
A Proof of Main Theorems

In this section, we provide the proof for our main theories.

We start by defining some notations. Note that the estimator in (3.7) can be rewritten as

b
� = argmin

�2Rd⇥d

`(�) + G�(�), (A.1)

where `(�) = 1/2 tr(�b
⌃Y �

b
⌃X)� tr

�
�(

b
⌃X � b

⌃Y )
�
, G�(�) is the nonconvex penalty defined

in Section 3 and � is a non-negative regularization parameter. By the definition and decomposition of
nonconvex penalty in Section 3, we can written the estimator as

b
� = argmin

�2Rd⇥d

è
�(�) + �k�k

1,1, (A.2)

where è�(�) = `(�) +H�(�), and H�(�) =

Pd
j,k=1

h�(�jk) is the concave part of G(�).

To simplify the proof, we further make some transformations on the notations. By some linear
algebra identities [13], we have tr(A>

B) = vec(A)

>
vec(B) and tr(A

>
BCD

>
) = vec(A)

>
(D⌦

B)vec(C) for any matrices A,B,C and D with commensurate dimensions. Using these identities,
we can rewrite the quasi log likelihood in (3.6) as

L(�) = 1

2

�> b
Q� � b

b

>�, (A.3)

where � = vec(�) 2 Rd2

, bQ =

b
⌃X ⌦ b

⌃Y 2 Rd2⇥d2

and b
b = vec(

b
⌃X � b

⌃Y ) 2 Rd2

. Then the
estimator in (A.1) can be rewritten as

b� = argmin

�2Rd2

L(�) + G�(�), (A.4)

where L(�) = 1/2�> b
Q�� b

b

>� is the counterpart of loss function `(�) = 1/2 tr(�b
⌃Y �

b
⌃X)�

tr

�
�(

b
⌃X � b

⌃Y )
�
, G�(�) =

Pd2

i=1

g�(�i) is the nonconvex penalty defined in Section 3 and � is a
non-negative regularization parameter. Therefore, the optimization problem in (A.2) turns to be

b� = argmin

�2Rd2

eL�(�) + �k�k
1

, (A.5)

where eL�(�) = L(�) +H�(�), and H�(�) =
Pd2

i=1

h�(�i) is the concave part of G(�).
Denote vec(S) := supp(�⇤

), where �⇤
= vec(�

⇤
) and S = supp(�

⇤
) is the support of the true

differential graph. Finally, the vectorized oracle estimator of �⇤ in (4.1) turns to be

b�O = argmin

supp(�)✓vec(S)

L(�), (A.6)

where L(�) = 1

2

�> b
Q� � b

b

>�.

Now, we are ready to prove our main results. In order to make the proof concise, we first prove
Theorem 4.6, followed which we prove Theorem 4.4. Note that the proof of Theorem 4.4 relies on
the proof of Theorem 4.6.

Proof of Theorem 4.6. Suppose bz 2 @kb�k
1

. In particular, the estimator b� in (A.5) satisfies optimality
condition for unconstrained problem

hb� � �0,r eL�(b�) + �bzi  0, (A.7)

for any �0.

First, we want to show that there exists some bzO 2 @kb�Ok1, such that bzO satisfies the optimality
condition as follows

hb�O � �0,r eL�(b�O) + �bzOi  0, (A.8)
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for any �0. Since eL�(�) = L(�) +H�(�), we have

hb�O � �0,r eL�(b�O) + �bzOi =
X

i2vec(S)

(

b�O � �0
)i ·

�r eL�(b�O) + �bzO
�
i

| {z }
(i)

+

X

i2vec(S)

c

(

b�O � �0
)i ·

�r eL�(b�O) + �bzO
�
i

| {z }
(ii)

. (A.9)

For term (i) in (A.9), by Lemma B.3, we have with probability at least 1� 3/s that

kb�O � �⇤k1  C✓2X✓2Y �X�Y M

r
log s

n
,

where C is an absolute constant. Recall the assumption on entry magnitude of �⇤, i.e.,
mini2vec(S)

|�⇤
i | � ⌫ + C✓2X✓2Y �X�Y M

p
log s/n, we have with probability at least 1 � 3/s

that

min

i2vec(S)

��
(

b�O)i

��
= min

i2vec(S)

��
(

b�O � �⇤
+ �⇤

)i

�� � min

i2vec(S)

���
(�⇤

)i

��� ��
(

b�O � �⇤
)i

�� 

� � max

i2vec(S)

��
(

b�O � �⇤
)i

��
+ min

i2vec(S)

��
(�⇤

)i

��.

(A.10)

The right hand side of (A.10) can be further lower bounded by

min

i2S

��
(

b�O)i

�� � �C✓2X✓2Y �X�Y M

r
log s

n
+ ⌫ + C✓2X✓2Y �X�Y M

r
log s

n
.

Following condition (a) in Assumption 4.3 for G(�), we have

(rH�(
b�O) + �bzO)i = (rG(b�O))i = g0�((

b�O)i) = 0,

for i 2 vec(S). Hence we have
X

i2vec(S)

(

b�O � �0
)i(r eL�(b�O) + �bzO)i =

X

i2vec(S)

(

b�O � �0
)i ·

�rL(b�O) +rH�(
b�O) + �bzO

�
i
,

=

X

i2vec(S)

(

b�O � �0
)i ·

�rL(b�O)
�
i
.

