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1 Sampling Levy Process Priors
The following formulas in this section are taken from Wolpert et al. (2011) for reference.

Suppose the hyperparameters θ of the prior distributions for J, β, ω, are drawn from a hyperprior
distribution, πθ(dθ). Then in order to sample the Lévy prior, the follow steps are taken:

θ ∼ πθ(dθ)
J |θ ∼ Po(ν+ε ), ν+ε ≡ νε(R× Ω)

{(βj , ωj)}Jj=1|J, θ
i.i.d.∼ πβ(βj)dβjπω(dωj)

The formulas for ν+ε and πβ are determined by the specific choice of Lévy process and are given
below. For computational purposes, the βj’s are truncated at |βjη| > ε for a Poisson approximation
to the true Lévy process, and E|L[φ] − Lε[φ]|2 represents the L2 error of the approximation for a
given basis function φ. Below, E1(z) =

∫∞
z
t−1e−tdt.

1.1 Gamma Process

J ∼ Po(ν+ε ), ν+ε = γ|Ω|E1(ε)

βj
i.i.d.∼ πβ(βj)dβj , πβ(βj) =

β−1j e−βjη

E1(ε)
1{βjη>ε}

E|L[φ]− Lε[φ]|2 = γη−2‖φ‖22[1− (1 + ε)e−ε]

1.2 Symmetric Gamma Process

J ∼ Po(ν+ε ), ν+ε = 2γ|Ω|E1(ε)

βj
i.i.d.∼ πβ(βj)dβj , πβ(βj) =

|βj |−1e−|βj |η

2E1(ε)
1{|βjη|>ε}

E|L[φ]− Lε[φ]|2 = 2γη−2‖φ‖22[1− (1 + ε)e−ε]

1.3 Symmetric α-Stable Process

J ∼ Po(ν+ε ), ν+ε = γ|Ω| 2
π

Γ(α)sin
(πα

2

)
ε−α

βj
i.i.d.∼ πβ(βj)dβj , πβ(βj) =

αεα

2ηα
|βj |−α−11{|βjη|>ε}

E|L[φ]− Lε[φ]|2 = 2γη−2‖φ‖22
[

Γ(α+ 1)

π(2− α)
sin
(πα

2

)
ε2−α

]
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2 Sparsity Inducing Properties of Lévy Priors
Figure 1 illustrates the contours of the joint distribution for two independent draws of β under
different priors πβ(dβ). The contours for the gamma process would be taken from the upper-right
quadrant of those for the symmetric gamma process.

Gaussian and Laplace priors on β result in `2 and `1 regularization respectively. The Lévy processes
in contrast yield inward curving contours, leading to a sparsity inducing effect similar to `p regular-
ization with p < 1. Intuitively, this discourages simultaneous large values of β more strongly than
`1 regularization unless the added basis functions significantly improve the fit.

Figure 1: Contour plot of the joint probability density function of two β draws under different
priors.
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3 Initialization and Hyperparameter Tuning
Initialization and hyperparameter tuning can be automated by fitting the empirical spectrum of the
data. It is done in the following steps:

1. If needed, de-mean the training data by subtracting a deterministic mean function such as
the sample mean or best fit line. Doing so will eliminate large peaks at the origin which
dominate the rest of the spectrum. The de-meaned training data {yj}nj=1 will be the input
for RJ-MCMC.

2. Compute the empirical spectral density Semp(s) = 2
n

∣∣∣∑n
j=1 yje

−2πis(j−1)
∣∣∣2 , s ∈ [0, 0.5].

In MATLAB, this is calculated as the first bn2 c entries from 2*abs(fft(y)).ˆ2/n;
3. Sample the empirical spectral density and fit a Gaussian mixture with J0 components to the

sampled data. A good initial guess for J0 can be done by examining the number of peaks
in the empirical spectrum.

SGaussian(s) =

J0∑
j=1

αj
1√

2πσ2
j

e
−

(s−χj)
2

2σ2
j

4. Keep the frequencies χj from the Gaussian fit, and using least squares, fit a Laplacian
basis function to each individual Gaussian component. For each j, one could minimize the
following objective over a sample grid of points sk in [−3σj , 3σj ]

min
λj ,βj

∑
sk

βj λj
2
e−λj |sk| − αj

1√
2πσ2

j

e
− s2k

2σ2
j

2

5. Form the initial spectrum with the fitted parameters

Sinitial(s) =

J0∑
j=1

βj
λj
2
e−λj |s−χj |

Plots of this initial spectrum for the airline data are shown in Figures 2 and 3.
6. Tune the hyperparameters:

• λ is modelled with a hyperprior Gamma(aλ, bλ), so aλ and bλ can be estimated by
maximum likelihood on the λ parameters of the initial spectrum.

• η−1 ∼ Gamma(aη, bη) controls the expected value of coefficients βj . For basis func-
tions which integrate to 1, the sum of βj’s is equal to the total area underneath the
spectrum, which by Parseval’s identity represents total variance of the data. Hence
the sample variance of the training data can be used as an upper bound on coefficient
values, and aη and bη can be set accordingly.

• γ ∼ Gamma(aγ , bγ) is proportional to the expected number of basis functions as
shown in Section 1 and controls the sparsity of the expansions. aγ and bγ can be set
to cover a range of values which encourage sparsity.

• For the symmetric α-stable process, 0 < α < 2 controls the heaviness of the tails in
the distribution for βj with smaller values of α yielding heavier tails. α can be set by
maximum likelihood on the initial βj’s.

• ε can be set based on L2 truncation errors as described in Section 1.
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Figure 2: Initial spectrum fit after subtracting the sample mean from training data

Figure 3: Initial spectrum fit after subtracting linear trend from training data
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