ

The characteristic equation is the first order optimality condition of the right hand side.

(i) Denote λ̃ = λ

T Σ
and C̃= TC to write the characteristic equation as

f (C̃, λ̃ ) := λ̃ C̃e−C̃+ eC̃ = R (I.4)

For λ̃ = 0, the solution C̃ = log(R). For λ > 0, f is onto (since f is continuous and
limC̃→±∞

f (C̃) =±∞). Therefore, there exists at least one solution for each given R. Since
f ′(C̃) = λe−C̃(1− C̃)+ eC̃ > 0 for C̃ ≤ 1, f is monotone on (−∞,1]. Also f ′(C̃) = 0⇔
λ = e2C̃

C̃−1
and e2C̃

C̃−1
is a unimodal convex function for C̃> 1 with minimum 2e3 at C̃= 3/2.

Therefore for λ̃ ≤ 2e3, f is monotone over entire R. This implies that the solution to f (C̃)=R
is unique for λ̃ ≤ 2e3.

(ii) At λ̃ = 0, C̃ = log(R). Also f ′(log(R),0) = R 6= 0. So by the implicit function theorem
there exists a unique solution λ̃→ C̃(λ̃ ) in a neighborhood of 0. The asymptotic formula (I.3)
for the solution is obtained by substituting regular perturbation expansion C̃= C̃0 +λ C̃1 +

O(λ 2) into (I.4).
f (C̃) = λ C̃0e−C̃0 + eC̃0(1+λ C̃1)+O(λ 2) = R

Collecting the zeroth and the first order terms, one obtains C̃0 = log(R) and C̃1 =− log(R)
R2 .

(iii) If λ̃ > 2e3, f ′(C̃) = 0 has two solutions, C̃1 ∈ (3/2,∞) and C̃2 ∈ (1,3/2). Therefore for
R ∈ [ f (C̃1), f (C̃2)], f (C̃) = R has three solutions.

B. Proof of the Proposition 1 (Hamiltonian formulation)

Let At be the minimizer of (4). Define Xt and Yt as the solutions of the Hamilton’s equations (7)-
(8). We show At satisfies (9) as follows: For s∈ [0,T ] and B∈Md(R) consider a (needle) variation
of the form:

A(ε)
t =

B t ∈ [s− ε,s]

At t /∈ [s− ε,s]

Let X (ε)
t denote the solution to the Hamitonian equation-(7) with A(ε)

t . It is given by:

X (ε)
t = Xt + εηt +O(ε2)

where for t < s, ηt = 0 and for t > s, ηt is the solution of

dηt

dt
= Atηt , with i.c ηs = (B−As)Xs
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The perturbed cost is

J[A(ε)] = J[A]+ ελ (Tr(B>B)−Tr(A>s As))+2εE[(XT −Z)>ηT ]+O(ε2)

Since At is a minimizer
λ

2
(Tr(B>B)−Tr(A>s As))+E[(XT −Z)>ηT ]≥ 0

The next step is to obtain (XT −Z)>ηT in terms of Yt . By construction d
dtY
>

t ηt = 0. Therefore,

(Z−XT )
>

ηT = Y>T ηT = Y>s ηs = Y>s (B−As)Xs

and hence
λ

2
(Tr(B>B)−Tr(A>s As))−E[Y>s (B−As)Xs]≥ 0,

On collecting the terms, one obtains

E[H(Xs,Ys,As)]≥ E[H(Xs,Ys,B)] ∀B ∈Md(R)

Since s∈ [0,T ] is arbitrary, the result follows. Conversely by Sec. I-C below, any weight matrix A
that satisfies ∇J[A] =−E[∂H

∂B (Xt ,Yt ,At)] = 0 is a critical point. The condition E[∂H
∂B (Xt ,Yt ,At)] = 0

is equivalent to equation (9) since H is a concave function of A.