Recall that b�O is the global solution to the problem in (A.6). Hence we have b�O satisfies the
optimality condition as follows

X

i2vec(S)

(

b�O � �0
)i

�rL(b�O)
�
i
 0,

which leads to
X

i2vec(S)

(

b�O � �0
)i

�r eL�(b�O) + �bzO
�
i
 0. (A.11)

For term (ii) in (A.9), notice that (b�O)i = 0 for i 2 vec(S)c. By the regularity condition (c), we have
�rH�(

b�O)
�
i
= h0

�

�
(

b�O)i

�
= 0,

for i 2 vec(S)c. This leads to
X

i2vec(S)

c

(

b�O � �0
)i ·

�r eL�(b�O) + �bzO
�
i
=

X

i2vec(S)

c

(

b�O � �0
)i · (rL(b�O) +rH�(

b�O) + �bzO)i,

=

X

i2vec(S)

c

(

b�O � �0
)i · (rL(b�O) + �bzO)i.
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Since rL(�) = b
Q� � b

b and note that Q⇤�⇤
= b

⇤, we have
��rL(b�O)

��
1 =

��b
Q

b�O � b
Q�⇤

+

b
Q�⇤ �Q

⇤�⇤
+ b

⇤ � b
b

��
1

 ��b
Q

��
1

· ��b�O � �⇤��
1 +

��b
Q�Q

⇤��
1,1 · ���⇤��

1

+

��
b

⇤ � b
b

��
1

 ��b
Q

��
1

· C✓2X✓2Y �X�Y M

r
log s

n
+

���⇤��
1

·
p
5⇡

r
log d

n
+ 6⇡

r
log d

n
,

where in the last inequality the first term is due to Lemma B.3, the second term is from (B.3), and
the last term is due to Lemma C.1 and (B.6). In addition, we have kbQ��

1

 kb⌃Xk
1

· kb⌃Y k1 
4k⌃⇤

Xk
1

· k⌃⇤
Y k1 when n is sufficient large, and thus kbQ��

1

 4�X�Y by Assumption 4.1. By
Assumption 4.2, we have

���⇤
��
1

 M . Therefore, for any i 2 vec(S)c, we obtain

���rL(b�O)
�
i

��  ��rL(b�O)
��
1  C

0

✓2X✓2Y �X�Y M

r
log d

n
,

where C
0

is an absolute constant. By Assumption , it follows that
���rL(b�O)

�
i

��  �/2 for any
i 2 vec(S)c. Since we have b

zO 2 @kb�Ok1, hence |(bzO)i|  1 for i 2 vec(S)c. By setting
(

b
zO)i = �(rL(b�O))i/� for i 2 vec(S)c, we can enforce the following equality to hold

�rL(b�O) + �bzO
�
i
= 0,

for i 2 vec(S)c. Hence, we have
X

i2vec(S)

c

(

b�O � �0
)i ·

�r eL�(b�O) + �bzO
�
i
=

X

i2vec(S)

c

(

b�O � �0
)i ·

�rL(b�O) + �bzO
�
i
= 0.

(A.12)

By using (A.11) and (A.12), we obtain (A.8).

Now we are ready to provide proof on b� =

b�O. Recall that supp(b�O) = vec(S), and Lemma B.2
shows that under suitable condition, we have

eL�(b�) � eL�(b�O) + hr eL�(b�O), b� � b�Oi+ ⇢� ⇣�
2

kb� � b�Ok2
2

, (A.13)

eL�(b�O) � eL�(b�) + hr eL�(b�), b�O � b�i+ ⇢� ⇣�
2

kb�O � b�k2
2

, (A.14)

hold with high probability.

By convexity of `
1

norm k · k
1

, we have following two inequality hold

�kb�k
1

� �kb�Ok1 + �hb� � b�O,bzOi, (A.15)

�kb�Ok1 � �kb�k
1

+ �hb�O � b�,bzi. (A.16)

By adding Equations (A.13)-(A.16), we have

0 � hb�O � b�,r eL�(b�) + �bzi| {z }
(a)

+ hb� � b�O,r eL�(b�O) + �bzOi| {z }
(b)

+(⇢� ⇣�)kb� � b�Ok2
2

.

Recall that b� satisfies the optimality condition

hb� � b�O,r eL�(b�) + �bzi  0,

hence we have term (a) � 0.

Similarly, by (A.8), we have

hb�O � b�,r eL�(b�O) + �bzOi  0,

which leads to term (b) � 0. Therefore, we have (⇢� ⇣�)kb� � b�Ok2
2

 0, which implies b� =

b�O.
Thus we can conclude that, under suitable condition, the proposed estimator b� is the oracle estimator
b�O, which exactly recover the true support of �⇤ with probability at least 1� 3/s.
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Next, we are able to prove Theorem 4.4.

Proof of Theorem 4.4. Recall that in Theorem 4.6, we have proved that under certain conditions
b� =

b�O holds. Then by Lemma B.3 we have

��b� � �⇤��
1 =

��b�O � �⇤��
1  6⇡✓X✓Y

r
log s

n
+ 2

p
10⇡✓2X✓2Y �X�Y M

r
log s

n

holds with probability at least 1� 3/s, where the second term dominates the first one.

