A Proofs of preliminaries

Proof of Lemma [2.2]

Proof. We have

zar(B) = min ¢z + max min dTy
x>0 held By > h—Ax
y>0
.7 T
=min ¢ £+ max max (h— Az) w (11)
x>0 held BTw<d
w>0
=min ¢’z + max —(Az)"w+ max hTw
x>0 wew Rh<r
h>0
= min ¢’z + max —(A:z:)Tw + min »TA
x>0 wew RTX>w
A>0
= Zd_AR(B).
where the second equality holds by taking the dual of the inner minimization problem, the third equality follows
from switching the two max, and the fourth one by taking the dual of the second maximization problem. O
Proof of Lemma 2.4

Proof. We restate the same proof in [8] in our setting. First, since the adjustable problem is a relaxation of the
affine problem then zq—as (B) < z4—ar(B).

Now let’s prove the other inequality. Consider W = {w € RT" | BTw < d} which is a simplex. Note that 0 is

always an extreme point of the simplex V' and denote w', w?, ..., w™ the remaining m points. In particular,

we have for any w € W

m
_ o) —
w—E ojw = Qo
j=1

where 377" a; < land Q = [w'|w?|...|w™]. Note that Q is invertible since w", w?, ..., w™ are

linearly independent. Hence, o = Q*w. Denote 2*, \* (w) for w € W the optimal adjustable solution of
the adjustable problem ([@). We define the following affine solution = a* and for w € W, A(w) = PQ'w
where P = [A*(w")[A*(w?)|...|A*(w™)]. In particular, we have

Aw) = a; X (w?).
j=1
Let us first check the feasbility of the solution
R'A(w) =Y o;R"X (w’) > ajw’ =w
j=1 j=1

where the inequality follows from the feasibility of the adjustable solution. Therefore,

za_ar(B) < c"x + max (—Az)"w + 7" A(w)
=c"z* + max (—Az") w + Z a;rT A (w)
j=1
=c"z" + max Z a; ((—Aa:*)ij + TTA*(wj))
j=1

<T* (7 *\T T y * ) o _
<c @'+ max (—Az") w +r A" (w) ) max ;a] zd—AR(B)

where the last inequality holds because Z;n=1 a; < 1. We conclude that zy_asr(B) = zd—ar(B). O
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Proof of Lemma
Proof. First the inequality zg—ar(B) < za—ae(B) is straightforward since the adjustable problem(T) is a
relaxation of the affine problem @) On the other hand, since W C k - S then,

zd—aff(B) < k- z4—af(B, S)

where we denote zq_ae (B, S) the dualized affine problem over S (it’s the same problem as zq_ag (B) where
we only replace W by S). Since S is a simplex, from Lemma 2.4} we have zg_aq(B,S) = zda—ar(B,S).
Moreover, z4—ar(B,S) < z4—ar(B) because S C W. We conclude that

2d—AR(B) < za—ar(B) < k- 2a—ar(B).
Furthermore, since z4_ar(B) = zar(B) from Lemmaand zd—aff(B) = zag(B) from Lemma then
zar(B) < zag(B) < k- zar(B).
O

B Hoeffding’s inequality

Hoeffding’s inequality[18]]. Let Z1, . .., Z, be independent bounded random variables with Z; € [a, b] for all
i € [n] and denote Z = 1 37" | Z;. Therefore,

P(Z — E(Z) < —7) < exp <%) .

C Proof of Theorem

Proof. Denote W = {w € R7" | B'w<d- e}and S = {w € RY | Y w; < d}. Our goal is to
sandwich ) between two simplicies and use Lemma Using the following tail inequality for Gaussian
- - 2
random variables G' ~ N (i1, 02), P(|G — p| > t) < 267;072, we have
P(B;; < \/6log(mn)) =1 — P (|Gy-j| > 610g(mn))

—610g(mn)) 1 2 o 1 1
B E— >

21—2exp(

Therefore by taking a union bound,
~ . . 1 mn 1

where the last inequality follows from Bernoulli’s inequality. Therefore for any w € S, we have with probability
atleast 1 — -1

Zéjiwj < /6log(mn) ij < V6log(mn)-d Vi€ [n]
j=1 Jj=1

Hence, with probability at least 1 — -1 we have, S C /6 log(mn) - W.

