Appendix: Kronecker Determinantal Point Processes

A Proof of Prop. 3.1
We use ‘vec’ to denote the operator that stacks columns of a matrix to form a vector; conversely,
‘mat’ takes a vector with k2 coefficients and returns a k x k matrix.

Let L =L, ® La, S1 = Ll_l, Sy = LQ_1 and S =5; ® Sy = L. Let E;; be the matrix with all
0Os except for a 1 at position (3, j), its size being clear from context. We wish to solve

Vf2(X) = =Vg2(S1) and Vf1(X) = —Vg1(S2) (10)
It follows from the fact that

log det(S1 ® S2) = Nalogdet S + Ny log det Sy
that Vfs, (X) = No X ! and Vfs, (X) = N1 X 1. Moreover, we know that

1
= “l_g-1= (UTS Ny, s—1
Vg(S)=—-(I+8)"'-8 nZiUZ(UlS U;)~tuis

-1 (1 Tao—177\—1 —1y—1 -1
s1-g (n§ VU ST U - (ST) S
= —(L+ LAL).

The Jacobian of S; — S7 ® Ss is given by J = (vec(E11 ® S2), ..., vec(En, N, ® S2)). Hence,
VAX)i; = =(Vgr(S1))i; <= NaXj;' = (J 7 vec(—=Vg(9)))ss
= N X' = vec(Ej; ® S3)" vec(L + LAL)
— No X' =Tr((Ei; ® S5)(L + LAL))
— NpX;' = Tr(Sy(L+ LAL) ;)
= N X' =Tr ((I®S2)(L+ LAL)) ;)

The last equivalence is simply the result of indices manipulation. Thus, we have

Vin(X) = —Vga(S)) = X' = NLQTn((I@Sz)(L + LAL))

Similarly, by setting J' = (vec(S1 ® E11),...,vec(S1 ® En,n,)), we have that
Via(X)ij = =(Vga(S2))ij <= N X' = (J'T vec(=Vg(5)))
— N X' =vec(S ® Ejj)" vee(L + LAL)
— Ni1X;;' =Tr((S1 ® Ei;)(L+ LAL))

Ny
<~ NlXigl = (Zkl—l Slkg(L + LAL)(/k))

ij
Ny
< NlXigl = (Ze—l((sl ®I)(L+ LAL))(M))M
Hence,)
Vfs, (X)=—-Vgs, (S) <—= X' = A Try ((S; ® I)(L + LAL)),

which proves Prop. 3.1.]

B Efficient updates for KRK-PICARD

The updates to L; and L, are obtained efficiently through different methods; hence, the proof to
Thm. 3.3 is split into two sections. We write

1 n
0=— E UiL;_l UiT (or ©® = UiL;,l UiT for stochastic updates)

i=1

sothat A = © — (I + L)~ '. Recall that (A ® B);;) = a; B.

10

B.1 Updating L,

We wish to compute X = Tr ((® Ly ')(LAL)) efficiently. We have
Xij = Tr [(I ® Ly ") (LAL)))]
= Tr [Ly "(LAL) ()]

1 N1
= TI‘ |:L2 Zk =1 L(zk)A(kl)L(éj)
Ny _1
= Zk — Ly Lg; Tr(Ly ™ Lol ey L)

N1
— Zk -1 LlikLlej Tr(@(k[)LQ) ((I-FL)(]M)LQ)
A= \ ,

Ak(By

= (LlALl — LlBLl)ij

The N; x N; matrix A can be computed in O(nx® + N2 NZ) time simply by pre-computing © in
O(nk?) and then computing all N7 traces in O(NZ) time. When doing stochastic updates for which
O is sparse with only k2 non-zero coefficients, computing A can be done in O(NZx? + x3).

By diagonalizing L; = Py D, P, and Ly = P,DyP, , we have (I + L)™' = PDPT with P =
P ®Pyand D = (I+D1®Ds)~'. Py, Py, D1, D5 and D can all be obtained in O(N} +N3+N; No)
as a consequence of Prop. 2.1. Then

= Z Tr(P(ik)D(kk)P(Zj)LQ)
%
= Zplikpljk Tr(PyD oy Py P2D2Py)
3
= Z Py Py, Tr(D iy Da) -
—— ——

k
ag

Let D = diag(ayq, ..., ole),lwhich can be computed in O(N;Ns). Then Ly BL; = PlDlﬁDlPl
is computable in O(N; + N3).