Next, we just need to bound
��b�O � �⇤

��
2

. By definition in (A.6),we have

b�O = argmin

supp(�)✓vec(S)

1

2

�> b
Q� � b

b

>�.

By definition we have b
Q =

b
⌃X ⌦ b

⌃Y 2 Rd2⇥d2

. For any j, k, p, q = 1, . . . , d, we use b
Q

(j,k,p,q) to
denote the entry in b

Q that is obtained from the product of the (j, k)-th entry in b
⌃X and the (p, q)-th

entry in b
⌃Y . Specifically, we have

b
Q

(j,k,p,q) =
b
⌃

jk
X
b
⌃

pq
Y = sin

⇣⇡
2

b⌧Xjk
⌘
sin

⇣⇡
2

b⌧Ypq
⌘

=

1

2

cos

⇣⇡
2

�
b⌧Xjk � b⌧Ypq

�⌘� 1

2

cos

⇣⇡
2

�
b⌧Xjk + b⌧Ypq

�⌘
.

Furthermore, we define bµjk;pq = b⌧Xjk � b⌧Ypq and bµ0
jk;pq = b⌧Xjk + b⌧Ypq. All the notations above can be

easily extended to Q

⇤. Then we have

b
Q

(j,k,p,q) �Q

⇤
(j,k,p,q) =

1

2

⇣
cos

⇣⇡
2

bµjk;pq

⌘
� cos

⇣⇡
2

µ⇤
jk;pq

⌘⌘

+

1

2

⇣
cos

⇣⇡
2

bµ0
jk;pq

⌘
� cos

⇣⇡
2

µ0⇤
jk;pq

⌘⌘
.

We only need to bound the first term, and the second term is very similar and the bound should be
exactly the same. Note that

cos

⇣⇡
2

bµjk;pq

⌘
� cos

⇣⇡
2

µ⇤
jk;pq

⌘
= �⇡

2

sin

⇣⇡
2

µ⇤
jk;pq

⌘�
bµjk;pq � µ⇤

jk;pq

�

� ⇡2

8

cos

⇣⇡
2

eµjk;pq

⌘�
bµjk;pq � µ⇤

jk;pq

�
2

,

where eµjk;pq lies between bµjk;pq and µ⇤
jk;pq . Let bL 2 Rd2⇥d2

be the matrix with the same structure
as bQ whose (j, k, p, q)-th entry is cos(⇡/2bµjk;pq). Similar notations are defined for L⇤ and e

L. Then
for any x 2 Rd2

we have
��
x

>� b
Q�Q

⇤�
x

��  ⇡

2

���x>
h
sin

⇣⇡
2

b
L

⌘
� �bL� L

⇤�
i
x

���+
⇡2

8

���x>
h
cos

⇣⇡
2

e
L

⌘
� �bL� L

⇤� � �bL� L

⇤�
i
x

���.

Recall the results in Lemma C.2 and Lemma C.3, following a similar proof we can show that with
probability at least 1� 1/s

sup

kxk1

��
x

>� b
QSS �Q

⇤
SS

�
x

��  2⇡2

s log s

n
+ 8⇡

p
C

r
log s+ s log 9

n
, (A.17)

where C is an absolute constant. We have the closed form solution �⇤
= Q

⇤�1

b

⇤. It follows that
��b�O � �⇤��

2

=

��b
Q

�1

SS
b
b�Q

⇤�1

b

⇤��
2

=

��b
Q

�1

SS
b
b� b

Q

�1

SSb
⇤
+

b
Q

�1

SSb
⇤ �Q

⇤�1

b

⇤��
2

 ��b
Q

�1

SS

��
2

· ��⇥bb� b

⇤⇤
S

��
2| {z }

(i)

+

��b
Q

�1

SS �Q

⇤�1

SS

��
2

· kb⇤
Sk2| {z }

(ii)

,

(A.18)

where we use the fact that vec(S) = supp(�⇤
) = supp(Q

⇤�1

b

⇤
). Note that kb⇤k

2

= k⌃⇤
X �

⌃

⇤
Y kF = k⌃⇤

X�

⇤
⌃

⇤
Y kF  k⌃⇤

Xk
2

· k⌃⇤
Xk

2

· k�⇤kF  M/(
1


2

), here we used the fact that
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k�⇤kF  k�⇤k
1,1  M and �

max

(⌃

⇤
X)  1/

1

by Assumption 4.1 and 4.2. Then term (ii) in
(A.18) can be bounded as

��b
Q

�1

SS �Q

⇤�1

SS

��
2

· kb⇤
Sk2  M


1


2

· ��bQ�1

SS

��
2

· ��bQSS �Q

⇤
SS

��
2

· ��Q⇤�1

SS

��
2

 4⇡2M

3

1

3

2

s log s

n
+

16⇡MC

3

1

3

2

r
log s+ s log 9

n
, (A.19)

where the second inequality uses the bound in (A.17) and the fact that
��
Q

⇤�1

SS

��
2

 1/(
1


2

) by
Assumption 4.1 and

��b
Q

�1

SS

��
2

 2

��
Q

⇤�1

SS

��
2

when n is sufficient large.

