
Can Peripheral Representations Improve Clutter
Metrics on Complex Scenes?

Arturo Deza
Dynamical Neuroscience

Institute for Collaborative Biotechnologies
UC Santa Barbara, CA, USA

deza@dyns.ucsb.edu

Miguel P. Eckstein
Psychological and Brain Sciences

Institute for Collaborative Biotechnologies
UC Santa Barbara, CA, USA
eckstein@psych.ucsb.edu

Supplementary Material
Beyond Foveated Feature Congestion
We extended other clutter models to their respective peripheral versions. Since the other models:
Edge Density, Subband Entropy and ProtoObject Segmentation have not been designed to produce
an intermediate step with a dense clutter pixel-wise representation (unlike Feature Congestion), it is
hard to find respective optimal dense clutter representations without losing the essence of each model.
For Edge Density, we compute the magnitude of the image gradient after grayscale conversion. For
Subband Entropy, we decided to keep all the respective subbands, as the model proposes as well as
the coefficients that are used to compute a weighted sum over the entropies. In other words, our dense
version of Subband Entropy is more of a dense “Subband Energy” term, since computing Entropy
over a vector of a small N × K vector space of N = 3 scales and K = 4 orientations produced
very little room for variation. Finally dense ProtoObject Segmentation was computed by following
the intuition of final number of superpixels over inital number of superpixels, but since this is not
applicable at a pixel wise level, we decided to compute multiple ProtoObject Segmentations with
different regularizer and superpixel radius parameters, and averaged all superpixel segmentation
ratios – where every map was dense at a superpixel level, and each superpixel score was the initial
number of pixels over the final number of initial number of pixels that belong to that superpixel after
the meanshift merging stage in HSV color space.

Foveated Feature Congestion vs Hit Rate correlation
Distance 4 deg 6 deg 8 deg 10 deg 12 deg
L1-norm −0.80± 0.04 −0.82± 0.04 −0.81± 0.05 −0.79± 0.05 −0.76± 0.06
L2-norm −0.79± 0.05 −0.79± 0.06 −0.77± 0.06 −0.75± 0.07 −0.71± 0.07

KL-divergence −0.80± 0.04 −0.82± 0.04 −0.82± 0.04 −0.81± 0.05 −0.77± 0.06

Foveated Edge Density vs Hit Rate correlation
Distance 4 deg 6 deg 8 deg 10 deg 12 deg
L1-norm −0.76± 0.06 −0.73± 0.07 −0.69± 0.08 −0.65± 0.09 −0.59± 0.09
L2-norm −0.72± 0.07 −0.66± 0.08 −0.62± 0.09 −0.56± 0.10 −0.50± 0.11

KL-divergence −0.76± 0.06 −0.76± 0.06 −0.73± 0.07 −0.69± 0.08 −0.63± 0.08

Foveated Subband Entropy vs Hit Rate correlation
Distance 4 deg 6 deg 8 deg 10 deg 12 deg
L1-norm −0.75± 0.04 −0.77± 0.04 −0.77± 0.05 −0.76± 0.05 −0.73± 0.06
L2-norm −0.74± 0.05 −0.76± 0.05 −0.76± 0.05 −0.75± 0.06 −0.71± 0.06

KL-divergence −0.79± 0.04 −0.83± 0.04 −0.84± 0.04 −0.83± 0.04 −0.80± 0.05

Foveated ProtoObject Segmentation vs Hit Rate correlation
Distance 4 deg 6 deg 8 deg 10 deg 12 deg
L1-norm −0.70± 0.06 −0.74± 0.06 −0.74± 0.06 −0.72± 0.06 −0.66± 0.07
L2-norm −0.74± 0.04 −0.76± 0.05 −0.76± 0.05 −0.76± 0.06 −0.72± 0.06

KL-divergence −0.66± 0.06 −0.71± 0.05 −0.68± 0.06 −0.61± 0.07 −0.54± 0.08

Table 1: Foveated Clutter Models distance and ROI window length (deg) search.
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PIFC maps

Figure 1: PIFC maps across the images used for our analysis ranked from least (top) to highest
(bottom) FFC clutter as shown in Fig.6. Notice how the clutter scores (heatmap values) in the PIFC
increase as a function of eccentricity and is contingent on the amount of clutter in the ROI.
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