Overall, the update to Ly can be computed in O(nk3 + NN + N3 + N3) time, or in O(N7k? +
k3 + N} + N3) time if the updates are stochastic. Moreover, if © is sparse with only 2 non-zero
coefficients (for stochastic updates z = k), A can be computed in O(k?) space, leading to an overall
O(2% + Ni + N3) memory cost.

B.2 Updating L,
We wish to compute X = Try [(L_1 ® I)(LAL)] efficiently.

x=Y" (e nan),
_Z I®L2 CE (I+L)_1)(L1®L2))(n‘)
Ny
N1 -1
=D o LrigLa®jLe = 3 (I @ Lo)(I + L) 7! (L1 © L2)) i)
J= i=1
Ny N1 —1
— I, Zi,j:l L1:j0¢jLa — Zizl((l ® Lo)(I + L) (L1 ® L2)) is)
" B

The matrix A can be computed in O(nx3 + N2N2 + N3) time. As before, when doing stochastic
updates A can be computed in O(N?x? + k3 + N3) time and O(N3 + N7 + k2) space due to the
sparsity of O.

11

Regarding B, as all matrices commute, we can write
(I® Lo)(I + L)’l(Ll ® Ly) = (P @ Po)A(P ® P)

where A = (I®D3)(I+D1®D3)~ (D1 ® D3) is diagonal and is obtained in O(N3 + N3 + N1 N»).
Moreover,

N1 Nl
B= Zizl(PAPT)(ii) =P <Zi,k_1 PlikA(kk)Plik> By,

which allows us to compute B in O(N2N, + N3 + N3) total.

Overall, we can obtain X in O(nx? + NZNZ + N} + N3) orin O(NZk? + NZNy + N3 + N3) for
stochastic updates, in which case only O(N? + N3 + x?) space is necessary.

C Proof of validity for joint updates

In order to minimize the number of matrix multiplications, we equivalently (due to the properties of
the Frobenius norm) minimize the equation

L'+ A-X®Y|% (11)
Lll — LlXLl
and set {L’Q « LyY Ly
Theorem C.1. Let L - 0. Define R := [vec(L(11)) ;... ;vec(Ln, ny)) Ty € RViNxXN2N2,

Suppose that R has an eigengap between its largest singular value and the next, and let u,v, o be
the first singular vectors and value of R. Let U = mat(u) and V' = mat(v). Then U and V are
either both positive definite or negative definite.

Moreover, for any value o # 0, the pair (aU, o /aV) minimizes |L — X @ Y ||%.

The proof is a consequence of [22, Thm. 11]. This shows that if L is initially positive definite,
setting the sign of o based on whether U and V' are positive or negative definite®, and updating

Ly~ al UL,
LQ — U/OZLQVLQ

maintains positive definite iterates. Given that if L; > O and Loy > 0, L; ® Ly > 0, a simple
induction then shows that by choosing an initial kernel estimate L > 0, subsequent values of L will
remain positive definite.

By choosing « such that the new estimates L; and Lo verify ||L1]| = ||L2||, we verify all the
conditions of Eq. 8.

C.1 Algorithm for joint updates

Theorem C.1 leads to a straightforward iteration for learning matrices L1 and Lo based on the
decomposition of the Picard estimate as a Kronecker product.

Algorithm 3 JOINT-PICARD iteration

Input: Matrices L1, Lo, training set 7', step-size a > 1.
for i = 1 to maxIter do
U,o,V « power_method(Li1 + A) to obtain the first singular value and vectors of matrix R.
a ¢ sgn(Un1) /o[L2V La|| /[L1U Ly ||
L1 < L1 -+ a(OlL1UL1 — Ll)
Lo < Lo+ a(a/a LZVLQ)
end for
return (L1, L2)

3This can easily be done simply by checking the sign of the first diagonal coefficient of U, which will be
positive if and only if U > 0.

12