For term (i) in (A.18), with probability at least 1�1/d�2/d2 we have kb⌃X�⌃

⇤
Xk

2

 2⇡2d log d/n+

8⇡
p
C
p
(log d+ d log 9)/n by Lemma C.3. The dominating term is

p
d/n. Similar bound for b⌃Y

holds. It immediately implies

��b
Q

�1

SS

��
2

· ��⇥bb� b

⇤⇤
S

��
2

 2


1


2

���⇥b
⌃X �⌃

⇤
X

⇤
S

��
2

+

��⇥b
⌃Y �⌃

⇤
Y

⇤
S

��
2

�  C
1


1


2

r
s

n
,

(A.20)

where C
1

is an absolute constant. Submitting (A.19) and (A.20) into (A.18), we obtain

��b�O � �⇤��
2

 C
1


1


2

r
s

n
+

4⇡2M

3

1

3

2

s log s

n
+

64(1 +

p
5)⇡M

3

1

3

2

r
log s+ s log 9

n
,

which holds with probability at least 1� 1/d� 1/d2.5. In Theorem 4.6, we have proved that under
certain conditions b� =

b�O holds, which further implies that

��b� � �⇤��
2

 C
1

(2

1

+ 2

2

)

3

1

3

2

r
s

n
+

4⇡2�X�Y M

3

1

3

2

s log s

n
+

64(1 +

p
5)⇡M

3

1

3

2

r
log s+ s log 9

n

 C
2

M


1


2

r
s

n

holds with probability at least 1� 1/s� 1/s2.5 � 1� 2/s, where C
2

is an absolute constant.

Finally, we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. Let z 2 @k�k
1

and bz 2 @kb�k
1

denote the subgradient. Recall that, b� is the
global solution to (A.5). Hence we have

hb� � �0,r eL�(b�) + �bzi  0, (A.21)

for any �0. By Lemma B.2, under suitable condition, with high probability, we have

eL�(b�) � eL�(�⇤
) + hr eL�(�⇤

), b� � �⇤i+ ⇢� ⇣�
2

��b� � �⇤��2
2

, (A.22)

eL�(�⇤
) � eL�(b�) + hr eL�(b�),�⇤ � b�i+ ⇢� ⇣�

2

���⇤ � b�
��2
2

. (A.23)

By convexity of `
1

norm k · k
1

, we have

�kb�k
1

� �k�⇤k
1

+ �hb� � �⇤, z⇤i, (A.24)

�k�⇤k
1

� �kb�k
1

+ �h�⇤ � b�,bzi. (A.25)

Adding up (A.22) to (A.25), we have

0 � h�⇤ � b�,r eL�(b�) + �bzi+ hb� � �⇤,r eL�(�⇤
) + �z⇤i+ (⇢� ⇣�)kb� � �⇤k2

2

.

Meanwhile, (A.21) leads to

hr eL�(b�) + �bz,�⇤ � b�i � 0.
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Hence, we have

(⇢� ⇣�)kb� � �⇤k2
2

 h�⇤ � b�,r eL�(�⇤
) + �z⇤i. (A.26)

Recall that eL�(�) is restricted strongly convex provided ⇢ = 
1


2

/2. With ⇣�  
1


2

/4 and
(A.26), we have


1


2

4

kb� � �⇤k2
2

 (⇢� ⇣�)kb� � �⇤k2
2

 hrL(�⇤
) +rH�(�

⇤
) + �z⇤,�⇤ � b�i


d2X

i=1

���rL(�⇤
) +rH�(�

⇤
) + �z⇤

�
i

�� · ��(�⇤ � b�)i
��. (A.27)

Now, we decompose (A.27) into three parts: i 2 vec(S)c, i 2 S
1

and i 2 S
2

, where we define
S
1

= {i | |(�⇤
)i| � ⌫} and S

2

= {i | |(�⇤
)i| < ⌫}.

Case 1: For i 2 vec(S)c, based on regularity condition (c) in Assumption 4.3, we have
�rH�(�

⇤
)

�
i
= h0

�(�
⇤
i ) = h0

�(0) = 0.

Recall that we have |�rL(�⇤
)

�
i
|  CM

p
log d/n = �/2 according to Lemma B.4. Hence,

���(rL(�⇤
) +rH�(�

⇤
))i

���  �

2

.

Since z

⇤ 2 @k�⇤k
1

, we have |z⇤i |  1 and thus �z⇤i 2 [��,�]. Therefore, for any i 2 vec(S)c, by
definition of subgradient of z⇤ we can always find a z⇤i such that

��
(rL(�⇤

) +rH�(�
⇤
) + �z⇤)i

��
= 0.

This leads to
X

i2vec(S)

c

|�rL(�⇤
) +rH�(�

⇤
) + �z⇤

�
i
| · |(�⇤ � b�)i| = 0. (A.28)

Case 2: For i 2 S
1

, we have |�⇤
i | � ⌫. By condition (a) in Assumption 4.3 on G(�) = H�(�) +

�k�k
1

, we have
�rH�(�

⇤
) + �z⇤

�
i
= g0�(�

⇤
i ) = 0,

which implies
X

i2S1

|�rL(�⇤
) +rH�(�

⇤
) + �z⇤

�
i
| · |(�⇤ � b�)i| =

X

i2S1

��
[rL(�⇤

)]i

�� · |(�⇤ � b�)i|.

Hence by Cauchy’s inequality we have
X

i2S1

|�rL(�⇤
) +rH�(�

⇤
) + �z⇤

�
i
| · |(�⇤ � b�)i| 

���rL(�⇤
)

�
S1

��
2

· k(�⇤ � b�)S1k2.

