A The Proof for Primary Dynamics

Proof. We aim to achieve the following stationary distribution through simulating the dynamics in Eq. (4),

PO, r, o, re) x exp (—He(0,r,0,74)), (15)

with the extended Hamiltonian and the coupling function A(-) as
H.(0,r,0,70) = g(@)H(O,r) + (o) + 72 /2 (16)
h(0,r,a) = —0ag(a)H(O,r) — Dud(a), (17)

Now we derive Fokker-Planck operator of this probability density as follows, where we use p to represent
p(0,r, o, 7o) for notational simplicity,

Lp = —0e(rp) + 8 (VoU(0)p +rp) p — Oa(my ' Tab) + Oy (YaTab — (0,1, a)p)
+0r (v87 ()0 + Or (001 P)

= =00 + 0r0op + O (YrP) — Oa(raP) + Ory (VaTaP) — h(6,1,)0r, P — Or (vg(a)rP)
— Or, ('Yaralp)

= —0a(rap) — h(0,r,)0, p (18)
Inserting the coupling term 1 (0, r,) = —0ag(a) H(0,r) — Do d(c) into the equation above, we can observe
the Fokker-Planck operator vanishes. O

B The Proof for Theorem 1

Proof. In atypical setting of numerical integration with associated stepsize 7, one has

—1VeU(8) = —nVeU(8) + /i (0,73(6)) (19)
nh(8,r,a) = nh(8,r, @) + /18ag(a)N(0,7n8.g(a)c*(0)), (20)
which corresponds to the terms in SDEs
—VolU(0)dt = —VoU(0)dt + /nE(0)dW @1
h(0,r,a)dt = h(0,r,a)dt + /1Dag(c)o?(8)dW,. (22)

Then we derive the Fokker-Planck equation corresponding to the dynamics in Eq. (9) is

9p(0,r,,7a;t) = =06 (rp) + O (VoU(0)p + yrp) p + ga, (3(0)0rp) — da(rap)
+ 01, (YaraP = h(6,7.)P) + 20, (09()5* (0)0r,P) + s (V3™ (c)0rp)

_ gar (2(0)0:p) + 0y, (YaB ' 0rup) — gam (90g()52(0),.p)
= —0p0cp + 0:0op + Or (YrP) — Oa(rap) + Ory (VaTaP) — M(O,1,)0r, P

—0c (187 (0)B9(a)rp) = v, (vaB~*Brap) 23)
= —0a(rap) — h(0,r,a)0r,p. 24
Just plug h (0, r, o) into the Fokker-Planck equation to observe that it vanishes. O

C Convergence Analysis

Since we apply stochastic approximation into CTLD, the convergence properties can be analyzed based on the
SG-MCMC framework by [2].

Let 8" denote any local minima of U/ (6) and its corresponding objective U*, and {8, ..., %)} be a sequence
of samples from the algorithm. The sample average can be defined as U = 1 SF, U(0®). Our analysis
focuses on using the sample average U as an approximation of U™.

Denote the difference AU(0) = U(6) — U™ and the operators AB; = (U(O(t)) - U) Vie, AGy =

~ T
(Ve U(O(t)) —VoU) V. Under some necessary smoothness and boundedness assumptions (See Assump-
tion 1 in the Supplementary Materials), we establish the following theorem to characterize the closeness between

U and U* in terms of bias and mean square error (MSE). This also indicates the stability performance of our
method.

10

Theorem 2. The bias and MSE of U Sfrom CTLD with stochastic approximation w.r.t. U" are bounded with
some positive constants C1 and Cl,

C]@ Z/ —A(a®)auU(e) 46 + Cs (Ln >, E [||AGtH+HABt|”) +0(n)

‘E[O] —u

L

L 2 2 2
o e 2 c? e 207 [2 —BaM)AU () > E [HAGt” + [|AB:| }
B — U)? < <L§_:/e d0> +c2 (Ln =

+0(n%)

_U*

Both of the two bounds involves two parts. The first one is the distance between the considered optima, e and

the unnormalized annealing distribution, e P (O‘(t))AU(9>, which is a bounded quantity related to S. The second

part characterizes the approximation error introduced by stochastic approximation and numerical integration of
SDEs.