C. First order variation of J

Let Xt and Yt be the solutions to the Hamilton’s equations-(7)-(8) with weight matrix At . Define
A(ε)

t =At +εVt . Let X (ε)
t and Y (ε)

t be the solutions to the Hamilton’s equations with weight matrix
A(ε)

t . In the limit as ε → 0, X (ε)
t is given by the asymptotic formula X (ε)

t = Xt + εηt +O(ε2)

where
dηt

dt
= Atηt +VtXt , η0 = 0

In terms of ηt , the objective function

J[A(ε)] = J[A]+ ε

(
λ

∫ T

0
tr(A>t Vt)+E[(XT −Z)>ηT ]

)
+O(ε2)

Use the definition of Yt to express (XT −Z)>ηT as

(Z−XT )
>

ηT = Y>T ηT =
∫ T

0

d
dt
(Y>t ηt)dt =

∫ T

0
(−Y>t Atηt +Y>t Atηt +Y>t VtXt)dt =

∫ T

0
Y>t VtXt dt

Therefore,

J[A(ε)] = J[A]+ ε

∫ T

0
E
[
tr
(
(λA>t −XtY>t )Vt

)]
dt +O(ε2)

On the other hand ∂H
∂B (x,y,B) = λB+ yx>. Therefore

J[A(ε)]− J[A] = ε

∫ T

0
tr

(
E

[
∂H
∂B

(Xt ,Yt ,At)

]>
Vt

)
dt +O(ε2)

which gives the result ∇J[A] =−E[∂H
∂B (Xt ,Yt ,At)].

November 4, 2017 DRAFT



4

D. Proof of the Theorem 1

For the [λ = 0] problem, the gradient ∇J[A] is (by (10))

∇J[A] =−E[YtX>t ]

where Xt and Yt solve the Hamilton’s equations-(7)-(8). Define the state transition matrix φ(t, t0)
of the differential equation dXt

dt = AtXt according to:

dφ(t, t0)
dt

= Atφ(t, t0), φ(t0, t0) = I

In terms of the transition matrix,

Xt = φ(t,0)X0, Yt = φ(T, t)>(Z−XT )

Therefore

∇J[A] =−φ(T, t)>(R−φ(T,0))Σφ(t,0)> =: ψt

Since φ(t, t0) is invertible

∇J[A] = 0 ⇔ R = φ(T,0) ⇔ J[A] = J∗ = E[|W |2]

For each fixed t ∈ [0,T ]

‖ψt‖2 = ‖φ(T, t)>(R−φ(T,0))Σφ(t,0)>‖2

≥ λmin(φ(T, t)>φ(T, t))λmin(φ(t,0)>φ(t,0))‖(R−φ(T,0))Σ‖2

≥ λmin(φ(T, t)>φ(T, t))λmin(φ(t,0)>φ(t,0))λmin(Σ)tr((R−φ(T,0))>(R−φ(T,0))Σ)

≥ e−2
∫ T

0 |‖At‖dt
λmin(Σ)(J[A]− J∗)

where we used Lemma I.1 (see below) in the last step. Integrating the inequality on [0,T ] yields
the result.

Lemma I.1. Let φ(t, t0) be the state transition matrix defined according to d
dt φ(t, t0) = Atφ(t, t0)

with φ(t0, t0) = I. Then,

e−2
∫ t

0 ‖At‖dt ≤ λmin(φ(t,0)>φ(t,0))≤ λmax(φ(t,0)>φ(t,0))≤ e2
∫ t

0 ‖At‖dt

Proof. Observe that

λmax(φ(t,0)>φ(t,0)) = max
x 6=0

x>φ>t,0φt,0x

x>x
= max

x0 6=0

x>t xt

x>0 x0

Now,
d
dt
|xt |2 = x>t (At +A>t )xt ≤ λmax(At +A>t )|xt |2 ≤ 2‖At‖|xt |2

where the last inequality follows because 2‖At‖= ‖At +A>t ‖≥ λmax(At +A>t ). Therefore, |xt |2≤
e2
∫ t

0 ‖At‖dt |x0|2 which gives the upper bound. The calculation for the lower bound is similar.
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E. Convergence of the learning algorithm

Proposition 1. Consider the stochastic gradient descent learning algorithm (11) with λ =

0. Suppose ∃α > 0 such that E[X0XT
0 QX0XT

0 ] ≤ αΣ0QΣ0 for all symmetric matrices Q, and
‖A(k)‖L2 ≤ M for all k ∈ N. Then there exists a positive constant β > 0 such that J is a β -
smooth function. And for sufficiently small constant stepsize ηk = η ≤ 1

αβ
,

J[A(k)]− J∗ ≤ (1− η

2
)k(J[A(0)]− J∗)+ηβe2M

√
TE[|X0|2|ξ |2],

for all k ∈ N where J∗ := minA J[A] = E[|ξ |2].

