
Algorithm 3 ✏-Greedy for Contextual Semibandits with Known Weights
Require: Allowed failure probability � 2 (0, 1).

Set n = T 2/3
(K ln(2N/�)/L)1/3.

Let U be the uniform distribution over all rankings.
For t = 1, . . . , n, observe xt, play At ⇠ U , observe yt(At) and rt(At).
Optimize policy ⇡̂ argmax⇡2⇧

⌘n(⇡, w?
) using importance-weighted features.

For every remaining round: observe xt, play At = ⇡̂(xt).

A Analysis of ✏-Greedy with Known Weights

We analyze the ✏-greedy algorithm (Algorithm 3) in the known-weights setting when all rankings are
valid, i.e., pmin = L. This algorithm is different from the one we use in our experiments in that it is
an explore-first variant, exploring for the first several rounds and then exploiting for the remainder. In
our experiments, we use a variant where at each round we explore with probability ✏ and exploit with
probability (1� ✏). This latter version also has the same regret bound, via an argument similar to that
of Langford and Zhang [15].
Theorem 3. For any � 2 (0, 1), when T � K ln(N/�)/L, with probability at least 1� �, the regret
of Algorithm 3 is at most ˜O(kw?k

2

T 2/3
(K log(N/�))1/3L1/6

).

Proof. The proof relies on the uniform deviation bound similar to Lemma 20, which we use for
the analysis of EELS. We first prove that for any � 2 (0, 1), with probability at least 1� �, for all
policies ⇡, we have

|⌘n(⇡, w?
)� R(⇡)| kw?k

2

r

2K ln(2N/�)

n
+

2K

3

p
L

ln(2N/�)

n

!

. (6)

This deviation bound is a consequence of Bernstein’s inequality. The quantity on the left-hand side is
the average of n terms

ŷi(⇡(xi))
Tw? � Ex,y[y(⇡(x))]

Tw?,

all with expectation zero, because ŷ is unbiased. The range of each term is bounded by the Cauchy-
Schwarz inequality as

kw?k
2

kŷi(⇡(xi))� Ex,y[y(⇡(x))]k2 kw?k
2

K/
p
L,

because under uniform exploration the coordinates of ŷi(⇡(xi)) are bounded in [0,K/L] while the
coordinates of y(⇡(x)) are in [0, 1] and these are L-dimensional vectors. The variance is bounded by
the second moment, which we bound as follows:

Ex,y,A

⇥

(ŷ(⇡(x))Tw?
)

2

⇤

 kw?k2
2

Ex,y,A

"

L
X

l=1

ŷ(⇡(xl))
2

#

 kw?k2
2

Ex,y,A

"

L
X

l=1

K2

L2

1(⇡(x)l 2 A)

#

= kw?k2K,

since Ex,y,A[1(⇡(x)l 2 A)] = L/K under uniform exploration. Plugging these bounds into
Bernstein’s inequality gives the deviation bound of Eq. (6).

Now we can prove the theorem. Eq. (6) ensures that after collecting n samples, the expected reward of
the empirical reward maximizer ⇡̂ is close to max⇡ R(⇡), the best achievable reward. The difference
between these two is at most twice the right-hand side of the deviation bound. If we perform uniform
exploration for n rounds, we are ensured that with probability at least 1� � the regret is at most

Regret nkw?k
2

p
L+ 2(T � n)kw?k

2

r

2K ln(2N/�)

n
+

2K

3

p
L

ln(2N/�)

n

!

 nkw?k
2

p
L+ 3Tkw?k

2

r

K ln(2N/�)

n
+

Kp
L

ln(2N/�)

n

!

.

10

For our setting of n = T 2/3
(K ln(2N/�)/L)1/3, the bound is

4kw?k
2

T 2/3
(K ln(2N/�))1/3L1/6

+ 3kw?k
2

T 1/3
(K ln(2N/�))2/3L�1/6.

Under the assumption on T , the second term is lower order, which proves the result.

B Comparisons for EELS

In this section we do a detailed comparison of our Theorem 2 to the paper of Swaminathan et al. [22],
which is the most directly applicable result. We use notation consistent with our paper.

Swaminathan et al. [22] focus on off-policy evaluation in a more challenging setting where no
semibandit feedback is provided. Specifically, in their setting, in each round, the learner observes a
context x 2 X, chooses a composite action A (as we do here) and receives reward r(A) 2 [�1, 1].
They assume that the reward decomposes linearly across the action-position pairs as

E[r(A)|x,A] =
L
X

`=1

�x(a`, `).

With this assumption, and when exploration is done uniformly, they provide off-policy reward
estimation bounds of the form

|⌘n(⇡)� R(⇡)| O

r

KL ln(1/�)

n

!

.

This bound holds for any policy ⇡ : X ! AL with probability at least 1 � � for any � 2 (0, 1).
(See Theorem 3 and the following discussion in Swaminathan et al. [22].) Note that this assumption
generalizes our unknown weights setting, since we can always define �x(a, j) = w?

j y(a).

To do an appropriate comparison, we first need to adjust the scaling of the rewards. While Swami-
nathan et al. [22] assume that rewards are bounded in [�1, 1], we only assume bounded y’s and
bounded noise. Consequently, we need to adjust their bound to incorporate this scaling. If the rewards
are scaled to lie in [�R,R], their bound becomes

|⌘n(⇡)� R(⇡)| O

R

r

KL ln(1/�)

n

!

.

This deviation bound can be turned into a low-regret algorithm by exploring for the first n rounds,
finding an empirically best policy, and using that policy for the remaining T � n rounds. Optimizing
the bound in n leads to a T 2/3-style regret bound:
Fact 4. The approach of Swaminathan et al. [22] with rewards in [�R,R] leads to an algorithm
with regret bound

O
⇣

RT 2/3
(KL logN)

1/3
⌘

.

This algorithm can be applied as is to our setting, so it is worth comparing it to EELS. According to
Theorem 2, EELS has a regret bound

O
⇣

T 2/3
(K logN)

1/3
max{B1/3L1/2, BL1/6}

⌘

.

The dependence on T,K, and logN match between the two algorithms, so we are left with L and
the scale factors B,R. This comparison is somewhat subtle and we use two different arguments.
The first finds a conservative value for R in Fact 4 in terms of B and L. This is the regret bound
one would obtain by using the approach of Swaminathan et al. [22] in our precise setting, ignoring
the semibandit feedback, but with known weight-vector bound B. The second comparison finds a
conservative value of B in terms of R and L.

For the first comparison, recall that our setting makes no assumptions on the scale of the reward,
except that the noise ⇠ is bounded in [�1, 1], so our setting never admits R < 1. If we begin with a
setting of B, we need to conservatively set R = max{B

p
L, 1}, which gives the dependence

EELS: max{B1/3L1/2, BL1/6}
Swaminathan et al. [22]: max{BL5/6, L1/3}.

11

The EELS bound is never worse than the bound in Fact 4 according to this comparison. At B =

⇥(L�1/2
), the two bounds are of the same order, which is ⇥(L1/3

). For B = O(L�1/2
), the EELS

bound is at most L1/3, while for B = ⌦(L�1/2
) the first term in the EELS bound is at most the first

term in the Swaminathan et al. [22] bound. In both cases, the EELS bound is superior. Finally when
B = ⌦(

p
L), the second term dominates our bound, so EELS demonstrates an L2/3 improvement.