Now, we want to find a simplex that includes ). We follow a similar approach to the proof of Theorem|2.1
Consider any w € W. We have similarly to equation (7)

Z (2:1_71331) cwy < d. (12)

j=1
We have the following concentration inequality for non-negative random variables (see Theroem 7 in [12]]),

n BZ 2 2
Pl &=t > -1 zlfexp(inj ):lfexp< m—):lf—l2
n 2E(B?,) 2 m

where 7 = 2 1“% and p = ]E[Bji] = \/g is the expectation of a folded standard normal distribution. Then,
union bound over j = 1,...,m gives us

P<EIZIJ Zp—T Vj—l,---ym) - (1_%> T

n m m
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where the last inequality follows from Bernoulli’s inequality. Therefore, combining this result with inequality

i i stl— L WcC s ___1 s :
(12), we have with probability at least 1 — =, W C -~—S. Denote, S \/WS Then, we have with

probabilty at least 1 — L, §" C W C k- S’ where

w= OB (Viogm +ogn).

for sufficiently large values of m and n. We finally use Lemma[2.3]to conclude. O

D Proofs of Theorem 3.1

To prove Theorem[3.1] we introduce the following Lemma which shows a deterministic bad instance where the
optimal affine solution is ©(y/m) away from the optimal adjustable solution.

Lemma D.1. Consider the two-stage adjustable problem (1)) where: n = m,c =0, d = e, A =0,

Bij:{% ZZZ#j (13)
and the uncertainty set is defined as
U=conv(0,e1,...,€m,V1,...,Vm) (14)
where vi = ——(e — e;) fori=1,...,m. Then, 2as(B) = Q(ym) - zar(B).

Proof. First, let us prove that zar(B) < 1. It is sufficient to define an adjustable solution only for the extreme
points of U because the constraints are linear. We define the following solution forall¢ =1, ..., m.

1
x =0, y(0) =0, y(e:) = e, yvi) = e

and
By(ui) — iBe: (lJrLl)eZ Lezyi
m vm
Therefore, the solution defined above is feasible. Moreover, the cost of our feasible solution is 1 because for all
i € [m], we have
dTy(ei) = dTy(Vi) =1.

Hence, zar(B) < 1. Now, it is sufficient to prove that zag(B) = Q(y/m). From Lemma 8 in Bertsimas and
Goyal [8]], since our instance is symmetric, i.e. I{ and W are permutation invariant, where WV is the dualized
uncertainty set, there exists an optimal solution for the affine problem (2)) of the following form y(h) = Ph+q
for h € U where

0 pu ... p
w0 ..op
P=\|. . . (15)
Boop 0
and g = Xe.
We have y(0) = Ae > 0 hence
2> 0. (16)
We know that
zae(B) > dy(0) = Am. (17)
Case 1: If \ > ﬁ, then from we have za(B) > @.
Case2: If A < ﬁ. We have

yler) =@+ Neir + (u+ X)(e —er).
By feasibility of the solution, we have By(e1) > e1, hence

@+ + (m—-1)(p+A)>1

1
Jm
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Therefore 6 + A > 1 or \/%(m —D(p+A) > 1.
Case 2.1: Suppose ——(m — 1)(u+ ) > 5. Therefore,

ar(B) > d"y(er) = 0+ At (m—1)(u+2) > 2"

where the last inequality holds because 6 + A > 0 as y(e1) > 0.

Case 2.2: Now suppose we have the other inequality i.e. 6 + A > % < o\}m as well.
Therefore,
1 1 1
0> — —=>=
-2 6\/ﬁ =3
We have, )
y(w1) = ——= (0 + (m —2)u)(e —e1) + (m — 1pe1) + Ae.
vm
In particular we have ,
1
B)>d" = ——((m—-1) —1)%u) + A
za(B) = d" y(v1) m((m )0+ (m —1)7p) + Am
m—1/[1
> - -1 . 18
> L (54 m— 1) as
where the last inequality follows from A > 0 and 6 > %
Case 2.2.1: If ;1 > 0 then from (T3)
m—1
B) > =Q .
zan(B) > 3vm (v/m)
Case 2.2.2: Now suppose that 1 < 0, by non-negativity of y(v1) we have
—1
24 r>0
m
i.e. A
—Av/m
T
and from (T8)
m—1/1
ana(B) = " (4 = )
m \ 3
> m= 1 (1 )\\F)
m \ 3
m—1/1 1 m—1
> -2 ) =—=0
2" (5-5) = e~/
We conclude that in all cases zagr(B) = Q(y/m) and consequently zag(B) = Q(v/m) - zar(B). O
Proof of Theorem 3.1]

Proof. Denote W = {w € RT | BTw < de} and W = {w € RT" | B'w< de} where B is defined in
(@) and B is defined in (§). Since for all 4, j in {1,...,m} we have B;; < B;;. Hence, for any w € W, we
have B w < BTw < de. Therefore w € W and consequently W CW.

