
A Proofs of preliminaries

Proof of Lemma 2.2

Proof. We have

zAR(B) = min
x≥0

cTx+ max
h∈U

min
By ≥ h−Ax

y≥0

dTy

= min
x≥0

cTx+ max
h∈U

max
BTw≤d
w≥0

(h−Ax)Tw (11)

= min
x≥0

cTx+ max
w∈W

−(Ax)Tw + max
Rh≤r
h≥0

hTw

= min
x≥0

cTx+ max
w∈W

−(Ax)Tw + min
RTλ≥w
λ≥0

rTλ

= zd−AR(B).

where the second equality holds by taking the dual of the inner minimization problem, the third equality follows
from switching the two max, and the fourth one by taking the dual of the second maximization problem.

Proof of Lemma 2.4

Proof. We restate the same proof in [8] in our setting. First, since the adjustable problem is a relaxation of the
affine problem then zd−Aff(B) ≤ zd−AR(B).

Now let’s prove the other inequality. ConsiderW = {w ∈ Rm+ | BTw ≤ d} which is a simplex. Note that 0 is
always an extreme point of the simplexW and denotew1,w2, . . . ,wm the remaining m points. In particular,
we have for anyw ∈ W

w =

m∑
j=1

αjw
j = Qα

where
∑m
j=1 αj ≤ 1 and Q =

[
w1|w2| . . . |wm

]
. Note that Q is invertible since w1,w2, . . . ,wm are

linearly independent. Hence, α = Q−1w. Denote x∗,λ∗(w) forw ∈ W the optimal adjustable solution of
the adjustable problem (4). We define the following affine solution x = x∗ and forw ∈ W , λ(w) = PQ−1w
where P =

[
λ∗(w1)|λ∗(w2)| . . . |λ∗(wm)

]
. In particular, we have

λ(w) =

m∑
j=1

αjλ
∗(wj).

Let us first check the feasbility of the solution

RTλ(w) =

m∑
j=1

αjR
Tλ∗(wj) ≥

m∑
j=1

αjw
j = w

where the inequality follows from the feasibility of the adjustable solution. Therefore,

zd−Aff(B) ≤ cTx+ max
w∈W

(−Ax)Tw + rTλ(w)

= cTx∗ + max
α

(−Ax∗)Tw +

m∑
j=1

αjr
Tλ∗(wj)

= cTx∗ + max
α

m∑
j=1

αj
(

(−Ax∗)Twj + rTλ∗(wj)
)

≤ cTx∗ + max
w∈W

(
(−Ax∗)Tw + rTλ∗(w)

)
max
α

m∑
j=1

αj = zd−AR(B)

where the last inequality holds because
∑m
j=1 αj ≤ 1. We conclude that zd−Aff(B) = zd−AR(B).
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Proof of Lemma 2.5

Proof. First the inequality zd−AR(B) ≤ zd−Aff(B) is straightforward since the adjustable problem(1) is a
relaxation of the affine problem (2). On the other hand, sinceW ⊆ κ · S then,

zd−Aff(B) ≤ κ · zd−Aff(B,S)

where we denote zd−Aff(B,S) the dualized affine problem over S (it’s the same problem as zd−Aff(B) where
we only replace W by S). Since S is a simplex, from Lemma 2.4, we have zd−Aff(B,S) = zd−AR(B,S).
Moreover, zd−AR(B,S) ≤ zd−AR(B) because S ⊆ W . We conclude that

zd−AR(B) ≤ zd−Aff(B) ≤ κ · zd−AR(B).

Furthermore, since zd−AR(B) = zAR(B) from Lemma 2.2 and zd−Aff(B) = zAff(B) from Lemma 2.3, then

zAR(B) ≤ zAff(B) ≤ κ · zAR(B).

B Hoeffding’s inequality

Hoeffding’s inequality[18]. Let Z1, . . . , Zn be independent bounded random variables with Zi ∈ [a, b] for all
i ∈ [n] and denote Z = 1

n

∑n
i=1 Zi. Therefore,

P(Z − E(Z) ≤ −τ) ≤ exp

(
−2nτ2

(b− a)2

)
.