For the second comparison, since our setting has the noise bounded in [�1, 1], assume that R � 1

and that the total reward is scaled in [�R,R] as in Fact 4. If we want to allow any y(A) 2 [0, 1]L,
the tightest setting of R is between kw?k

1

/2 and kw?k
1

(depending on the structure of the positive
and negative coordinates of w?). For simplicity, assume R is a bound on kw?k

1

. Since the EELS
bound depends on B, a bound on the Euclidean norm of w?, we use kw?k

2

 kw?k
1

p
Lkw?k

2

to obtain a conservative setting of B = R. This gives the dependence

EELS: max{R1/3L1/2, RL1/6}
Swaminathan et al. [22]: RL1/3

Since R � 1, the EELS bound is superior whenever R � L1/4. Moreover, if R = ⌦(

p
L), i.e., at

least
p
L positions are relevant, the second term dominates our bound, and we improve by a factor of

L1/6. The EELS bound is inferior when R L1/4, which corresponds to a high-sparsity case since
R is also a bound on kw?k

1

in this comparison.

C Implementation Details

C.1 Implementation of VCEE

VCEE is implemented as stated in Algorithm 1 with some modifications, primarily to account for an
imperfect oracle. OP is solved using the coordinate descent procedure described in Appendix E.

We set = 1 in our implementation and ignore the log factor in µt. Instead, since pmin = L, we use
µt = c

p

1/KLT and tune c, which can compensate for the absence of the log(t2N/�) factor. This
additionally means that we ignore the failure probability parameter �. Otherwise, all other parameters
and constants are set as described in Algorithm 1 and OP.

As mentioned in Section 6, we implement AMO via a reduction to squared loss regression. There are
many possibilities for this reduction. In our case, we specify a squared loss regression problem via a
dataset D = {xi, Ai, yi, �i}ni=1

where xi 2 X, Ai is any list of actions, yi 2 RK assigns a value to
each action, and �i 2 RK assigns an importance weight to each action. Since in our experiments
w?

= 1, we do not need to pass along the vectors vi 2 RL described in Eq. (2).

Given such a dataset D, we minimize a weighted squared loss objective over a regression class F,

ˆf = argmin

f2F

n
X

i=1

X

a2A
i

�i(a)(f(�(xi, a))� yi(a))
2, (7)

where �(x, a) is a feature vector associated with the given query-document pair. Note that we
only include terms corresponding to simple actions in Ai for each i. This regression function is
associated with the greedy policy that chooses the best valid ranking according to the sum of rewards
of individual actions as predicted by ˆf on the current context.

We access this oracle with two different kinds of datasets. When we access AMO to find the
empirically best policy, we only use the history of the interaction. In this case, we only regress onto
the chosen actions in the history and we let �i be their importance weights. More formally, suppose
that at round t, we observe context xt, choose composite action At ⇠ qt and receive feedback
{yt(at,`)}L`=1

. We create a single example (xt, At, zt, �t) where xt is the context, At is the chosen
composite action, zt has zt(a) = 1(a 2 At)yt(a) and �t(a) = 1/qt(a 2 At). Observe that when
this sample is passed into Eq. (7), it leads to a different objective than if we regressed directly onto
the importance-weighted reward features ŷt.

We also create datasets to verify the variance constraint within OP. For this, we use the AMO in a
more direct way by setting At to be a list of all K actions, letting yt be the importance weighted
vector, and �t = 1.

12

We use this particular implementation because leaving the importance weights inside the square loss
term introduces additional variance, which we would like to avoid.

The imperfect oracle introduces one issue that needs to be corrected. Since the oracle is not guaranteed
to find the maximizing policy on every dataset, in the tth round of the algorithm, we may encounter a
policy ⇡ that has dRegt(⇡) < 0, which can cause the coordinate descent procedure to loop indefinitely.
Of course, if we ever find a policy ⇡ with dRegt(⇡) < 0, it means that we have found a better policy,
so we simply switch the leader. We found that with this intuitive change, the coordinate descent
procedure always terminates in a few iterations.

C.2 Implementation of ✏-GREEDY

Recall that we run a variant of ✏-GREEDY where at each round we explore with probability ✏ and
exploit with probability (1� ✏), which is slightly different from the explore-first algorithm analyzed
in Appendix A.

For ✏-GREEDY, we also use the oracle defined in Eq. (7). This algorithm only accesses the oracle to
find the empirically best policy, and we do this in the same way as VCEE does, i.e., we only regress
onto actions that were actually selected with importance weights encoded via �is. We use all of the
data, including the data from exploitation rounds, with importance weighting.

C.3 Implementation of LINUCB

The semibandit version of LINUCB uses ridge regression to predict the semibandit feedback given
query-document features �(x, a). If the feature vectors are in d dimensions, we start with ⌃

1

= Id
and ✓

1

= 0, the all zeros vector. At round t, we receive the query-document feature vectors
{�(xt, a)}a2A for query xt and we choose

At = argmax

A

(

X

a2A

✓Tt �(xt, a) + ↵�(xt, a)
T
⌃

�1

t �(xt, a)

)

.

Since in our experiment we know that w?
= 1 and all rankings are valid, the order of the documents

is irrelevant and the best ranking consists of the top L simple actions with the largest values of the
above “regularized score”. Here ↵ is a parameter of the algorithm that we tune.

After selecting a ranking, we collect the semibandit feedback {yt(at,`)}L`=1

. The standard implemen-
tation would perform the update

⌃t+1

 ⌃t +

L
X

`=1

�(xt, at,`)�(xt, at,`)
T , ✓t+1

 ⌃

�1

t+1

t
X

i=1

L
X

`=1

�(xi, ai,`)yi(ai,`)

!

,

which is the standard online ridge regression update. For computational reasons, we only update every
100 iterations, using all of the data. Thus, if mod(t, 100) 6= 0, we set ⌃t+1

 ⌃t and ✓t+1

 ✓t. If
mod(t, 100) = 0, we set

⌃t+1

 I +
t
X

i=1

L
X

`=1

�(xi, ai,`)�(xi, ai,`)
T , ✓t+1

 ⌃

�1

t+1

t
X

i=1

L
X

`=1

�(xi, ai,`)yi(ai,`)

!

.

C.4 Policy Classes

As AMO for both VCEE and ✏-GREEDY, we use the default implementations of regression with
various function classes in scikit-learn version 0.17. We instantiate scikit-learn model
objects and use the fit() and predict() routines. The model objects we use are

1. sklearn.linear_model.LinearRegression()

2. sklearn.ensemble.GradientBoostingRegressor(n_estimators=50,max_depth=2)

3. sklearn.ensemble.GradientBoostingRegressor(n_estimators=50,max_depth=5)

All three objects accommodate weighted least-squares objectives as required by Eq. (7).

13

D Proof of Regret Bound in Theorem 1

The proof hinges on two uniform deviation bounds, and then a careful inductive analysis of the
regret using the OP. We only need our two deviation bounds to hold for the rounds t in which
µt =

p

ln(16t2N/�)/(Ktpmin). Let dt := ln(16t2N/�). These rounds then start at

t
0

:

= min

(

t :

s

dt
Ktpmin

 1

2K

)

= min

⇢

t :
dt
t
 pmin

4K

�

.