Proof. The proof is based on Theorem 4.8 in [1] where it is shown that SGD converges to a
local minimum. To apply the theorem we show

E

[
Y (k)

t X (k)
t
>
]
= ∇J[A(k)]

because X (k)
0 is a random sample of X0 and ∇J[A(K)] is given by the formula (10) for λ = 0.

Next

E

[∥∥∥∥Y (k)
t X (k)

t
>
∥∥∥∥2
]
= E

[
‖φ(T, t)>(Z−X i

T )X
i
0
>

φ(t,0)>‖2
]

= E
[
‖φ(T, t)>(R−φ(T,0))X0X>0 φ(t,0)>‖2

]
+E

[
‖φ(T, t)>WX>0 φ(t,0)>‖2

]
≤ α‖φ(T, t)>(R−φ(T,0))Σφ(t,0)>‖2 + e2

∫ T
0 ‖At‖dtE[|W |2]E[|X0|2]

where the assumption E[X0X>0 φ(t,0)>φ(t,0)X0X>0 ]≤αΣφ(t,0)>φ(t,0)Σ and Lemma I.1 is used.
The fact that J is β -smooth is true since all the functions involved are smooth and it is assumed

A is bounded. Applying Theorem 4.8 in [1], SGD algorithm converges to a local minimum. The
geometric convergence to the global minimum follows from Theorem 1 where it is shown that
local minimum are global minimum for λ = 0 and using the inequality (14).

F. Proof of Proposition 2

Suppose (Xt ,Yt ,At) is a solution of the Hamilton’s equations(7)-(9). Then by differentiating
At with respect to t, one obtains

dAt

dt
=−A>t At +AtA>t

On expressing At = St +Ωt as the sum of its symmetric component St =
1
2(At +A>t ) and the

skew-symmetric component Ωt =
1
2(At−A>t ), one obtains

dSt

dt
= 2ΩtSt−2StΩt ,

dΩt

dt
= 0
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whose solution is given by

St = e2tΩS0e−2tΩ, Ωt = Ω0

This gives (17).
Using the formula (17) for At , the Hamilton’s equation for Xt is

dXt

dt
= e2tΩSe−2tΩXt +ΩXt

whose solution is given by (15).
The optimal costate trajectory is obtained similarly. The Hamilton’s equation for the costate

is:
dYt

dt
=−e2tΩSe−2tΩYt +ΩYt , YT = Z−XT

whose solution is given by (16).
The characteristic equation (18) is obtained by using the formula At =

1
λ
E[YtX ′t ]:

λe2tΩCe−2tΩ = e2tΩe−tCeTCe−2T ΩE[(Z−XT )X>0 ]etCe−2tΩ

upon multiplying both sides from left by etCe−2tΩ and from right by e2tΩe−tC.
Optimal cost: Optimal cost is obtained by inserting At = e2tΩCe−2tΩ into the cost function
where the following identities are used:

tr(AtA>t ) = tr(CC>)

E[|XT −Z|2] = E[|W |2]+E[|FX0−RX0|2]

Constant ⇔ normal: Suppose At = C a constant. Then dAt
dt = −A>t At +AtA>t = 0, and hence

At = C is a normal matrix. Conversely, assuming At is a normal matrix implies dAt
dt = 0 and

hence At =C a constant.
Normal solution: If C is normal, then C and Ω commute, therefore F = eTC. Hence the
characteristic simplifies to

λC= eC
>
(R− eC)Σ

and equivalently
λCe−C

>
Σ
−1 + eC = R

Therefore, if C and Σ commute (always true when Σ = I), R is a normal matrix. We have proved

At ≡ C ⇐⇒ C is normal
(Σ=I)
=⇒ R is normal

Therefore a non-normal R implies the minimizer At is not constant for Σ = I.
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G. Proof of Theorem 2

1) If C is normal, then eT (C−C>)eTC = eTC. Hence for λ = 0 problem the characteristic
equation becomes eTC = R whose solution is C = 1

T log(R), interpreted as multi-valued
matrix logarithm function (see [2]).