Now, suppose w € W, we have foralli = 1,...,m
1 m
— Gjw; <d. 19
w +\/m;umwj_ (19)
j#i

By taking the sum over ¢, dividing by m and rearranging, we get

3

S

U 1 1
Wy — —_— ﬂi 1 (20)
N e

.

ol
S
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Here, similarly to the proof of Lemma [Z.1] we apply Hoeffding’s inequality [I8](see appendix [B), with 7 =

logm
m—1
™o 1 1
P(zirjf_zlmzz—r 21—exp(—2(m—1)7’2)= 3
and we take a union bound over j = 1,...,m
n i 1 . 1\™ 1
P M2776V]:1,...,m >(1-—=) >1-—. Q1)
-1 2 m?2 m
where the last inequality follows from Bernoulli’s inequality. Therefore, we conclude from 20) and @) that
with probability at least 1 — ;= we have 837" | w; < d where § = & + "L (5 —7) > 4\ﬁ for m

sufficiently large. Note from (T9) that for all 7 we have w; < d. Hence with probablhty at least 1 — E we have
foralli=1,...,m

1 & 1
B?w:wiJr— w§d+7§5d
vm ]Zl ! Bvm
i
Therefore, w € 5 - VW for any w in WV and consequently we have with probability at least 1 — %, WC5-W.
All together we have proved with probability at least 1 — % W CW C 5-W. This implies with probability at

least 1 — L, that zq_an(B) > zq_ar(B) and z4_ar(B) > z"%R(B). We know from from Lemmaand
Lemma|2.2]that the dualized and primal are the same both for the adjustable problem and affine problem. Hence,

with probability at least 1 — -, we have zag(B) > zap(B) and zar(B) > L(B).

Moreover, we know from Lemma-that zai(B) > Q(y/m) - zar(B). Therefore, zag(B) > Q(v/m)zar(B)
with probability at least 1 — E

O

E LP and MIP formulations for the empirical section

LP formulation for the affine problem. The affine problem (@) can be formulated as the following LP
za(B) = min ¢’ @ + 2
z—d"qg>r"v
R"v>P"d
Az +Bq>VTr
R'"V >1I, - BP
q> U'r
U'R+P>0
xR}, veRY, UeR*" VeRY™

(22)

Proof. The affine problem (2) can be reformulated as follows
ZAff(B) = min CT:L' + z

z>d" (Ph+q) Yhel
Ax+B(Ph+q) > h Yhel
Ph+q > 0 VYheld
xz eRY
We use standard duality techniques to derive formulation (22)). The first constraint is equivalent to
z—d¥ q > max d¥ Ph.
Rh<r
h>0
By taking the dual of the maximization problem, the constraint is equivalent

T . T
z—d @> min r'v
RTv>PTd
v>0
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We can then drop the min and introduce v as a variable, hence we obtain the following linear constraints
z— qu >rTy
R"v>P'd
veRY
We use the same technique for the second sets of constraints, i.e.
Ax + Bq > max h(I,, — BP)
Rh<7
h>0
By taking the dual of the maximization problem for each row and dropping the min we get the following
compact formulation of these constraints

Ax + Bq > vTr

RV >1,,— BP
V e RY™

Similarly, the last constraint
q > max — Ph

Rh<r
h>0
is equivalent to
q>U"r
U'R+P>0
Lxn
U e R
O
MIP formulation for the separation adjustable problem.
The separation problem (T0) can be formulated as the following MIP
m S S 1 .
max 323 e (Ao)Tw
i=1 j=—Ayy k=—Ay
B m s /61]
w=)_ o ¢
i=1 j=—Aw
h B m S alk
Sy Y W
i=1 k=—Ay (23)

’Yijkgﬁij Vi e [m]v.je [—Au,s],ke [_AVWS]

Yijk < Qik Vi € [m],j € [-Au,s],k € [-Aw, 9]

Yijk + 1 > asr + Bij Vi € [m],j € [-Au,s],k € [-Aw, 9]

Qiks, Bik, Yijie € {0,1} Vi € [m],j € [—Au, s,k € [-Aw, 5]

Rh <r

B'w<d

where s = [log, (%ﬂ , Ayy is an upper bound on any component of w € W, Ay, is an upper bound on any

component of h € U and e is the accuracy of the problem.

Proof. The separation problem (T0) is equivalent to solving the following problem for given &

max h”w — (Az) w

heu

weW
The constraints of the above problem are linear and the second term in the objective function is linear as well. So
we will focus only on the first term h”w which is a bilinear function and write it in terms of linear constraints

and binary variables. Let us write h = > 7" | hse;. For all ¢ € [m] we digitize the component h; as follows

s

-y

k=—Ay
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where s = [log, (%)1, Ay is an upper bound on any h; and «;j, are binary variables. This digitization gives
an approximation to h; within - which translates to an accuracy of ¢ in the objective function. We have

i=1 k=—Ay

Similarly, we have

m S /6
= P e
w=d > B,
i=1 j=—Ayy
where Ay is an upper bound on any component of w € W. Therefore, the first term in the objective function

becomes . . .
1
2 2 D g owh

i=1 j=—Ay k=—Ay
The final step is to linearize the term o 8:5. We set, aiix i = Vi1 Where again «y;;x is a binary variable. Since
all the variables here are binary we can express ;% using only linear constraints as follows
Yijk < Bij
Yijk < Qg
Yigk + 1 2 auk + Bij
which leads to formulation (23).
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