Note that t
0

� 4 since dt � 1 and K � pmin. From the definition of t
0

, we have for all t � t
0

:

µt �
p

dt/(Ktpmin), t � 4Kdt/pmin. (8)

The first deviation bound shows that the variance estimates used in Eq. (5) are suitable estimators for
the true variance of the distribution. To state this deviation bound, we need some definitions:

V (P,⇡, µ) := Ex⇠D
x

"

L
X

`=1

1

Pµ
(⇡(x)` | x)

#

, ˆVt(P,⇡, µ) := ˆEx⇠H
t

"

L
X

`=1

1

Pµ
(⇡(x)` | x)

#

. (9)

In these definitions and throughout this appendix we use the shorthand P (a |x) to mean P (a 2 A |x)
for any projected subdistribution P (A | x). If P is a distribution, we have

P

a2A P (a | x) = L.
For a subdistribution, this sum can be smaller, so

P

a2A P (a | x) L for all subdistributions. The
deviation bound is in the following theorem:
Theorem 5. Let � 2 (0, 1). Then with probability at least 1� �/8, for all t � t

0

, all distributions P
over ⇧, and all ⇡ 2 ⇧, we have

V (P,⇡, µt) 6.4 ˆVt(P,⇡, µt) + 81.3
KL

pmin
. (10)

Proof. The proof of this theorem is similar to a related result of Agarwal et al. [1] (See their Lemma
10). We first use Freedman’s inequality (Lemma 23) to argue that for a fixed P,⇡, µ, and t, the
empirical version of the variance is close to the true variance. We then use a discretization of the set
of all distributions and take a union bound to extend this deviation inequality to all P,⇡, µ, t.

To start, we have:

Lemma 6. For fixed P,⇡, µ, t and for any � 2
⇥

0, µpmin
L

⇤

, with probability at least 1� �:

V (P,⇡, µ)� ˆVt(P,⇡, µ)
(e� 2)�L

µpmin
V (P,⇡, µ) +

ln(1/�)

t�

Proof. Let:

Zi :=

L
X

`=1

1

Pµ
(⇡(xi)`|xi)

� Ex⇠D
x

L
X

`=1

1

Pµ
(⇡(x)`|x)

,

and notice that 1

t

Pt
i=1

Zi =
ˆVt(P,⇡, µ)� V (P,⇡, µ). Clearly, EZi = 0 for all i and maxi |Zi|

L/µpmin since when we smooth by µ, each simple action that ⇡ could choose must appear with
probability at least µpmin. By the Cauchy-Schwarz and Holder inequalities, the conditional variance
is:

Ex⇠D
x

Z2

i Ex⇠D
x

L
X

`=1

1

Pµ
(⇡(x)`|x)

!

2

 LEx⇠D
x

L
X

`=1

1

Pµ
(⇡(x)`|x)2

 L

µpmin
Ex⇠D

x

L
X

`=1

1

Pµ
(⇡(x)`|x)

=

L

µpmin
V (P,⇡, µ).

The lemma now follows by Freedman’s inequality.

14

To prove the variance deviation bound of Theorem 5, we next use a discretization lemma from [9]
(their Lemma 16) which immediately implies that for any P , there exists a distribution P 0 supported
on at most Nt policies such that for ct > 0, if Nt � 6

�2
t

µ
t

pmin
:

V (P,⇡, µ)� V (P 0,⇡, µt) + ct
⇣

ˆVt(P
0,⇡, µt)� ˆVt(P,⇡, µt)

⌘

 �t(V (P,⇡, µt) + ct ˆVt(P,⇡, µt))

This is exactly the second conclusion of their Lemma 16 except we use ct instead of their (1 + �)
(we will set ct > 1). The other difference is the inclusion of pmin in the lower bound on Nt, which is
based on a straightforward modification to their proof.

We set �t =
q

1�Kµ
t

N
t

µ
t

pmin
+ 3

1�Kµ
t

N
t

µ
t

pmin
, ct =

1

1� (e�2)L�

t

µ

t

pmin

, Nt = d 12(1�Kµ
t

)

µ
t

pmin
e and �t = 0.66µtpmin/L.

The choice of ct is motivated by Lemma 6, which can be rearranged to (for a distribution P 0)

V (P 0,⇡, µt)�
1

1� (e�2)L�
t

µ
t

pmin

ˆVt(P
0,⇡, µt)

1

1� (e�2)L�
t

µ
t

pmin

ln(1/�)

t�t

, V (P 0,⇡, µt)� ct ˆVt(P
0,⇡, µt) ct

ln(1/�)

t�t
.

To take a union over all t 2 N, Nt-point distributions P over ⇧, and all ⇡ 2 ⇧, we set �t =

�(1

2t2NN

t

+1) in the tth iteration. This inequality becomes

V (P 0,⇡, µt)� ct ˆVt(P
0,⇡, µt) ct

ln(2NN
t

+1t2/�)

t�t
.

The choice of ct and �t leads to a bound ct =
1

1�0.66(e�2)

 1.91.

We also use the values of Nt and �t to bound

�t =

s

1�Kµt

Ntµtpmin
+ 3

1�Kµt

Ntµtpmin

r

1

12

+

1

4

.

Rearranging the discretization claim gives

V (P,⇡, µt)
ct(1 + �t)

(1� �t)
ˆVt(P,⇡, µt) +

1

(1� �t)

⇣

V (P 0,⇡, µt)� ct ˆVt(P
0,⇡, µt)

⌘

 6.4 ˆVt(P,⇡, µt) +
ct

(1� �t)
ln(2NN

t

+1t2/�)

t�t
.

Using the bounds on ct, �t and the settings of Nt and �t, this last term is at most

ct
(1� �t)

✓

L ln(2N2t2/�)

tµtpmin
+

LNt ln(N)

tµtpmin

◆

 6.3L ln(16N2t2/�)

µttpmin
+

75L(1�Kµt) ln(N)

µ2

t tp
2

min
.

The theorem now follows from the bounds of Eq. (8).

The other main deviation bound is a straightforward application of Freedman’s inequality and a union
bound. To state the lemma, we must introduce one more definition. Let

Vt(⇡) := max

0⌧t�1

V (

˜Q⌧ ,⇡, µ⌧)

where ˜Q⌧ is the distribution calculated in Step 3 of Algorithm 1. Note that ˜Qµ
⌧

⌧ is the distribution
used to select the composite action in round ⌧ + 1.
Lemma 7. Let � 2 (0, 1). Then with probability at least 1� �/4, for all t � t

0

and ⇡ 2 ⇧, we have

|⌘t(⇡, w?
)� R(⇡)| kw

?k2
2

kw?k
1

Vt(⇡)pminµt +
kw?k2

2

kw?k
1

KLµt. (11)

15

Proof. Consider a specific t � t
0

and ⇡ 2 ⇧. Let

Zi := hw?, ŷi(⇡(xi))i � hw?, yi(⇡(xi))i

and note that 1

t

Pt
i=1

Zi = ⌘t(⇡, w?
)� R(⇡). Since ŷi is an unbiased estimate of yi, the Zis form a

martingale. The range of each Zi is bounded as

|Zi| kw?k
1

kŷi � yik1
kw?k

1

µi�1

pmin
 kw

?k
1

µtpmin
,

because the µis are non-increasing. The conditional variance can be bounded via the Cauchy-Schwarz
inequality:

E[Z2

i |Hi�1

] kw?k2
2

L
X

`=1

Ex⇠D
x

Ey|x
y(⇡(x)`)2

˜Qµ
i�1

i�1

(⇡(x)` | x)

 kw?k2
2

V (

˜Qi�1

,⇡, µi�1

) kw?k2
2

Vt(⇡).