2) For λ > 0 and Σ = I the characteristic equation is:

λCe−C
>
+ eC = R

Since C is normal, R must be normal and moreover there exists a unitary (complex) matrix
U such that U∗RU = D where D = diag(r1, . . . ,rd) with rn ∈ C. Let µn ∈ C be solution to
the equation

λ µne−µ∗n + eµn = rn (I.5)

for n = 1, . . . ,d. Then C=UGU∗ where G = diag(µ1, . . . ,µd) is the normal solution to the
characteristic equation since

λGe−G∗+ eG = D ⇒ λUGe−G∗U∗+UeGU∗ =UDU∗ ⇒ λCeC
>
+ eC = R

It thus suffices to analyze solutions to the complex equation (I.5). Denoting µn = x+ iy and
rn = ea+iθ the complex equation (I.5) is written as two real equations:

f1(x,y;λ ) := λxe−x cos(y)−λye−x sin(y)+ ex cos(y) = ea cos(θ)

f2(x,y;λ ) := λxe−x sin(y)+λye−x cos(y)+ ex sin(y) = ea sin(θ)

At λ = 0, there are countability many solutions given by x0 = a and y0 = θ +m2π for
m ∈ Z. The Jacobian

D f (x0,y0;0) =

[
∂ f1
∂x (x0,y0,0)

∂ f1
∂y (x0,y0,0)

∂ f2
∂x (x0,y0,0)

∂ f2
∂y (x0,y0,0)

]
=

[
ex0 cos(y0) −ex0 sin(y0)

ex0 sin(y0) ex0 cos(y0)

]
is nonsingular since det(D f ) = e2x0 = e2a > 0. Therefore, using the implicit function theo-
rem, there exists a neighborhood N of λ = 0 and a function λ ∈N → (x(λ ),y(λ )) ∈ R2

such that f (x(λ ),y(λ );λ ) = 0. The asymptotic formula for x(λ ) and y(λ ) are obtained upon
using a regular perturbation expansion x= x0+λx1+O(λ 2) and y= y0+λy1+O(λ 2). Then[

x1

y1

]
=−[D f (x0,y0;0)]−1 ∂ f

∂λ
(x0,y0;0)

=−e−x0

[
cos(y) sin(y0)

−sin(y) cos(y0)

][
x0e−x0 cos(y0)− y0e−x0 sin(y0)

x0e−x0 sin(y0)+ y0e−x0 cos(y0)

]

=−e−2x0

[
x0

y0

]
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Therefore
µ = log(r)−λ

log(r)
|r|2

+O(λ 2)

which gives the asymptotic formula

C= log(R)−λ (RR∗)−1 log(R)+O(λ 2)

H. Learning example

The objective of this section is to present a numerical illustration of the learning algorithm (11).
In particular we are interested in the behavior of the algorithm near critical points.

Let R =

[
0 −1
1 0

]
, Σ0 = I, and T = 1 similar to the setting of Example 1. The regularization

parameter λ is set to 0.03. Weight matrix is initialized with the critical point corresponding to
C(0.03,2) perturbed with small Gaussian noise. 500 training samples are drawn from model 1,
where p0 is Gaussian N(0, I2×2). The learning rate is η = 0.05 and at each iteration, one sample
is selected randomly for learning. The test error is evaluated using 500 independent samples.

The test error versus number of iterations is depicted in Fig. 1 (a). It is observed that the test
error remains approximately unchanged during a short interval at the beginning, and a longer
interval afterwards. In these intervals, the weight matrix is close to a critical point corresponding
to a non-normal solution of the characteristic equation. For example during the second interval, At

corresponds to the non-normal solution of the characteristic equation given by C=

[
0 0.5π

−2π 0

]
.

Eventually the algorithm converges to the global minimum which corresponds to the principal
branch solution of the characteristic equation. The weight matrix at several instances of the
algorithm is depicted in Fig. 1. Each curve is the (2,1) entry of the weight matrix At as a
function of time.

Fig. 1: (a) The cost J[A] (test error) versus iterations. (b) (2,1) entry of At at iteration k = 0,1500,15000,25000.

The wight matrix At at iteration k = 1500,15000 correspond to non-normal solutions of the characteristic equation.
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