C Proof of Theorem 2.6

Proof. Denote W̃ = {w ∈ Rm+ | B̃
T
w ≤ d̄ · e} and S = {w ∈ Rm+

∣∣ ∑m
i=1 wi ≤ d̄}. Our goal is to

sandwich W̃ between two simplicies and use Lemma 2.5. Using the following tail inequality for Gaussian

random variables G̃ ∼ N (µ, σ2), P(|G̃− µ| ≥ t) ≤ 2e
− t2

2σ2 , we have

P(B̃ij ≤
√

6 log(mn)) = 1− ·P
(
|G̃ij | ≥

√
6 log(mn)

)
≥ 1− 2 exp

(
−6 log(mn)

2

)
= 1− 2

(mn)3
≥ 1− 1

(mn)2

Therefore by taking a union bound,

P
(
B̃ij ≤

√
6 log(mn) ∀i ∈ [n], ∀j ∈ [m]

)
≥
(

1− 1

(mn)2

)mn
≥ 1− 1

mn

where the last inequality follows from Bernoulli’s inequality. Therefore for any w ∈ S , we have with probability
at least 1− 1

mn
,

m∑
j=1

B̃jiwj ≤
√

6 log(mn)

m∑
j=1

wj ≤
√

6 log(mn) · d̄ ∀i ∈ [n]

Hence, with probability at least 1− 1
mn

we have, S ⊆
√

6 log(mn) · W̃ .

Now, we want to find a simplex that includes W̃ . We follow a similar approach to the proof of Theorem 2.1.
Consider anyw ∈ W̃ . We have similarly to equation (7)

m∑
j=1

(∑n
i=1 B̃ji

n

)
· wj ≤ d̄. (12)

We have the following concentration inequality for non-negative random variables (see Theroem 7 in [12]),

P

(∑n
i=1 B̃ji

n
≥ µ− τ

)
≥ 1− exp

(
−nτ2

2E(B̃2
11)

)
= 1− exp

(
−nτ2

2

)
= 1− 1

m2

where τ = 2
√

logm
n

and µ = E[B̃ji] =
√

2
π

is the expectation of a folded standard normal distribution. Then,
union bound over j = 1, . . . ,m gives us

P

(∑n
i=1 B̃ji

n
≥ µ− τ ∀j = 1, . . . ,m

)
≥
(

1− 1

m2

)m
≥ 1− 1

m
.
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where the last inequality follows from Bernoulli’s inequality. Therefore, combining this result with inequality
(12), we have with probability at least 1− 1

m
, W̃ ⊆ 1

µ−τ S. Denote, S ′ = 1√
6 log(mn)

S. Then, we have with

probabilty at least 1− 1
m

, S ′ ⊆ W̃ ⊆ κ · S ′ where

κ =

√
6 log(mn)√

2
π
− 2
√

logm
n

= O
(√

logm+ logn
)
,

for sufficiently large values of m and n. We finally use Lemma 2.5 to conclude.

D Proofs of Theorem 3.1

To prove Theorem 3.1, we introduce the following Lemma which shows a deterministic bad instance where the
optimal affine solution is Θ(

√
m) away from the optimal adjustable solution.

Lemma D.1. Consider the two-stage adjustable problem (1) where: n = m, c = 0, d = e,A = 0,

Bij =

{
1 if i = j

1√
m

if i 6= j (13)

and the uncertainty set is defined as

U = conv (0, e1, . . . , em,ν1, . . . ,νm) (14)

where νi = 1√
m

(e− ei) for i = 1, . . . ,m. Then, zAff(B) = Ω(
√
m) · zAR(B).

Proof. First, let us prove that zAR(B) ≤ 1. It is sufficient to define an adjustable solution only for the extreme
points of U because the constraints are linear. We define the following solution for all i = 1, . . . ,m.

x = 0, y(0) = 0, y(ei) = ei, y(νi) =
1

m
e.

We haveBy(0) = 0 and for i ∈ [m]

By(ei) = ei +
1√
m

(e− ei) ≥ ei

and

By(νi) =
1

m
Be =

(
1

m
+
m− 1

m
√
m

)
e ≥ 1√

m
e ≥ νi

Therefore, the solution defined above is feasible. Moreover, the cost of our feasible solution is 1 because for all
i ∈ [m], we have

dTy(ei) = dTy(νi) = 1.

Hence, zAR(B) ≤ 1. Now, it is sufficient to prove that zAff(B) = Ω(
√
m). From Lemma 8 in Bertsimas and

Goyal [8], since our instance is symmetric, i.e. U andW are permutation invariant, whereW is the dualized
uncertainty set, there exists an optimal solution for the affine problem (2) of the following form y(h) = Ph+q
for h ∈ U where

P =


θ µ . . . µ
µ θ . . . µ
...

...
. . .

...
µ µ . . . θ

 (15)

and q = λe.

We have y(0) = λe ≥ 0 hence
λ ≥ 0. (16)

We know that
zAff(B) ≥ dTy(0) = λm. (17)

Case 1: If λ ≥ 1
6
√
m

, then from (17) we have zAff(B) ≥
√
m
6

.

Case 2: If λ ≤ 1
6
√
m

. We have

y(e1) = (θ + λ)e1 + (µ+ λ)(e− e1).