By Freedman’s inequality with � = µtpmin/kw?k
1

, we have, with probability at least 1� �/(8t2N),

|⌘t(⇡, w?
)� R(⇡)| µtpmin

kw?k
1

· kw?k2
2

Vt(⇡) +
dt
t
· kw

?k
1

µtpmin

 kw
?k2

2

kw?k
1

Vt(⇡)pminµt +Kµtkw?k
1

(12)

 kw
?k2

2

kw?k
1

Vt(⇡)pminµt +
kw?k2

2

kw?k
1

KLµt. (13)

Here, Eq. (12) follows because dt/(pmint) Kµ2

t by Eq. (8). Eq. (13) follows because kw?k
1

Lkw?k2

2

/kw?k
1

by the fact that kw?k
1

p
Lkw?k

2

. The lemma follows by a union bound over all
t � t

0

and ⇡ 2 ⇧.

Equipped with these two deviation bounds we will proceed to prove the main theorem. Let E denote
the event that both the variance and reward deviation bounds of Theorem 5 and Lemma 7 hold. Note
that P(E) � 1 � �/2. Using the variance constraint, it is straightforward to prove the following
lemma:
Lemma 8. Assume event E holds, then for any round t � 1 and any policy ⇡ 2 ⇧, let t? be the round
achieving the max in the definition of Vt(⇡). Then there are universal constants ✓

1

� 2 and ✓
2

such
that:

Vt(⇡)

8

>

>

>

<

>

>

>

:

2KL

pmin
if t? < t

0

,

✓
1

KL

pmin
+

kw?k
1

kw?k2
2

dRegt
?

(⇡)

✓
2

pminµt
?

if t? � t
0

.

(14)

Proof. The first claim follows by the definition of Vt(⇡) and the fact that µ⌧ = 1/2K for ⌧ < t
0

. For
the second claim, we use the variance deviation bound and the optimization constraint. In particular,
since t? � t

0

, we can apply Theorem 5:

V (

˜Qt
?

,⇡, µt
?

) 6.4 ˆVt
?

(

˜Qt
?

,⇡, µt
?

) + 81.3
KL

pmin
,

and we can use the optimization constraint which gives an upper bound on ˆVt
?

(

˜Qt
?

,⇡, µt
?

):

ˆVt
?

(

˜Qt
?

,⇡, µt
?

) ˆVt
?

(Qt
?

,⇡, µt
?

) 2KL

pmin
+

kw?k
1

kw?k2
2

dRegt
?

(⇡)

 pminµt
?

The bound follows by the choice ✓
1

= 94.1 and ✓
2

= /6.4.

We next compare Reg(⇡) and dReg(⇡) using the variance bounds above.

16

Lemma 9. Assume event E holds and define c
0

:

= 4(1 + ✓
1

). For all t � t
0

and all policies ⇡ 2 ⇧:

Reg(⇡) 2

dRegt(⇡) + c
0

kw?k2
2

kw?k
1

KLµt and dRegt(⇡) 2Reg(⇡) + c
0

kw?k2
2

kw?k
1

KLµt. (15)

Proof. The proof is by induction on t. As the base case, consider t = t
0

where we have µ⌧ = 1/(2K)

for all ⌧ < t
0

, so Vt(⇡) 2KL/pmin for all ⇡ 2 ⇧ by Lemma 8. Using the reward deviation bound
of Lemma 7, which holds under E, we thus have

|⌘t(⇡, w?
)� R(⇡)| kw

?k2
2

kw?k
1

Vt(⇡)pminµt +
kw?k2

2

kw?k
1

KLµt 3

kw?k2
2

kw?k
1

KLµt

for all ⇡ 2 ⇧. Now both directions of the bound follow from the triangle inequality and the optimality
of ⇡t for ⌘t(·) and ⇡? for R(·), using the fact that c

0

� 6 from the definition of ✓
1

.

For the inductive step, fix some round t and assume that the claim holds for all t
0

 t0 < t and all
⇡ 2 ⇧. By the optimality of ⇡t for ⌘t and Lemma 7, we have

Reg(⇡)�dRegt(⇡) = (R(⇡?)� R(⇡))� (⌘t(⇡t, w
?
)� ⌘t(⇡, w?

))

 (R(⇡?)� R(⇡))� (⌘t(⇡?, w
?
)� ⌘t(⇡, w?

))

 (Vt(⇡?) + Vt(⇡))
kw?k2

2

kw?k
1

pminµt + 2

kw?k2
2

kw?k
1

KLµt.

Now by Lemma 8, there exist rounds i, j < t such that

Vt(⇡)
✓
1

KL

pmin
+

kw?k
1

kw?k2
2

dRegi(⇡)
✓
2

pminµi
1(i � t

0

)

Vt(⇡?)
✓
1

KL

pmin
+

kw?k
1

kw?k2
2

dRegj(⇡?)
✓
2

pminµj
1(j � t

0

)

For the term involving Vt(⇡), if i < t
0

, we immediately have the bound

Vt(⇡)
kw?k2

2

kw?k
1

pminµt ✓1
kw?k2

2

kw?k
1

KLµt.

On the other hand, if i � t
0

then using the fact that µi � µt, and applying the inductive hypothesis to
dRegi(⇡) gives:

Vt(⇡)
kw?k2

2

kw?k
1

pminµt ✓1
kw?k2

2

kw?k
1

KLµt +

dRegi(⇡)µt

✓
2

µi

✓

✓
1

+

c
0

✓
2

◆

kw?k2
2

kw?k
1

KLµt +
2Reg(⇡)
✓
2

.

Similarly for the Vt(⇡?) term, we have the bound

Vt(⇡?)
kw?k2

2

kw?k
1

pminµt
✓

✓
1

+

c
0

✓
2

◆

kw?k2
2

kw?k
1

KLµt +
2Reg(⇡?)

✓
2

=

✓

✓
1

+

c
0

✓
2

◆

kw?k2
2

kw?k
1

KLµt,

since ⇡? has no regret. Combining these bounds gives:

Reg(⇡)�dRegt(⇡) 2

✓

✓
1

+

c
0

✓
2

◆

kw?k2
2

kw?k
1

KLµt +
2Reg(⇡)
✓
2

+ 2

kw?k2
2

kw?k
1

KLµt,

which gives

Reg(⇡) 1

1� 2/✓
2

✓

dRegt(⇡) + 2

✓

1 + ✓
1

+

c
0

✓
2

◆

kw?k2
2

kw?k
1

KLµt�1

◆

.

Recall that ✓
1

= 94.1, ✓
2

= /6.4, = 100, and c
0

= 4(1 + ✓
1

). This means that ✓
2

> 15.6, so
2/✓

2

 1/2, and hence the pre-multiplier on the dRegt(⇡) term is at most 2. To finish proving the
bound on Reg(⇡), it remains to show that c

0

� 2(1 + ✓
1

+ c
0

/✓
2

)/(1� 2/✓
2

), or equivalently, that

c
0

(1� 4/✓
2

) � 2 (1 + ✓
1

) .

This holds, because c
0

(1� 4/✓
2

) = 4(1� 4/✓
2

)(1 + ✓
1

) and 4/✓
2

 1/2.

17

The other direction proceeds similarly. Under event E we have:
dRegt(⇡)� Reg(⇡) = ⌘t(⇡t, w

?
)� ⌘t(⇡, w?

)� R(⇡?) + R(⇡)

 ⌘t(⇡t, w?
)� ⌘t(⇡, w?

)� R(⇡t) + R(⇡)

 (Vt(⇡) + Vt(⇡t))
kw?k2

2

kw?k
1

pminµt + 2

kw?k2
2

kw?k
1

KLµt.

