
Supplementary Material
Accelerated consensus via Min-Sum Splitting

We present, in order, the proofs of Proposition 1, Proposition 2, and Theorem 1.

Proof of Proposition 1. First of all, note that the optimization problem (2) can be casted in the
unconstrained formulation of problem (1) upon choosing the hard barrier function: φvw(z, z′) := 0
if z = z′ and φvw(z, z′) :=∞ otherwise. With this choice, the minimization inside the definition of
the message updates in Algorithm 1 admits the trivial solution µ̂swv = (δ − 1)ξ̂swv + δξ̂svw. Hence,
Algorithm 1 yields the following update for the messages µ̂s = (µ̂swv)(w,v)∈E :

µ̂swv = (1− 1/δ)φv − (δ − 1)µ̂s−1
wv + (δ − 1)

∑
z∈N (v)

Γzvµ̂
s−1
zv

+ φw − δµ̂s−1
vw + δ

∑
z∈N (w)

Γzwµ̂
s−1
zw .

(1)

In vector form, this update can be written as µ̂s = k̂(δ) + K̂(δ,Γ)µ̂s−1, where k̂(δ)wv := φw +
(1− 1/δ)φv. From the linearity of the message update it follows that if φv(z) = 1

2z
2 − bvz and if

we choose the initial messages to be quadratic functions, then the messages at any time s > 0 will
remain quadratic. Namely, if we adopt the parametrization µ̂0

vw(z) = 1
2 R̂

0
vwz

2 − r̂0
vwz, then we have

µ̂svw(z) = 1
2 R̂

s
vwz

2 − r̂svwz with the linear and quadratic parameters updated, respectively, according
to R̂s = (2−1/δ)1+K̂(δ,Γ)R̂s−1 and r̂s = ĥ(δ)+K̂(δ,Γ)r̂s−1. The belief function reads µtv(z) =

φv(z)+δ
∑
w∈N (v) Γwvµ̂

t
wv(z) = 1

2 [1+δ
∑
w∈N (v) ΓwvR̂

t
wv]z

2− [bv+δ
∑
w∈N (v) Γwv r̂

t
wv]z. As

by assumption 1+δ
∑
w∈N (v) ΓwvR̂

t
wv > 0, xtv := arg minz∈R µ

t
v(z) =

bv+δ
∑

w∈N(v) Γwv r̂
t
wv

1+δ
∑

w∈N(v) ΓwvR̂t
wv

.

Proof of Proposition 2. Recall from Algorithm 1 the definition of the belief function at time
s, i.e., µsv := φv + δ

∑
w∈N (v) Γwvµ̂

s
wv, and let µs ∈ RV be the vector whose v-th com-

ponent is µsv. Let χs ∈ RV be the vector whose v-th component is given by the function
χsv := φv − δ

∑
w∈N (v) Γvwµ̂

s
vw. Let φ ∈ RV be the vector whose v-th component is the func-

tion φv. By taking the summations of update (1) over w ∈ N (v) and v ∈ N (w), respectively,
and by performing the change of variables as prescribed by the definitions of µs and χs (using
that Γ is symmetric), we get that the functions µsv’s and χsv’s evolve according to the linear sys-
tem (µs, χs)T = K(δ,Γ)(µs−1, χs−1)T , where the matrix K(δ,Γ) is defined as in (5). From the
linearity of the message updates it follows that if we choose the initial messages to be quadratic
functions, then the messages at any time s > 0 will remain quadratic. Namely, if we adopt the
parametrization µ0

v(z) = 1
2R

0
vz

2 − r0
vz and χ0

v(z) = 1
2Q

0
vz

2 − q0
vz, then µsv(z) = 1

2R
s
vz

2 − rsvz and
χsv(z) = 1

2Q
s
vz

2 − qsvz, where the linear and quadratic parameters are updated according to(
rs

qs

)
= K(δ,Γ)

(
rs−1

qs−1

)
,

(
Rs

Qs

)
= K(δ,Γ)

(
Rs−1

Qs−1

)
.

If Rtv > 0 the final estimates read xtv := arg minz∈R µ
t
v(z) = rtv/R

t
v.