Before presenting the proof for this theorem, we firstly present some necessary definitions and assumptions. We
define a functional ¢ solving the following Poisson equation:

Lepe(0) =U0") - U, (25)
where L; is the generator of the SDEs in Eq.(9) in the ¢-th iteration; and we define
[ztf(Yt) 2 lim E[f(yt-ﬂl)} — f()’t)7 (26)
n—0+ n

where y; = (8, r® o™, Ef)), and f(-) is a compactly supported twice differentiable function. The
solution functional e (8M) characterizes the difference between U(0) and the posterior average U 5, =

f U(e 0)de0 for every ¢. Typically, Eq.(26) possesses a unique solution, which is at least as smooth as U
under the elhptlc or hypoelliptic settings [18]. The function ¢/, is assumed to be bounded and smooth:

Assumption 1. o, and its up to 3rd-order derivatives, 9%, are bounded by a function V(y:), i.e Y| <
Dy VP* fork = 0,1,2,3, Dy, pi > 0. Moreover, the expectation of V is bounded: sup, EV? (y) < oo, and V

is smooth such that sup¢ 1) V" (sx + (1 — s)x') < D(VP(x)+ V”(x/)), vx, x 7 < max{2py } for some
D >o. ’

The proof for the bounded bias and MSE follows the framework proposed in [2].

Proof. Bounded bias:

Since we use the 1st-order integrator, we have

E[u(ye)] = Py (yeer) = " u(ye) + O07) = (L4l valyi-) + O, @D)

where 7 is the step size of local numerical 1ntegrator L is the generator of the SDEs ()-() for the ¢-th iteration,
Py, is its corresponding Kolmogorov operator, the L and P,, represent the corresponding integrator and operator
with stochastic approximation, respectively, and I denotes the identity map.

Sum over ¢ = 1,...,L in Eq. (27), take expectation on both sides, and then inert the key relation L =
L+ + AG+ + AB; to expand the first order term:
L L—1 L L
D B (ye)] = v(vo) + Y E(y)] + 1> ElLap(ye-1)] + 1D EAG(yi-1)]
t=1 t=1 t=1 t=1
L
+ny E[AB(yi-1)] + O(Ln’). (28)
t=1

Now divide both sides by Ln, utilize the Poisson equation (25) and rearrange all the terms, so that we obtain

Bl 2000 ~Uso) = 7 3 BILw (-] = 7 (Bl(v)] —vi3o)

t
Cs

— 1 STEIAG: + ABYw(ye1)] + O() (29)

11

Then the bias can be bounded as follows,

1 _ 1 _ .
=|E (Z > () - Uﬁt)> +7 > Us U

t t
1 1 *

E (E > (U6:) - Uﬁ,,)> +E <Z > Us, —U >

t t
<aU(®e Z/ e FU®) gg +‘9 +1Z E(AG: + ABu)lye- 1)]’

L 0+6* Ln

L
L
5,0 E[|A AB
< ") GZ /#9 ewe)dg)w <Ln S EAGH + | t|u> o),

<

+O)

L
(30)

where the last inequality follows from the finiteness assumption of), || - || represents the operator norm and can
be bounded in the space of ¢ because of the assumption. These complete the proof for the bounded bias.

Bounded MSE:
The proof for the bounded MSE result is similar to that for the bounded bias. For the 1st-order integrator,

E[ps, (ve)] = (T +n(Le + AG: + ABy))g, (vi-1) + O(n) (31

Sum over ¢ from 1 to L and insert the Poisson equation (25), divide both sides by Ln and then rearrange all the
terms, we have

L L
720 = Us) = 7 (B, () = s, v0)) = 7 3 (B, (30) = 5, (v0-0)

L
Z (AG: + ABy) ¢3 (Yt—l) +0O(n) (32)

Take the square of both sides, we can see that there exists some positive constant C' such that the following
inequality holds.