Since rL(�) = b
Q� � b

b and note that Q⇤�⇤
= b

⇤, we have
��
[rL(�⇤

)]S1

��
2

=
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[

b
Q�⇤ �Q

⇤�⇤
+ b

⇤ � b
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 ��
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b
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· ��[�⇤
]S1
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2

+
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⇤ � b
b]S1
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p
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r
log s

1

n
+ 4

p
3⇡

r
s
1

n

holds with probability at least 1� 2/s
1

� 1/s
1

= 1� 3/s
1

, where the first term in the last inequality
is due to (B.3) and k�⇤k

2

 k�⇤k
1

 M by Assumption 4.2, and the second term is from Lemma
C.4. Thus, we obtain

X

i2S1

���rL(�⇤
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⇤
) + �z⇤

�
i

�� · |(�⇤ � b�)i|  4

p
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s
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n
· k�⇤ � b�k
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. (A.29)
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Case 3: For i 2 S
2

, we have |�⇤
i |  ⌫. By condition (d) in Assumption 4.3, we have

max

i2S2

|�rH�(�
⇤
)

�
i
|  max

i2S2

|h0
�(�

⇤
i )|  max

1id2
|h0
�(�

⇤
i )|  �.

Since z

⇤ 2 @k�⇤k
1

, we have |z⇤i |  1. Therefore, for i 2 S
2

, the following results hold

|�rL(�⇤
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⇤
) + �z⇤

�
i
|  |�rL(�⇤

)

�
i
|+ |�rH�(�

⇤
)

�
i
|+ �|(z⇤)i|

 |�rL(�⇤
)

�
i
|+ 2�.

Again, by Lemma B.4 krL(�⇤
)k1  �/2 holds with probability at least 1� 3/d, we obtain

X
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� X
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2

�
X

i2S2

|(�⇤ � b�)i|.

Hence we have
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p
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(A.30)

Adding up (A.28) (A.29) and (A.30), and substituting the right term in (A.27), we obtain
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r
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n
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1


2

r
s
2

log d

n
(A.31)

holds with probability at least 1� 3/d� 3/s
1

� 1� 6/s
1

.

B Lemmas in the Proof of Main Theorems

Lemma B.1. Under Assumptions 4.1, the loss function L(�) = 1/2�> b
Q� � �>b

b is strongly
convex with constant 

1


2

/2.

Proof of Lemma B.1. Note that rL(�) = b
Q� � b

b, we have

hrL(�)�rL(�0
),� � �0i = �

� � �0�> b
Q

�
� � �0�.

Then we get

min

�,�02vec(S)

�
� � �0�> b

Q

�
� � �0�

= min

�,�02vec(S)

�
� � �0�>� b

Q�Q

⇤
+Q

⇤��� � �0�

� �
min

(Q

⇤
)k� � �0k2

2

� max

�,�02vec(S)

�
� � �0�>� b

Q�Q

⇤��� � �0�

� �
min

(Q

⇤
)k� � �0k2

2

� kbQ�Q

⇤k
2

· k� � �0k2
2

.

By Assumption 4.1, we have �
min

(Q

⇤
) = �

min

(⌃

⇤
X)�

min

(⌃

⇤
Y ) = 

1


2

. For the second term, we
have

kbQ�Q

⇤k
2

= kb⌃X ⌦ b
⌃Y �⌃

⇤
X ⌦ b

⌃Y +⌃

⇤
X ⌦ b

⌃Y +⌃

⇤
X ⌦⌃

⇤
Y k2

 kb⌃X �⌃

⇤
Xk

2

· kb⌃Y �⌃

⇤
Y k2 + k⌃⇤

Xk
2

· kb⌃Y �⌃

⇤
Y k2 + k⌃⇤

Y k2 · kb⌃X �⌃

⇤
Xk

2

 kb⌃X �⌃

⇤
Xk

2

· kb⌃Y �⌃

⇤
Y k2 +

1


1

· kb⌃Y �⌃

⇤
Y k2 +

1


2

· kb⌃X �⌃

⇤
Xk

2

,

where the second inequality is due to Assumption 4.1. By Lemma C.1, we have

kb⌃X �⌃

⇤
Xk1,1  3⇡

r
log d

n
, kb⌃Y �⌃

⇤
Y k1,1  3⇡

r
log d

n
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with probability at least 1� d�5/2. Therefore, we have

k(bQ�Q

⇤
)Sk2  3⇡

r
s log d

n

✓
1


1

+

1


2

◆
+

9⇡2s log d

n

with high probability. When n is sufficient large, we have

min

�,�02C

�
� � �0�> b

Q

�
� � �0� � 

1


2

2

k� � �0k2
2

.

This immediately implies L(�) is restrictively strongly convex with constant 
1


2

/2.

Lemma (B.1) shows that, with high probability, L(�) is a strongly convex function with modulus
⇢ = 

1


2

/2 > 0. In (A.5) we defined eL�(�) = L(�) +H�(�), where L(�) = 1/2�> b
Q� � �>b,

H�(�) =

Pd�1

i=1

h�(�i) = G�(�) � �k�k
1

. We now show that, with high probability, eL�(�) is
strongly convex.
Lemma B.2 (Restricted Strongly Convex). Let S = supp(�⇤

). Given n � C
1

s log d and appropriate
parameter in nonconvex penalty G�(�), eL�(�0

) is strongly convex.

eL�(�0
) � eL�(�⇤

) + hr eL�(�⇤
),�0 � �⇤i+ ⇢� ⇣�

2

k�0 � �⇤k2
2

,

holds with probability at least 1� C 0
exp(�Cn).