As before, we have the bound:

Vt(⇡)
kw?k2

2

kw?k
1

pminµt
✓

✓
1

+

c
0

✓
2

◆

kw?k2
2

kw?k
1

KLµt +
2Reg(⇡)
✓
2

,

but for the Vt(⇡t) term we must use the inductive hypothesis twice. We know there exists a round
j < t for which

Vt(⇡t) ✓1
KL

pmin
+

kw?k
1

kw?k2
2

dRegj(⇡)
✓
2

pminµj
1(j � t

0

).

Applying the inductive hypothesis twice gives:

kw?k
1

kw?k2
2

dRegj(⇡t)
✓
2

pminµj
 kw

?k
1

kw?k2
2

⇣

2Reg(⇡t) + c
0

kw?k2
2

kw?k1
KLµj

⌘

✓
2

pminµj

 kw
?k

1

kw?k2
2

2

⇣

2

dRegt(⇡t) + c
0

kw?k2
2

kw?k1
KLµt

⌘

+ c
0

kw?k2
2

kw?k1
KLµj

✓
2

pminµj

 3c
0

✓
2

KL

pmin
.

Here we use the inductive hypothesis twice, once at round j and once at round t, and then use
the fact that ⇡t has no regret at round t, i.e., dRegt(⇡t) = 0. We also use the fact that the µts are
non-increasing, so µt/µj 1. This gives the bound:

Vt(⇡t)
kw?k2

2

kw?k
1

pminµt
✓

✓
1

+

3c
0

✓
2

◆

kw?k2
2

kw?k
1

KLµt.

Combining the bounds for Vt(⇡) and Vt(⇡t) gives:

dRegt(⇡)
✓

1 +

2

✓
2

◆

Reg(⇡) +
✓

2✓
1

+

4c
0

✓
2

+ 2

◆

kw?k2
2

kw?k
1

KLµt.

Since ✓
2

� 2, the pre-multiplier on the first term is at most 2. It remains to show that c
0

�
2(1+✓

1

)+4c
0

/✓
2

. This is again equivalent to c
0

(1�4/✓
2

) � 2(1+✓
1

), which holds as before.

The last key ingredient of the proof is the following lemma, which shows that the low-regret constraint
in Eq. (4), based on the regret estimates, actually ensures low regret.
Lemma 10. Assume event E holds. Then for every round t � 1:

X

⇡2⇧

˜Qt�1

(⇡)Reg(⇡) (4 + c
0

)

kw?k2
2

kw?k
1

KLµt�1

(16)

Proof. If t t
0

then µt�1

= 1/(2K) in which case (since Reg(⇡) kw?k
1

):
X

⇡2⇧

˜Qt�1

(⇡)Reg(⇡) kw?k
1

 kw
?k2

2

kw?k
1

L = 2

kw?k2
2

kw?k
1

KLµt�1

 (4 + c
0

)

kw?k2
2

kw?k
1

KLµt�1

.

For t > t
0

, we have:
X

⇡2⇧

˜Qt�1

(⇡)Reg(⇡)
X

⇡2⇧

˜Qt�1

(⇡)

✓

2

dRegt�1

(⇡) + c
0

kw?k2
2

kw?k
1

KLµt�1

◆

2

X

⇡2⇧

Qt�1

(⇡)dRegt�1

(⇡)

!

+ c
0

kw?k2
2

kw?k
1

KLµt�1

 (4 + c
0

)

kw?k2
2

kw?k
1

KLµt�1

.

18

The first inequality follows by Lemma 9 and the second follows from the fact that ˜Qt�1

places its
remaining mass (compared with Qt�1

) on ⇡t�1

which suffers no empirical regret at round t� 1. The
last inequality is due to the low-regret constraint in the optimization.

To control the regret, we must first add up the µts, which relate to the exploration probability:

Lemma 11. For any T � 1:

T
X

t=1

µt�1

 2

s

TdT
Kpmin

.

Proof. We will use the identity

1

K

s

dT
Kpmin

, (17)

which holds, because dT � 1 and K � pmin. We prove the lemma separately for T = 1 and T � 2.
Since t

0

� 4, we have µ
0

= 1/2K. Thus, for T = 1, by Eq. (17):

T
X

t=1

µt�1

=

1

2K
 1

2

s

dT
Kpmin

 2

s

TdT
Kpmin

.

For T � 2, we use the fact that µ
0

= µ
1

= 1/2K, and µt
p

dT /(Ktpmin) for t T :

T
X

t=1

µt�1

 1

K
+

s

dT
Kpmin

T
X

t=3

1p
t� 1

s

dT
Kpmin

+

s

dT
Kpmin

⇣

2

p
T � 1� 2

⌘

(18)

 2

s

TdT
Kpmin

.

In Eq. (18), we bounded the first term using Eq. (17) and the second term using the telescoping
identity 1/

p
t� 1 2

p
t� 1� 2

p
t� 2, which holds for t � 2.

We are finally ready to prove the theorem by adding up the total regret for the algorithm.

Lemma 12. For any T 2 N, with probability at least 1� �, the regret after T rounds is at most:

kw?k2
2

kw?k
1

L

"

2

p

2T ln(2/�) + 2(4 + c
0

+ 1)

s

KTdT
pmin

#

.

Proof. For each round t � 1, let Zt := rt(⇡?(xt)) � rt(At) �
P

⇡2⇧

˜Qµ
t�1

t�1

(⇡)Reg(⇡). Since at
round t, we play action At with probability ˜Qµ

t�1

t�1

(At), we have EZt = 0. Moreover, since the noise
term ⇠ is shared between rt(⇡?(xt)) and rt(At), we have |Zi| 2kw?k

1

and it follows by Azuma’s
inequality (Lemma 24) that with probability at least 1� �/2:

T
X

t=1

|Zt| 2kw?k
1

p

2T ln(2/�).

To control the mean, we use event E, which, by Theorem 5 and Lemma 7, holds with probability at
least 1� �/2. By another union bound, with probability at least 1� �, the regret of the algorithm is

19

Algorithm 4 Coordinate Ascent Algorithm for Semi-Bandit Optimization Problem (OP)
Require: History H and smoothing parameter µ.

1: Initialize weights Q 0 2 �(⇧).
2: while true do
3: For all ⇡, define:

V⇡(Q)

:

=

ˆEx⇠H

"
LX

`=1

1

Qµ
(⇡(x)`|x)

#
, S⇡(Q)

:

=

ˆEx⇠H

"
LX

`=1

1

Qµ
(⇡(x)`|x)2

#
,

D⇡(Q)

:

= V⇡(Q)� 2KL

pmin
� b⇡

4: If
P

⇡ Q(⇡)(2KL
pmin

+ b⇡) >
2KL
pmin

, replace Q by cQ where c := 2KL/pminP
⇡

Q(⇡)(2KL/pmin+b
⇡

)

< 1.

5: Else if 9⇡ s.t. D⇡(Q) > 0, update Q(⇡) Q(⇡) + ↵⇡(Q) where ↵⇡(Q)

:

=

V
⇡

(Q)+D
⇡

(Q)

2(1�Kµ)S
⇡

(Q)

.
6: Otherwise halt and output Q.
7: end while

bounded by:

Regret 2kw?k
1

p

2T ln(2/�) +
T
X

t=1

X

⇡2⇧

˜Qµ
t�1

t�1

(⇡)Reg(⇡)

 2kw?k
1

p

2T ln(2/�) +
T
X

t=1

X

⇡2⇧

h

(1�Kµt�1

)

˜Qt�1

(⇡)Reg(⇡) + kw?k
1

Kµt�1

i

 2kw?k
1

p

2T ln(2/�) +
T
X

t=1

(4 + c
0

+ 1)

kw?k2
2

kw?k
1

LKµt�1

 kw
?k2

2

kw?k
1

L

"

2

p

2T ln(2/�) + 2(4 + c
0

+ 1)

s

KTdT
pmin

#

Here the first inequality is from the application of Azuma’s inequality above. The second one uses
the definition of ˜Qµ

t�1

t�1

to split into rounds where we play as ˜Qt�1

and rounds where we explore.
The exploration rounds occur with probability Kµt�1

, and on those rounds we suffer regret at most
kw?k

1

. For the other rounds, we use Lemma 10 and then Lemma 11. We collect terms using the
inequality kw?k

1

 Lkw?k2
2

/kw?k
1

.