2
1 L _ 1
(z ;U("t) - Um) <O | a7 B05, (00) = %3 (¥0))”
Ay
1 L
+ L2_772 Z(Ed/‘ﬁt—l (}’t—l) - w/}t,l (ytfl))Q
t=1

Az
1 L
+13 Z (AGY + AB)5, (ve-1) + 772)

The term A; can be bounded by the assumption that ||| < VP° < co. A, is bounded due to the fact that
Elgg, (yo)] = ¥3,(ye) < C1y/n+ O(n) for C1 > 0. (33)

This inequality holds since the the only difference between E[t)5, (y+)] and 13, (y¢) lies in the additional
Gaussian noise with variance 7.

E G(0,) m)>2 —0 (Z [”AG”L‘ZJF IABT 7 +n2) (34)

Now we have

Finally, the MSE can be bounded as follows,
2 1 ’ =
E(0-u) <E<z¥<mt 1) - m) +E<E;U@U*>
2
- E[|AG:® + [ABP] | 1
<C BLU®) q 2o L 2
< <LZ/9#9* +0 e)

(35)

12

which completes the proof for the bounded MSE.

D Hyperparameter Settings

To facilitate the practical use of our method and reduce the number of hyperparameterss to be tuned, we always
fix these parameters across all the experiments, o = 0.04 and K = 300. The main parameters we need to tune
are the learning rate and the momentum. In the following, we elaborate how other parameters are configured
according to the learning rate.

Friction Coefficients To set friction coeeficient momentum, the connection with SGD-Momentum pro-
vides us a direct guide for configuring the friction coefficients y and 7, similar as the momentum in SGD-
Momentum. Across all the experiments, we suggest this setting, v = (1 — ¢) /7, where ¢, € [0, 1] denotes
the momentum coefficient to be tuned. For 7., we set v, equal to 1/7 corresponding to the momentum equal 0
to enable fast sampling across parameter space.

Confining Potential Function To confine a reasonable temperature sampling range, we propose the
configuration of C as follows,

c =46/, (36)
indicating the augmented variable o will be pulled to the origin once it touches the boundaries of the interval

[—4&’,&’]. This restricts the temperature to the desired range without loss of exploration abilities, while effectively
avoiding the Hamiltonian system to spend too much time on sampling with high temperatures.

Metadynamics The goal of metadynamics is to derive an asymptotically uniform distribution of the aug-
mented variable « to achieve the transitions of between different modes of 8. Across the experiments, the
Gaussian bandwidth o is set to be a constant 0.04. We divide the interval [—4’, §'] into K = 300 parts. Empirical
studies found that the proposed method is not sensitive to these parameters.

To control the convergence speed of metadynamics, we need to configure the value of Gaussian height w.
According to Alg. 1, for metadynamics to take effects numerically, the magnitude of w should be the same as:

1
= o exp(—dst?/202)n?L. K

)- (37

Where dst is the length of sliced interval in the range [—§’, §'] for metadynamics. The intuition behind this
equation is that: in each update, the metadynamics would add a correction term correct «~ w exp(—dst* /20?)
which would be computed L, K times in the exploration stage and considering the effects of learning rate 7,
the final magnitude of metadynamics correction on r becomes: correct v w exp(—dst®/20%)n? Ls K which
requires w has similar magnitude of ——— /120 52T to take effects. As the term exp(—dst?/20?) value

is close to 1, and by multiplying 20 to enlarge the effects of metadynamics, we suggest the setting of w as,

w = 20/(n°LsK). (38)

Thus, the proposed algorithm only needs the learning rate and the momentum to be adjusted that is almost as
simple as SGD-Momentum. This will be shown in parameter settings section.