Proof. Recall that H�(�) is the concave part of eL�(�), which implies �H�(�) is convex. Mean-
while, recall that H�(�) =

Pd
i=1

h�(�i), where h�(�i) + ⇣�/2�
2

i is convex by Assumption 4.3.
Hence we have

h�(�
0
i) +

⇣�
2

�02
i � h�(�

⇤
i ) +

⇣�
2

�⇤2
i +

�
h0
�(�

⇤
i ) + ⇣��

⇤
i

�
(�0

i � �⇤
i ),

and

H�(�
0
) +

⇣�
2

k�0k2
2

� H�(�
⇤
) +

⇣�
2

k�⇤k2
2

+ hrH�(�
⇤
) + ⇣��

⇤,�0 � �⇤i.

This immediately implies

H�(�
0
) � H�(�

⇤
) + hrH�(�

⇤
),�0 � �⇤i � ⇣�

2

k�0 � �⇤k2
2

. (B.1)

Recall that by Lemma B.1, provided suitable condition, L(�0
) is (w.h.p.) strongly convex. with

modulus ⇢ = 
1


2

/2, we have

L(�0
) � L(�⇤

) + hrL(�⇤
),�0 � �⇤i+ ⇢

2

k�0 � �⇤k2
2

. (B.2)

By the definition of eL�(�) = L(�) +H�(�), adding (B.1) and (B.2) together, we obtain

eL�(�0
) � eL�(�⇤

) + hr eL�(�⇤
),�0 � �⇤i+ ⇢� ⇣�

2

k�0 � �⇤k2
2

,

holds with probability at least 1 � C 0
exp(�Cn). Here, ⇢ = 

1


2

/2 and ⇣� is depended on the
nonconvex penalty. For example, in MCP penalty ⇣� = 1/b. When ⇢ = 

1


2

/2 > 1/b, the above
equation leads to strongly convexity of eL�(�), w.h.p. in the cone, provided suitable condition on
n.

Lemma B.3. Under Assumption 4.1, the oracle estimator b�O in (A.6) satisfies

��b�O � �⇤��
1  6⇡✓X✓Y

r
log s

n
+ 2

p
10⇡✓2X✓2Y �X�Y M

r
log s

n
,

with probability at least 1� 3/s.
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Proof. By definition in (A.6),we have

b�O = argmin

supp(�)✓vec(S)

1

2

�> b
Q� � b

b

>�.

By definition we have b
Q =

b
⌃X ⌦ b

⌃Y 2 Rd2⇥d2

. For any j, k, p, q = 1, . . . , d, we use b
Q

(j,k,p,q) to
denote the entry in b

Q that is obtained from the product of the (j, k)-th entry in b
⌃X and the (p, q)-th

entry in b
⌃Y . Specifically, we have

b
Q

(j,k,p,q) =
b
⌃

jk
X
b
⌃

pq
Y = sin

⇣⇡
2

b⌧Xjk
⌘
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⇣⇡
2

b⌧Ypq
⌘

=

1

2
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⇣⇡
2

�
b⌧Xjk � b⌧Ypq

�⌘� 1

2

cos

⇣⇡
2

�
b⌧Xjk + b⌧Ypq

�⌘
.

Furthermore, we define bµjk;pq = b⌧Xjk � b⌧Ypq and bµ0
jk;pq = b⌧Xjk + b⌧Ypq. All the notations above can be

easily extended to Q

⇤. Then we have

b
Q

(j,k,p,q) �Q

⇤
(j,k,p,q) =

1

2

⇣
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⇣⇡
2
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⌘
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2
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+

1

2

⇣
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2

bµ0
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⌘
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⇣⇡
2

µ0⇤
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⌘⌘
.

We only need to bound the first term, and the second term is very similar. Note that

cos

⇣⇡
2

bµjk;pq

⌘
� cos

⇣⇡
2

µ⇤
jk;pq

⌘
= �⇡

2
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⇣⇡
2

eµjk;pq

⌘�
bµjk;pq � µ⇤

jk;pq

�
,

where eµjk;pq lies between bµjk;pq and µ⇤
jk;pq. To bound bµjk;pq � µ⇤

jk;pq, note that b⌧jk, b⌧pq are sub-
Gaussian random variables and |b⌧Xjk|, |b⌧Ypq|  1. Thus |bµjk;pq|  2 and bµjk;pq is also sub-Gaussian.
In addition, we have E

�
bµjk;pq

�
= E(b⌧Xjk) � E(b⌧Ypq) = µ⇤

jk;pq. Then by Hoeffding’s inequality for
U-statistics and applying union bound, we get

P
�
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j,k,p,q
|bµjk;pq � µ⇤

jk;pq| > t
�  2d4e�

nt2

4 .