By feasibility of the solution, we haveBy(e1) ≥ e1, hence

(θ + λ) +
1√
m

(m− 1)(µ+ λ) ≥ 1
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Therefore θ + λ ≥ 1
2

or 1√
m

(m− 1)(µ+ λ) ≥ 1
2

.

Case 2.1: Suppose 1√
m

(m− 1)(µ+ λ) ≥ 1
2

. Therefore,

zAff(B) ≥ dTy(e1) = θ + λ+ (m− 1)(µ+ λ) ≥
√
m

2
.

where the last inequality holds because θ + λ ≥ 0 as y(e1) ≥ 0.

Case 2.2: Now suppose we have the other inequality i.e. θ + λ ≥ 1
2

. Recall that we have λ ≤ 1
6
√
m

as well.
Therefore,

θ ≥ 1

2
− 1

6
√
m
≥ 1

3
.

We have,

y(ν1) =
1√
m

((θ + (m− 2)µ)(e− e1) + (m− 1)µe1) + λe.

In particular we have ,

zAff(B) ≥ dTy(ν1) =
1√
m

((m− 1)θ + (m− 1)2µ) + λm

≥ m− 1√
m

(
1

3
+ (m− 1)µ

)
. (18)

where the last inequality follows from λ ≥ 0 and θ ≥ 1
3
.

Case 2.2.1: If µ ≥ 0 then from (18)

zAff(B) ≥ m− 1

3
√
m

= Ω(
√
m).

Case 2.2.2: Now suppose that µ < 0, by non-negativity of y(ν1) we have
m− 1√
m

µ+ λ ≥ 0

i.e.

µ ≥ −λ
√
m

m− 1
and from (18)

zAff(B) ≥ m− 1√
m

(
1

3
+ (m− 1)µ

)
≥ m− 1√

m

(
1

3
− λ
√
m

)
≥ m− 1√

m

(
1

3
− 1

6

)
=
m− 1

6
√
m

= Ω(
√
m).

We conclude that in all cases zAff(B) = Ω(
√
m) and consequently zAff(B) = Ω(

√
m) · zAR(B).

Proof of Theorem 3.1

Proof. DenoteW = {w ∈ Rm+ | BTw ≤ d̄e} and W̃ = {w ∈ Rm+ | B̃
T
w ≤ d̄e} where B is defined in

(13) and B̃ is defined in (8). Since for all i, j in {1, . . . ,m} we have B̃ij ≤ Bij . Hence, for anyw ∈ W , we
have B̃

T
w ≤ BTw ≤ d̄e. Thereforew ∈ W̃ and consequentlyW ⊆ W̃ .

Now, supposew ∈ W̃ , we have for all i = 1, . . . ,m

wi +
1√
m

m∑
j=1
j 6=i

ũjiwj ≤ d̄. (19)

By taking the sum over i, dividing by m and rearranging, we get

m∑
i=1

wi

 1

m
+

1

m
√
m

m∑
j=1
j 6=i

ũij

 ≤ d̄. (20)
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Here, similarly to the proof of Lemma 2.1 we apply Hoeffding’s inequality [18](see appendix B), with τ =√
logm
m−1

P

(∑m
j 6=i ũij

m− 1
≥ 1

2
− τ

)
≥ 1− exp

(
−2(m− 1)τ2) = 1− 1

m2

and we take a union bound over j = 1, . . . ,m

P
(∑n

i=1 ũij

m− 1
≥ 1

2
− ε ∀j = 1, . . . ,m

)
≥
(

1− 1

m2

)m
≥ 1− 1

m
. (21)

where the last inequality follows from Bernoulli’s inequality. Therefore, we conclude from (20) and (21), that
with probability at least 1 − 1

m
we have β

∑m
i=1 wi ≤ d̄ where β = 1

m
+ m−1

m
√
m

( 1
2
− τ) ≥ 1

4
√
m

for m
sufficiently large. Note from (19) that for all i we have wi ≤ d̄. Hence with probability at least 1− 1

m
, we have

for all i = 1, . . . ,m

BT
i w = wi +

1√
m

m∑
j=1
j 6=i

wj ≤ d̄+
d̄

β
√
m
≤ 5 · d̄

Therefore,w ∈ 5 · W for anyw inW and consequently we have with probability at least 1− 1
m

, W̃ ⊆ 5 · W .
All together we have proved with probability at least 1− 1

m
W ⊆ W̃ ⊆ 5 · W . This implies with probability at

least 1− 1
m

, that zd−Aff(B̃) ≥ zd−Aff(B) and zd−AR(B) ≥ zd−AR(B̃)

5
. We know from from Lemma 2.3 and

Lemma 2.2 that the dualized and primal are the same both for the adjustable problem and affine problem. Hence,
with probability at least 1− 1

m
, we have zAff(B̃) ≥ zAff(B) and zAR(B) ≥ zAR(B̃)

5
.