E Parameter Settings for Experiments

To ensure fairness for comparison, the additional parameters of newly proposed complex methods like AnnealS-
GD, Santa, ADAM and RMSprop are remained the same as their original paper. We do grid searches to find
optimal values for each methods. Noted that the parameter searching for our proposed method is quite simple.
Tuning the parameter of CTLD is quite simple and direct. For learning rate, we initially choose a learning
rate which is the same according to its connection with SGD-Momentum and then decrease it gradually. Also
according to its relationship with SGD-Momentum, we can derive a method to adjust CTLD’s momentum like
SGD-Momentum:

v=01=cm)/n, (39)

where ¢y, is the momentum coefficient to be tuned. Thus, tuning CTLD is almost as simple as SGD-Momentum.
For alpha dynamics momentum settings, we choose its momentum to equal 0 to enable the fast sampling across
parameter space. So, the v, is:

Yo = 1/7. (40)

13

E.1 Stacked Denoising AutoEncoders

The batchsize is set as 128 and each layer is trained for 1 x 10° iterations across all experiments in this task.
The momentum of the proposed CTLD is set to be 0 which is the same as SGD. Ly is set to be 1.8 x 10*. The
learning rate is shown in Table. 1.

METHOD LEARNING RATE
SGD-M 0.1
RMSPRrROP 0.001
ADAM 0.001
ANNEALSGD 0.1
SANTA 4E-11
CTLD 0.0008

Table 1: Learning Rate of SdAs

E.2 Character Recurrent Neural Networks for Language Modelling

For our implementations, we referred to https://github.com/karpathy/char-rnn for initialization methods and
model parameters. We used Wikipedia 100M dataset as it allowed us to pressure the learning and generalization
ability of optimization methods. In this task, the batch size is set as 100 and all methods are used to train the
model for 20 epochs. The L is 9000 in this task. The momentum of our proposed method is 0.66. Although
we have done very intensive grid search for SGD-M parameter search and even tried various factors for learning
rate decreasing scheduler but the result for SGD keeps closely but still above 3.1 in training. The current best
result is obtained when SGD’s learning rate is 0.001 and momentum 0.9 with a factor scheduler every 5000
iterations and factor 0.85.

The learning rate is shown in Table. 2.

METHOD LEARNING RATE
SGD-M 0.001
RMSPROP 0.002
ADAM 0.03
ANNEALSGD 0.0005
SANTA 8E-11
CTLD 2.08E-05

Table 2: Learning Rate of LSTM Neural Networks

F Computation time comparison

Method Computation Time(s)

SGD-M 3.8471
RMSprop 4.1195
Adam 3.9437
AdaDelta 3.9327
CTLD 3.8868

Table 3: Average computation time of 1 epoch on mnist dataset with tensorflow backend for 10 epochs runs
measured by python cProfile module. (Santa is a kind of adam with annealing noise)

Our current experiment implementations are based on MXNET 0.7 and lots of its operations are based on
python making the implementations of adam’ and 'rmsprop’ significantly slower than them should be (http-
s://github.com/dmlc/mxnet/issues/1516). Thus, we reimplement our method in Keras with tensorflow backend
in mnist classification dataset. The testbed is a desktop computer with Intel I7 cpu and Nvidia Titan X GPU.
Though more time is needed in keras to compile the computation graph, it can be observed that there is no
significant overhead on our algorithm compared with other methods, which can be justified by the fact that our
algorithm does not need to compute the power or sum of the large gradient matrix compared with RMSprop

14

and Adam. The largest overhead of our algorithm lies in the generation of random normal distribution variable
which can be easily paralleled with mature APIs available within a modern GPU.

We used the Keras example implementation of MNIST cnn and measure the training time by the cumtime of
training.py(-fit-loop).

15