E Proof of Oracle Complexity Bound in Theorem 1

In this section we prove the oracle complexity bound in Theorem 1. First we describe how the
optimization problem OP can be solved via a coordinate ascent procedure. Similar to the previous
appendix, we use the shorthand Q(a | x) to mean Q(a 2 A | x) for any projected subdistribution
Q(A | x). If Q is a distribution, we have

P

a2A Q(a | x) = L. For a subdistribution, this number can
be smaller.

This problem is similar to the one used by Agarwal et al. [1] for contextual bandits rather than
semibandits, and following their approach, we provide a coordinate ascent procedure in the policy
space (see Algorithm 4). There are two types of updates in the algorithm. If the weights Q are too
large or the regret constraint in Equation 4 is violated, the algorithm multiplicatively shrinks all of the
weights. Otherwise, if there is a policy that is found to violate the variance constraint in Equation 5,
the algorithm adds weight to that policy, so that the constraint is no longer violated.

First, if the algorithm halts, then both of the conditions must be satisfied. The regret condition
must be satisfied since we know that

P

⇡ Q(⇡)(2KL/pmin + b⇡) 2KL/pmin which in particular
implies that

P

⇡ Q(⇡)b⇡ 2KL/pmin as required. Note that this also ensures that
P

⇡ Q(⇡) 1

20

so Q 2 �(⇧). Finally, if we halted, then for each ⇡, we must have D⇡(Q) 0 which implies
V⇡(Q) 2KL

pmin
+ b⇡ so the variance constraint is also satisfied.

The algorithm can be implemented by first accessing the oracle on the importance weighted history
{(x⌧ , ŷ⌧ , w?

)}t⌧=1

at the end of round t to obtain ⇡t, which we also use to compute b⇡. The low
regret check in Step 4 of Algorithm 4 can be done efficiently, since each policy in the support of
the current distribution Q was added at a previous iteration of Algorithm 4, and we can store the
regret of the policy at that time for no extra computational burden. This allows us to always maintain
the expected regret of the current distribution Q for no added cost. Finding a policy violating the
variance check can be done by one call to the AMO. At round t, we create a dataset of the form
(xi, zi, vi) of size 2t. The first t terms come from the variance V⇡(Q) and the second t terms come
from the rescaled empirical regret b⇡ . For ⌧ t, we define x⌧ to be the ⌧ th context,

z⌧ (a) :=
1

tQµ
(a|x⌧)

, and v⌧ :

= 1.

With this definition, it is easily seen that V⇡(Q) =

Pt
⌧=1

vT⌧ z⌧ (⇡(x⌧)). For ⌧ > t, we define x⌧ to
be the context from round ⌧ � t and

z⌧ (a) :=
�kw?k

1

kw?k2
2

t µpmin
ŷ⌧ (a), and v⌧ :

= w?.

It can now be verified that
P

2t
⌧=t+1

vT⌧ z⌧ recovers the b⇡ term up to additive constants independent
of the policy ⇡ (essentially up to the ⌘t(⇡t) term). Combining everything, it can be checked that:

D⇡(Q) =

2t
X

⌧=1

hz⌧ (⇡(x⌧)), v⌧ i �
2KL

pmin
� kw

?k
1

kw?k2
2

⌘t(⇡t)

 µpmin

The two terms at the end are independent of ⇡ so by calling the argmax oracle with this 2t sized
dataset, we can find the policy ⇡ with the largest value of D⇡. If the largest value is non-positive,
then no constraint violation exists. If it is strictly positive, then we have found a constraint violator
that we use to update the probability distribution.

As for the iteration complexity, we prove the following theorem.
Theorem 13. For any history H and parameter µ, Algorithm 4 halts and outputs a set of weights
Q 2 �(⇧) that is feasible for OP. Moreover, Algorithm 4 halts in no more than 8 ln(1/(Kµ))

µpmin

iterations and each iteration can be implemented efficiently, with at most one call to AMO.

Equipped with this theorem, it is easy to see that the total number of calls to the AMO over the
course of the execution of Algorithm 1 can be bounded as ˜O

⇣

T 3/2
q

K
pmin log(N/�)

⌘

by the setting
of µt. Moreover, due to the nature of the coordinate ascent algorithm, the weight vector Q remains
sparse, so we can manipulate it efficiently and avoid running time that is linear in N . As mentioned,
this contrasts with the exponential-weights style algorithm of Kale et al. [12] which maintains a dense
weight vector over �(⇧).

We mention in passing that Agarwal et al. [1] also develop two improvements that lead to a more
efficient algorithm. They partition the learning process into epochs and only solve OP once every
epoch, rather than in every round as we do here (Lemma 2 in Agarwal et al. [1]). They also show how
to use the weight vector from the previous round to warm-start the next coordinate ascent execution
(Lemma 3 in Agarwal et al. [1]). Both of these optimizations can also be implemented here, and we
expect they will reduce the total number of oracle calls over T rounds to scale with

p
T rather than

T 3/2 as in our result. We omit these details to simplify the presentation.

E.1 Proof of Theorem 13

Throughout the proof we write U(A | x) instead of Ux(A) to parallel the notation Q(A | x). Also,
similarly to Q(a | x), we write U(a | x) to mean Ux(a 2 A).

We use the following potential function for the analysis, which is adapted from Agarwal et al. [1],

�(Q)

:

=

ˆEx⇠H

⇥

RE
�

U(· | x)
�

� Qµ
(· | x)

�⇤

1�Kµ
+

P

⇡ Q(⇡)b⇡
2K/pmin

21

with

RE(pkq) :=
X

a2A

pa ln(pa/qa) + qa � pa

being the unnormalized relative entropy. Its arguments p and q can be any non-negative vectors in RK .
For intuition, note that the partial derivative of the potential function with respect to a coordinate
Q(⇡) relates to the variance V⇡(Q) as follows:

@�(Q)

@Q(⇡)
=

ˆEx⇠H

h

P

a2⇡(x)

⇣

� U(a|x)
Qµ

(a|x) (1�Kµ) + (1�Kµ)
⌘i

1�Kµ
+

b⇡
2K/pmin

= �ˆEx⇠H

2

4

X

a2⇡(x)

U(a | x)
Qµ

(a | x)

3

5

+ L+

pminb⇡
2K

 �pmin

K
V⇡(Q) + L+

pminb⇡
2K

=

pmin

2K

✓

�2V⇡(Q) +

2KL

pmin
+ b⇡

◆

=

pmin

2K

�

�D⇡(Q)� V⇡(Q)

�

.

This means that if D⇡(Q) > 0, then the partial derivative is very negative, and by increasing the
weight Q(⇡), we can decrease the potential function �.

We establish the following five facts:

1. �(0) L ln(1/(Kµ))/(1�Kµ).
2. �(Q) is convex in Q.
3. �(Q) � 0 for all Q.
4. The shrinking update, when the regret constraint is violated, does not increase the potential.