Proof of Theorem 1. We analyze Algorithm 3 with initial conditions R0 = Q0 = 1 and r0 = q0 = b.
By Proposition 2, the output of this algorithm coincides with the output of Algorithm 2 with initial
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conditions R̂0 = r̂0 = 0. As Γ = γW with W1 = 1, we have diag(Γ1) = γdiag(1) = γI , and the
matrix K(δ,Γ) in (5) reads as the matrix K in (6). By the results in [15] (see also [13]), we know
that for the choice of γ given in the statement of the theorem the following holds:

1. The matrix K has an eigenvalue 1 and all the remaining 2n− 1 eigenvalues have magnitude
strictly less than one.

2. The second largest eigenvalue in magnitude of K is given by the quantity ρK defined in the
statement of the theorem.

It can be verified that

(1,1)TK = (1,1)T , K

(
1

(1− γ)1

)
=

(
1

(1− γ)1

)
.

By Lemma 3 in [24], which is a general version of Theorem 1 in [44], we have limt→∞W t = W∞,
where W∞ is defined as in (6). By taking the limit for t that goes to infinity on the two linear systems
that define the message updates in Algorithm 3 we get, respectively,(

r∞

q∞

)
= K∞

(
r0

q0

)
,

(
R∞

Q∞

)
= K∞

(
R0

Q0

)
,

which yield r∞ = b̄R∞, q∞ = (1− γ)r∞ = b̄Q∞, and R∞ = 2
2−γ1, Q∞ = (1− γ)R∞. Hence,

we have r∞v /R
∞
v = b̄. The error decomposition

xtv − b̄ =
rtv
Rtv
− r∞v
R∞v

=
rtv
Rtv
− r∞v
Rtv

+
r∞v
Rtv
− r∞v
R∞v

=
1

Rtv
(rtv − r∞v ) +

r∞v
RtvR

∞
v

(R∞v −Rtv)

yields, using that Rtv ≥ 1 and b̄ < 1, by the triangle inequality for the `2 norm ‖ · ‖,
‖xt − b̄1‖ ≤ ‖rt − r∞‖+ ‖Rt −R∞‖ ≤ 2 max{‖rt − r∞‖, ‖Rt −R∞‖}.

We first bound the term for the quadratic parameters. As(
Rt −R∞
Qt −Q∞

)
= (K −K∞)

(
Rt−1

Qt−1

)
= (K −K∞)

(
Rt−1 −R∞
Qt−1 −Q∞

)
,

we have (
Rt −R∞
Qt −Q∞

)
= (K −K∞)t

(
R0 −R∞
Q0 −Q∞

)
,

from which it follows that

‖Rt −R∞‖ ≤
∥∥∥∥( Rt −R∞

Qt −Q∞
)∥∥∥∥ ≤ ‖(K −K∞)t‖

∥∥∥∥( R0 −R∞
Q0 −Q∞

)∥∥∥∥ .
Given that ∥∥∥∥( R0 −R∞

Q0 −Q∞
)∥∥∥∥ =

√
‖1−R∞‖22 + ‖1−Q∞‖22,

with ‖1 − R∞‖22 = ‖1 − Q∞‖22 = γ2

(2−γ)2n, we get ‖Rt − R∞‖ ≤ ‖(K −
K∞)t‖ γ

2−γ
√

2n. Proceeding analogously for the linear parameters, we find ‖rt − r∞‖ ≤ ‖(K −
K∞)t‖

√
‖r0 − r∞‖22 + ‖q0 − q∞‖22.We have ‖r0−r∞‖ = ‖b− b̄R∞‖ = ‖b− b̄1+ b̄1− b̄R∞‖ ≤

‖b− b̄1‖+ |b̄|‖1−R∞‖ so that ‖r0− r∞‖ ≤
√
n+ γ

(2−γ)

√
n = 2

(2−γ)

√
n. In the same way we get

‖q0− q∞‖ = ‖b− b̄Q∞‖ ≤ 2
(2−γ)

√
n. All together, ‖rt− r∞‖ ≤ ‖(K −K∞)t‖ 2

2−γ
√

2n. Finally,

as γ < 2 we obtain ‖xt − b̄1‖ ≤ 4
2−γ
√

2n‖(K −K∞)t‖.

It can be checked that for z ∈ [0, 1] the following inequalities hold

1− 2z ≤

√
1−

√
1− (1− z2)2

1 +
√

1− (1− z2)2
≤ 1− z.

Upon choosing ρW = 1− z2, we recover the bounds stated at the end of Theorem 1.
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