Take t =
p

20 log d/n, we have that
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2
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⌘
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2
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2
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⇡

2

r
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n

holds with probability at least 1� 2/d. It follows that

��b
Q�Q

��
1,1 = sup

j,k,p,q

�� b
Q

(j,k,p,q) �Q

⇤
(j,k,p,q)

�� 
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n
(B.3)

holds with probability at least 1 � 2/d. We have the closed form solution of b�O as b�O =

b
Q

�1

SS
b
b.

Then we have
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��b
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(B.4)
For term (ii), we have
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Q
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By Assumption we have
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X
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X

��
1

 ✓X✓Y . When n is sufficient large, we
have
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1
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��
Q

⇤�1

��
1

by concentration. By (B.3) we have with probability at least 1 � 2/s
that
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r
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, (B.5)
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where we used the fact that k⌃⇤
X �⌃

⇤
Y k1,1  �X�Y M by Assumption 4.2. For term (i), we have

with probability at least 1� s�2.5

��
[

b
b� b

⇤
]S

��
1  ��

[

b
⌃X �⌃

⇤
X ]S

��
1,1 +

��
[

b
⌃Y �⌃

⇤
Y ]S

��
1,1  6⇡

r
log s

n
, (B.6)

where the second inequality is due to Lemma C.1. Therefore, submitting (B.5) and (B.6) into (B.4),
we obtain

��b�O � �⇤��
1  6⇡✓X✓Y

r
log s

n
+ 2

p
10⇡✓2X✓2Y �X�Y M

r
log s

n
,

which holds with probability at least 1� 2/s� 1/s2.5 � 1� 3/s.

Lemma B.4. We have with probability at least 1� 3/d that

kL(�⇤
)k1  CM

r
log d

n
,

where C is an absolute constants.

Proof of Lemma B.4. Since rL(�) = b
Q� � b

b and note that Q⇤�⇤
= b

⇤, we have
��rL(�⇤

)

��
1 =

��b
Q�⇤ �Q

⇤�⇤
+ b

⇤ � b
b

��
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 ��b
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⇤��
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1

+
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b

⇤ � b
b

��
1


p
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r
log d

n
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r
log d

n

holds with probability at least 1� 2/d� 1/d2.5 � 1� 3/d, where the first term in the last inequality
is due to (B.3) and k�⇤k

1

 M by Assumption 4.2, and the second term is due to Lemma C.1.

C Auxiliary Lemmas

Lemma C.1. [20] Given X
1

,X
2

, . . . ,Xn are i.i.d. random vectors following
TEd(⌃

⇤, ⇠; f
1

, f
2

, . . . , fd) and letting b
⌃ be the Kendall tau correlation matrix, we have

that

kb⌃�⌃

⇤k1,1  3⇡

r
log d

n

holds with probability at least 1� d�5/2.

To prove the spectral norm error of b⌃, we first introduce the following bound for bT, where bTjk = b⌧jk.
Lemma C.2. Suppose � 2 (0, 1) satisfy log(1/�) + d log(9)  n. Then with probability 1 � � it
holds that

sup

kxk21
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x

>�b
T�T

⇤�
x

��  4

p
C

r
log(1/�) + d log(9)

n
,

where C is an absolute constant.

Proof of Lemma C.2. Let ✓ = 4

p
C
p
[log(1/�) + s log(12)]/n. For any fixed x with kxk

2

 1 and
any 0 < t, by Markov’s inequality

P
⇣
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x > ✓

⌘
 E

h
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x� t✓
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. (C.1)

By Lemma D.1, we have
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Submitting the above inequality into (C.1) and setting t = n✓/(16C), we obtain

P
⇣
x

>�b
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⌘
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⇣
� n✓2

16C

⌘
. (C.2)

Thus the error bound for bT in spectral norm satisfies
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,

where the first inequality is due to Lemma D.3 and the second one due to Lemma D.2. Take ✏ = 1/4
we obtain

P
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where in the second inequality we used (C.2) and the definition of ✓. This completes the proof.

Next, we relate b
⌃ to b

T.We have the following bound on the error of covariance estimator b⌃:
Lemma C.3. Assume that X

1

, . . . ,Xn are i.i.d. random vectors following
TEd(⌃

⇤, ⇠; f
1

, f
2

, . . . , fd) and letting b
⌃ be the Kendall tau correlation matrix, we have
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holds with probability at least 1� 1/d� 2/d2.

Proof of Lemma C.3. By definition in Section 3.2, we have b
⌃ = cos
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�
, where the cos(·)

function is elementwise. By Taylor’s theorem,
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(C.3)

We first bound the term (ii). Note that
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where the second inequality holds because | sin(⇡/2e⌧jk)|  1, for all j, k = 1, · · · , d, and kxk
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where ui,vi 2 Rd satisfy kuik1, kvik1  1 for all i � 1, and the non-negative sequence a
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Recall the bound in (C.3), we now obtain
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Since b⌧jk is a U-statistic, and its kernel is a bounded function between �1 and 1 and Eb⌧jk = ⌧jk.
Then by Hoeffding’s inequality for U-statistics, we obtain

P
⇣
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Choose t = 4

p
log d/n, we have kbT � Tk1,1  4

p
log d/n with probability at least 1 � 2/d2.

Plugging the bound in Lemma C.2 and (C.5) into (C.4), we obtain that

kb⌃�⌃

⇤k
2

 2⇡2

d log d

n
+ 8⇡

p
C

r
log d+ d log(9)

n

holds with probability at least 1 � 1/d � 2/d2, where we set � = 1/d in Lemma C.2 and C is an
absolute constant.