More formally, for any c < 1, we have �(cQ) �(Q) whenever
P

⇡ Q(⇡)(2KL/pmin +
b⇡) > 2KL/pmin.

5. The additive update, when D⇡ > 0 for some ⇡, lowers the potential by at least Lµpmin
4(1�Kµ) .

With these five facts, establishing the result is straightforward. In every iteration, we either terminate,
perform the shrinking update, or the additive update. However, we will never perform the shrinking
update in two consecutive iterations, since our choice of c, ensures the condition is not satisfied in the
next iteration. Thus, we perform the additive update at least once every two iterations. If we perform
I iterations, by the fifth fact, we are guaranteed to decrease the potential � by,

I

2

Lµpmin

4(1�Kµ)
=

ILµpmin

8(1�Kµ)

However, the total change in potential is bounded by L ln(1/(Kµ))/(1�Kµ) by the first and second
facts. Thus, we must have

ILµpmin

8(1�Kµ)
 L ln(1/(Kµ))

(1�Kµ)
,

which is precisely the claim.

We now turn to proving the five facts. The first three are fairly straightforward and the last two follow
from analogous claims as in Agarwal et al. [1]. To prove the first fact, note that the exploration
distribution in Qµ is exactly Ux, so

�(0) =

ˆEx⇠H

2

4

X

a2A

U(a | x) ln
⇣

U(a|x)
KµU(a|x)

⌘

� (1�Kµ)U(a | x)

1�Kµ

3

5 L ln(1/(Kµ))

1�Kµ
,

22

because
P

a2A U(a |x) = L since U(A |x) is a distribution. Convexity of this function follows from
the fact that the unnormalized relative entropy is convex in the second argument, and the fact that the
weight vector q 2 RK with components qa = Qµ

(a | x) is a linear transformation of Q 2 RN . The
third fact follows by the non-negativity of both the empirical regret b⇡ and the unnormalized relative
entropy RE(·k·). For the fourth fact, we prove the following lemma.
Lemma 14. Let Q be a weight vector for which

P

⇡ Q(⇡)(2KL/pmin+b⇡) > 2KL/pmin and define
c := 2KL/pminP

⇡

Q(⇡)(2KL/pmin+b
⇡

)

< 1. Then �(cQ) �(Q).

Proof. Let g(c) :

= �(cQ) and Qµ
c (a|x) :

= (1 � Kµ)cQ(a|x) + KµU(a|x). By the chain rule,
using the calculation of the derivative above, we have:

g0(c) =
X

⇡

Q(⇡)
@�(cQ)

@Q(⇡)

=

pmin

2K

X

⇡

Q(⇡)

✓

2KL

pmin
+ b⇡

◆

�
X

⇡

Q(⇡)ˆEx

2

4

X

a2⇡(x)

U(a|x)
Qµ

c (a|x)

3

5 . (19)

Analyze the last term:

X

⇡

Q(⇡)ˆEx

2

4

X

a2⇡(x)

U(a|x)
Qµ

c (a|x)

3

5

=

ˆEx

"

X

a2A

X

⇡2⇧

U(a|x)Q(⇡)1(a 2 ⇡(x))
Qµ

c (a|x)

#

=

ˆEx

"

X

a2A

U(a|x)Q(a|x)
Qµ

c (a|x)

#

=

1

c
ˆEx

"

X

a2A

U(a|x)cQ(a|x)
Qµ

c (a|x)

#

. (20)

We now focus on one context x and define qa :

= cQ(a|x) and ua :

= U(a|x)/L. Note that
P

a U(a|x) = L so the vector u describes a probability distribution over a 2 A. The inner sum in
Eq. (20) can be upper bounded by:

X

a2A

U(a|x)cQ(a|x)
Qµ

c (a|x)
=

X

a2A

Luaqa
(1�Kµ)qa +KLµua

=

X

a2A

Lua(qa/ua)

(1�Kµ)(qa/ua) +KLµ

= LEa⇠u

qa/ua

(1�Kµ)(qa/ua) +KLµ

�

 LEa⇠u[qa/ua]

(1�Kµ)Ea⇠u[qa/ua] +KLµ

=

L(
P

a2A qa)

(1�Kµ)(
P

a2A qa) +KLµ

 L2

(1�Kµ)L+KLµ
= L. (21)

In the third line we use Jensen’s inequality, noting that x/(ax + b) is concave in x for a � 0. In
Eq. (21), we use that

P

a2A qa L and that x/(ax + b) is non-decreasing, so plugging in L for
P

a qa gives an upper bound.

Combining Eqs. (19), (20), and (21), and plugging in our choice of c = 2KL/pminP
⇡

Q(⇡)(2KL/pmin+b
⇡

)

, we
obtain the following lower bound on g0(c):

g0(c) � pmin

2K

X

⇡

Q(⇡)

✓

2KL

pmin
+ b⇡

◆

� L

c

=

pmin

2K

X

⇡

Q(⇡)

✓

2KL

pmin
+ b⇡

◆

� 2KL

cpmin

!

= 0.

Since g is convex, this means that g(c0) is nondecreasing for all values c0 exceeding c. Since c < 1,
we have:

�(Q) = g(1) � g(c) = �(cQ).

23

And for the fifth fact, we have:
Lemma 15. Let Q be a subdistribution and suppose, for some policy ⇡, that D⇡(Q) > 0. Let Q0 be
the new set of weights which is identical except that Q0

(⇡) := Q(⇡)+↵ with ↵ :

= ↵⇡(Q) > 0. Then

�(Q)� �(Q0
) � Lµpmin

4(1�Kµ)
.

Proof. Assume D⇡(Q) > 0. Note that the updated subdistribution equals Q0
(·) = Q(·)+↵1(· = ⇡),

so its smoothed projection, Q0µ
(a |x) = Qµ

(a |x)+ (1�Kµ)↵1(a 2 ⇡(x)), differs only in a small
number of coordinates from Qµ

(a | x). Using the shorthand qµa :

= Qµ
(a | x), q0µa :

= Q0µ
(a | x) and

ua :

= U(a | x), we have:

2K
�

�(Q)� �(Q0
)

�

= 2K

0

@

ˆEx

h

P

a

⇣

ua ln(ua/qµa)� ua ln(ua/q0µa) + qµa � q0µa

⌘i

(1�Kµ)
� ↵b⇡

2K/pmin

1

A

=

2K

1�Kµ
ˆEx

2

4

X

a2⇡(x)

ua ln

✓

q0µa
qµa

◆

3

5� 2K↵L� ↵b⇡pmin

� 2pmin

1�Kµ
ˆEx

2

4

X

a2⇡(x)

ln

✓

1 +

↵(1�Kµ)

Qµ
(a | x)

◆

3

5� pmin↵

✓

2KL

pmin
+ b⇡

◆

.

The term inside the expectation can be bounded using the fact that ln(1 + x) � x� x2/2 for x � 0:

ˆEx

2

4

X

a2⇡(x)

ln

✓

1 +

↵(1�Kµ)

Qµ
(a | x)

◆

3

5 � ˆEx

2

4

X

a2⇡(x)

✓

↵(1�Kµ)

Qµ
(a | x) �

↵2

(1�Kµ)2

2Qµ
(a | x)2

◆

3

5

= ↵(1�Kµ)V⇡(Q)� ↵2

(1�Kµ)2

2

S⇡(Q).

