
Supplementary material:
Disentangling factors of variation in deep
representations using adversarial training

Michael Mathieu, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann, Yann LeCun
719 Broadway, 12th Floor, New York, NY 10003

{mathieu, junbo.zhao, pablo, yann}@cs.nyu.edu

1 Network architectures

The encoder consists of a shared sub-network that splits into two separate branches. In our experiments
with MNIST and the Sprites datasets, the shared sub-network is composed by three 5x5 convolutional
layers with stride 2, using spatial batch normalization (BN) ? and ReLU non-linearities. For the NORB
and YaleB datasets, we use six 3x3 convolutional layers, with stride 2 every other layer. The output
from the top convolution layer is split into two sub-networks. One parametrizes the approximate
posterior of the unspecified component and consists of a fully-connected (FC) layer, producing two
outputs corresponding to mean and variance of the approximate posterior (modeling the unspecified
component). The other sub-network is also a fully connected used to produce the s vector modeling
the specified component. The decoder network takes a sample z and a vector s as inputs. Both
codes go through a fully connected network. These representations are merged together by directly
adding them and fed into a feed-forward network composed by a network mirroring encoder structure
(replacing the strides by fractional strides). The discriminator is conditioned on the label, id, and
configured following that used in (conditional) DCGAN. It contains three 5x5 convolutional layers
with stride 2, using BN and Leaky-ReLU with slope 0.2. The label goes through three independent
lookup tables and are added at the three first layers of representation. The dimensionality of each
representation varies from dataset to dataset. They were obtained by monitoring the results on a
validation set. For MNIST, we used 16 coefficients for each component. For sprites, NORB and
Extended-YaleB, we set their dimensions as 64 and 512 for specified and unspecified components
respectively. We found that using Stochastic Gradient Descent gives good results.

2 Image generation

Figure 8 shows image generation. The specified part is extracted from a data sample, and an unspeci-
fied part is sampled from a Gaussian distribution. The generated sample show variation within the
category of the specified part.

3 Interpolation

Figure 9 shows more interpolation results. The specified and unspecified parts are extracted from two
images are interpolated independently.

4 Using a pre-trained embedding

In order to access the advantage of jointly training the system to learn the specified and unspecified
parts, we tried another training scheme, summarized in the following two-step approach:

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Figure 8: More image generation. The specified part is extracted from the left images, and the
unspecified part is sampled to generate the images on the right-hand side.

Figure 9: Interpolation figures, on the yaleB dataset. Only the top-left and bottom-right real faces
from the test set. The the lines show interpolation along the specified part and the column show
interpolation along the unspecified part.

• Add a two-layer neural network on top of the specified part of the encoder, followed by a
classification loss. Train this system in a plain supervised fashion to learn the class of the
samples. When the system is converged, freeze the weights.

• Add another encoder to produce the unspecified part of the code, and train the system as
before (keeping the weights of the specified encoder frozen).

Figure 10 show the generation grid swapping the specified and unspecified parts (similar to figure 2a).

Figure 10: Swapping grid of the specified and unspecified part (see figure 2a for more details). (a)
Left: pre-training the specified part of the encoder on a purely supervised task (b) Right: jointly
training the whole system.

2



5 Training procedure

Algorithm 1 summarizes the whole training procedure. The notations are defined in sections 3 and 4
of the main paper.

Algorithm 1 Full model training
for number of training iterations do

Train the generative model
Sample a triplet of samples (x1, id1), (x′1, id1), (x2, id2) where x1 and x′1 have the same label
Compute the codes (µ1, σ1, s1) = Enc(x1), (µ

′
1, σ
′
1, s
′
1) = Enc(x′1), (µ2, σ2, s2) = Enc(x2)

Sample z1 ∼ N(µ1, σ1), z
′
1 ∼ N(µ′1, σ

′
1), z2 ∼ N(µ2, σ2)

Compute the reconstructions X̃11 = Dec(z1, s1), ˜X11′ = Dec(z1, s
′
1)

Compute the loss between X̃11 and X1, and between ˜X11′ and X1, and backpropagate the
gradients
Compute the generation X̃12 = Dec(z1, s2) and the adversarial loss log(Adv(X̃12, id2)), and
backpropagate the gradients, keeping the weights of Adv frozen
Sample z ∼ N(0, 1), generate X·2 = Dec(z, s2), compute the adversarial loss
log(Adv(X̃·2, id2)) and backpropagate the gradients, keeping the weights of Adv frozen
Train the adversary
Sample a pair of samples (x1, id1), (x2, id2)
Compute the codes (µ1, σ1, s1) = Enc(x1), (µ2, σ2, s2) = Enc(x2)
Sample z1 ∼ N(µ1, σ1), z2 ∼ N(µ2, σ2)

Compute the reconstructions X̃11 = Dec(z1, s1), X̃12 = Dec(z1, s2)
Compute the adversarial loss (negative sample) log(1−Adv(X12, id2)) and backpropagate the
gradients, keeping the weights of Enc and Dec frozen
Compute the adversarial loss (positive sample) log(Adv(X2, id2)) and backpropagate the gradi-
ents, keeping the weights of Enc and Dec frozen

end for

3


	Network architectures
	Image generation
	Interpolation
	Using a pre-trained embedding
	Training procedure