Lemma C.4. For vectors bb,b⇤ 2 Rd2

with entries bbj = sin(b⌧j), and a index set S with |S| = s, we
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where e⌧ has entries e⌧j which lies between b⌧j and ⌧⇤j for all j = 1, · · · , d2 and � is the Hadamard
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We first bound the term (i). Note that
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where the second inequality holds because | sin(⇡/2e⌧j)|  1, for all j 2 S, and kuk
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 1. Since b⌧j is a U-statistic, and its kernel is a
bounded function between �1 and 1 and Eb⌧j = ⌧⇤j . Thus ⌧j � ⌧⇤j are centered sub-Gaussian random
variables and k⌧j � ⌧⇤j k 2  2. Then by Hoeffding’s inequality, we obtain
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By Lemma D.2 and Lemma D.3
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where we set ✏ = 1/2 for the ✏-net of s-sphere. Choose t = 4
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holds with probability at least 1� 1/s.

D Additional Lemmas

Lemma D.1. Assume that X
1

, . . . ,Xn are i.i.d. random vectors following
TEd(⌃

⇤, ⇠; f
1

, f
2

, . . . , fd). T

⇤ is the Kendall’s tau matrix defined in Section 3.2, and b
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and that for any fixed � 2 Sn, the Z�,i’s are i.i.d. distributed for i = 1, . . . , n/2. We denote the
identical distribution as
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By Bernstein-type inequality [30], we have
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where C is an absolute constant. It immediately implies that
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where the inequality is due to Jensen’s inequality. Since for any fixed � 2 Sn, Z�,i’s are i.i.d.
distributed and equal to eZ in distribution. We have
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where the second inequality is due to (D.2).

The following lemma is about covering numbers of the sphere.
Lemma D.2. [30] The unit Euclidean sphere Sn�1 equipped with the Euclidean metric satisfies for
every ✏ > 0 that
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2

✏
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,

where N✏ is the ✏-net of Sn�1.

The following lemma is about how to compute the spectral norm on a ✏-net.
Lemma D.3. [30] Let A be a symmetric n⇥ n matrix. For some ✏ 2 [0, 1/2), let N✏ be an ✏-net of
the unit sphere Sn�1 in Rn. Then
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Lemma D.4. [33, 2] There exist vectors x
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, · · · and y
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, · · · with kxik1, kyik1  1 for
all i � 1 and a non-negative sequence a
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ai = 4, such that cos(⇡/2T) =P1
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i .

E Additional Experimental Results

In this section, we present the simulation results of Gaussian differential graph model, which is a
special case of the semiparametric differential graph models. Note that in the Gaussian case, the
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Table 3: Comparisons of estimation errors in Frobenius norm k b���

⇤kF for Gaussian differential
graph models. N/A means the algorithm did not output the solution in one day.

n = 100, d = 100 n = 200, d = 400

Methods Setting 1 Setting 2 Setting 1 Setting 2
SepGlasso 33.0574±0.4551 56.8891± 0.1778 70.1670±0.4316 84.9336±0.0025
DPM 23.5676±0.7222 39.4366±0.3814 N/A N/A

LDGM-L1 14.0990±0.6233 32.1872±0.4237 29.1737±0.4597 44.4980±0.5482
LDGM-MCP 12.4052± 0.5758 28.7305± 0.3477 27.8458±0.5843 38.7960±0.3976

Table 4: Comparisons of estimation errors in infinity norm k b���

⇤k1,1 for Gaussian differential
graph models. N/A means the algorithm did not output the solution in one day.

n = 100, d = 100 n = 200, d = 400

Methods Setting 1 Setting 2 Setting 1 Setting 2
SepGlasso 3.8932±0.1362 5.1321±0.0102 4.1205±0.1081 3.8786±0.0369
DPM 3.1945±0.0291 4.4132±0.1060 N/A N/A

LDGM-L1 2.7127±0.0364 4.1265±0.3595 2.2423±0.1490 3.0224±0.1088
LDGM-MCP 2.6549± 0.1648 3.5277±0.0609 2.0638±0.0388 2.3904±0.1831

inputs for all the methods are the sample covariance matrices b⌃X and b
⌃Y instead of the Kendall’s tau

based correlation matrices. The ROC curves by averaging the results over 10 repetitions for Gaussian
differential graph models are shown in Figure 4, from which we can see our estimator (LDGM-MCP)
outperforms the others in all settings. In addition, LDGM-L1 as a special case of our estimator also
performs better than DPM and SepGlasso. SepGlasso’s performace is poor since it highly depends on
the sparsity of both individual graphs. When n > 100, the DPM method failed to output the solution
in one day. The average results over 10 replicates for estimation in terms of Frobenius norm and
infinity norm are summarized in Tables 3 and 4 respectively. Our estimator again achieves smaller
error than the other baselines in all settings. In addition, LDGM-L1 also performs better than DPM
and SepGlasso.
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(a) Setting 1: n=100,d=100
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(b) Setting 2: n=100,d=100
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(c) Setting 1: n=200,d=400
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(d) Setting 2: n=200,d=400

Figure 4: ROC curves for Gaussian differential graph models of all the 4 methods. There are two
settings of graph structure. Note that DPM is not scalable to d = 400.
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