Moreover, we know from Lemma D.1 that zAff(B) ≥ Ω(
√
m) ·zAR(B). Therefore, zAff(B̃) ≥ Ω(

√
m)zAR(B̃)

with probability at least 1− 1
m

.

E LP and MIP formulations for the empirical section

LP formulation for the affine problem. The affine problem (2) can be formulated as the following LP

zAff(B) = min cTx+ z

z − dTq ≥ rTv

RTv ≥ P Td

Ax+Bq ≥ V Tr

RTV ≥ Im −BP

q ≥ UTr

UTR+ P ≥ 0

x ∈ Rn+, v ∈ RL+, U ∈ RL×n+ , V ∈ RL×m+

(22)

Proof. The affine problem (2) can be reformulated as follows

zAff(B) = min
x
cTx+ z

z ≥ dT (Ph+ q) ∀h ∈ U
Ax+B (Ph+ q) ≥ h ∀h ∈ U
Ph+ q ≥ 0 ∀h ∈ U
x ∈ Rn+

We use standard duality techniques to derive formulation (22). The first constraint is equivalent to

z − dTq ≥ max
Rh≤r
h≥0

dTPh.

By taking the dual of the maximization problem, the constraint is equivalent

z − dTq ≥ min
RT v≥PT d

v≥0

rTv
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We can then drop the min and introduce v as a variable, hence we obtain the following linear constraints

z − dTq ≥ rTv

RTv ≥ P Td

v ∈ RL+
We use the same technique for the second sets of constraints, i.e.

Ax+Bq ≥ max
Rh≤r
h≥0

h(Im −BP )

By taking the dual of the maximization problem for each row and dropping the min we get the following
compact formulation of these constraints

Ax+Bq ≥ V Tr

RTV ≥ Im −BP
V ∈ RL×m+

Similarly, the last constraint
q ≥ max

Rh≤r
h≥0

− Ph

is equivalent to
q ≥ UTr

UTR+ P ≥ 0

U ∈ RL×n+ .

MIP formulation for the separation adjustable problem.

The separation problem (10) can be formulated as the following MIP

max

m∑
i=1

s∑
j=−∆W

s∑
k=−∆U

1

2j+k
· γijk − (Ax̂)Tw

w =

m∑
i=1

s∑
j=−∆W

βij
2j
· ei

h =

m∑
i=1

s∑
k=−∆U

αik
2k
· ei

γijk ≤ βij ∀i ∈ [m], j ∈ [−∆U , s], k ∈ [−∆W , s]

γijk ≤ αik ∀i ∈ [m], j ∈ [−∆U , s], k ∈ [−∆W , s]

γijk + 1 ≥ αik + βij ∀i ∈ [m], j ∈ [−∆U , s], k ∈ [−∆W , s]

αik, βik, γijk ∈ {0, 1} ∀i ∈ [m], j ∈ [−∆U , s], k ∈ [−∆W , s]

Rh ≤ r

BTw ≤ d

(23)

where s = dlog2

(
m
ε

)
e, ∆W is an upper bound on any component of w ∈ W , ∆U is an upper bound on any

component of h ∈ U and ε is the accuracy of the problem.

Proof. The separation problem (10) is equivalent to solving the following problem for given x̂

max
h∈U
w∈W

hTw − (Ax̂)Tw

The constraints of the above problem are linear and the second term in the objective function is linear as well. So
we will focus only on the first term hTw which is a bilinear function and write it in terms of linear constraints
and binary variables. Let us write h =

∑m
i=1 hiei. For all i ∈ [m] we digitize the component hi as follows

hi =

s∑
k=−∆U

αik
2k

15



where s = dlog2

(
m
ε

)
e, ∆U is an upper bound on any hi and αik are binary variables. This digitization gives

an approximation to hi within ε
m

which translates to an accuracy of ε in the objective function. We have

h =

m∑
i=1

s∑
k=−∆U

αik
2k
· ei

Similarly, we have

w =

m∑
i=1

s∑
j=−∆W

βij
2j
· ei

where ∆W is an upper bound on any component of w ∈ W . Therefore, the first term in the objective function
becomes

m∑
i=1

s∑
j=−∆W

s∑
k=−∆U

1

2j+k
· αikβij

The final step is to linearize the term αikβij . We set, αikβij = γijk where again γijk is a binary variable. Since
all the variables here are binary we can express γijk using only linear constraints as follows

γijk ≤ βij
γijk ≤ αik

γijk + 1 ≥ αik + βij

which leads to formulation (23).
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