Plugging this in the previous derivation gives a lower bound:

2K
�

�(Q)� �(Q0
)

�

� 2pmin↵V⇡(Q)� (1�Kµ)pmin↵
2S⇡(Q)� pmin↵

✓

2KL

pmin
+ b⇡

◆

� pmin↵
�

V⇡(Q) +D⇡(Q)

�

� (1�Kµ)pmin↵
2S⇡(Q),

using the definition D⇡(Q) = V⇡(Q)� 2KL
pmin
� b⇡ . Since ↵ =

V
⇡

(Q)+D
⇡

(Q)

2(1�Kµ)S
⇡

(Q)

, we obtain:

2K
�

�(Q)� �(Q0
)

�

�
pmin

�

V⇡(Q) +D⇡(Q)

�

2

4(1�Kµ)S⇡(Q)

Note that S⇡(Q) � 1

µpmin
V⇡(Q) (by bounding the square terms in the definition of S⇡(Q) by a linear

term times the lower bound, which is µpmin) and that V⇡(Q) > 2KL
pmin

since D⇡(Q) > 0. Therefore:

2K
�

�(Q)� �(Q0
)

�

�
µp2min

�

V⇡(Q) +D⇡(Q)

�

2

4(1�Kµ)V⇡(Q)

� µp2minV⇡(Q)

4(1�Kµ)
� KLµpmin

2(1�Kµ)
.

Dividing both sides of this inequality by 2K proves the lemma.

F Proof of Theorem 2

The proof of Theorem 2 requires many delicate steps, so we first sketch the overall proof architecture.
The first step is to derive a parameter estimation bound for learning in linear models. This is a
somewhat standard argument from linear regression analysis, and the important component is that the
bound involves the 2nd-moment matrix ⌃ of the feature vectors used in the problem. Combining this
with importance weighting on the reward features y as in VCEE, we prove that the policy used in the
exploitation phase has low expected regret, provided that ⌃ has large eigenvalues.

24

The next step involves a precise characterization of the mean and deviation of the 2nd-moment matrix
⌃, which relies on the exploration phase employing a uniform exploration strategy. This step involves
a careful application of the matrix Bernstein inequality (Lemma 26). We then bound the expected
regret accumulated during the exploration phase; we show, somewhat surprisingly, that the expected
regret can be related to the mean of 2nd-moment matrix ⌃ of the reward features. Finally, since
per-round exploitation regret improves with a larger setting �?, while the cumulative exploration
regret improves with a smaller setting �?, we optimize this parameter to balance the two terms.
Similarly, the per-round exploitation regret improves with a larger setting n?, while the cumulative
exploration regret improves with a smaller setting n?, and our choice of n? optimizes this tradeoff.

An important definition that will appear throughout the analysis is the expected reward variance,
when a single action is chosen uniformly at random:

V :

= E
(x,y)⇠D

"

1

K

X

a2A

y2(a)�
✓

1

K

X

a2A

y(a)

◆

2

#

. (22)

F.1 Estimating V

The first step is a deviation bound for estimating V .

Lemma 16. After n? rounds, the estimate ˆV satisfies, with probability at least 1� �,

| ˆV � V |

s

V ln(2/�)

n?
+

ln(2/�)

6n?
.

Proof. Note that our estimator, ˆV =

1

n
?

Pn
?

t=1

Zt, is an average of i.i.d. terms, with

Zt :=
1

2K2

X

a,b2A

(yt(a)� yt(b))
2

1(a, b 2 At)

U(a, b 2 At)
,

where U is a uniform distribution over all rankings. The mean of this random variable is precisely V :

E
(x,y)⇠D,A⇠U [Zt] =

1

2K2

Ex,y

2

4

X

a,b2A

(y(a)� y(b))2

3

5

= Ex,y

2

4

1

2K2

X

a,b2A

⇣

y(a)2 � 2y(a)y(b) + y(b)2
⌘

3

5

= Ex,y

2

4

1

K

X

a

y(a)2 �

1

K

X

a

y(a)

!

2

3

5

= V.

Since we choose L actions uniformly at random, the probability for two distinct actions jointly
being selected is U(a, b 2 A) =

L(L�1)

K(K�1)

and for a single action it is U(a 2 A) = L/K. The
(y(a)� y(b))2 term is at most one but it is always zero for a = b, so the range of Zt is at most

0 Zt
1

2K2

X

a 6=b2A
t

K(K � 1)

L(L� 1)

=

K(K � 1)

2K2

 1

2

.

Note that the last summation is only over the L(L� 1) action pairs corresponding to the slate At, as
the indicator in Zt eliminates the other terms in the sum over all actions from A.

As for the second moment, since Zt 2 [0, 1/2], we have

E[Z2

t] E[Zt]/2 V/2.

By Bernstein’s inequality, we are guaranteed that with probability at least 1� �, after n? rounds,

| ˆV � V |

s

V ln(2/�)

n?
+

ln(2/�)

6n?
.

25

Equipped with the deviation bound we can complete the square to find that

V �

s

V ln(2/�)

n?
+

ln(2/�)

4n?
 ˆV +

5 ln(2/�)

12n?

)

0

@

p
V �

s

ln(2/�)

4n?

1

A

2

 ˆV +

ln(2/�)

2n?

) V

0

@

s

ln(2/�)

4n?
+

s

ˆV +

ln(2/�)

2n?

1

A

2

 2

ˆV +

3 ln(2/�)

2n?
.

Our definition of �? uses ˜V which is precisely this final upper bound. Working from the other side of
the deviation bound, we know that

ˆV

0

@

p
V +

s

ln(2/�)

4n?

1

A

2

 2V +

ln(2/�)

2n?
.

And combining the two, we see that

V ˜V 4V +

5 ln(2/�)

2n?
, (23)

with probability at least 1� �.

F.2 Parameter Estimation in Linear Regression

To control the regret associated with the exploitation rounds, we also need to bound kŵ � w?k
2

which follows from a standard analysis of linear regression.

At each round t, we solve a least squares problem with features yt(At) and response rt which we
know has E[rt | yt, At] = yt(At)

Tw?. The estimator is

wt := argmin

w

t
X

i=1

�

yi(Ai)
Tw � ri

�

2

.

Define the 2nd-moment matrix of reward features,

⌃t :=

t
X

i=1

yi(Ai)yi(Ai)
T ,

which governs the estimation error of the least squares solution as we show in the next lemma.
Lemma 17. Let ⌃t denote the 2nd-moment reward matrix after t rounds of interaction and let wt be
the least-squares solution. There is a universal constant c > 0 such that for any � 2 (0, 2/e), with
probability at least 1� �,

kwt � w?k2
⌃

t

 cL ln(2/�).

Proof. This lemma is the standard analysis of fixed-design linear regression with bounded noise. By
definition of the ordinary least squares estimator, we have ⌃twt = Y T

1:tr1:t where Y
1:t 2 Rt⇥L is the

matrix of features, r
1:t 2 Rt is the vector of responses and ⌃t = Y T

1:tY1:t is the 2nd-moment matrix
of reward features defined above. The true weight vector satisfies ⌃tw?

= Y T
1:t(r1:t � ⇠1:t) where

⇠
1:t 2 Rt is the noise. Thus ⌃t(wt � w?

) = Y T
1:t⇠1:t, and therefore,

kwt � w?k2
⌃

t

= (wt � w?
)

T
⌃t(wt � w?

) = (wt � w?
)

T
⌃t⌃

†
t⌃t(wt � w?

) = ⇠T
1:tY1:t⌃

†
tY

T
1:t⇠1:t,

where ⌃†
t is the pseudoinverse of ⌃t and we use the fact that AA†A = A for any symmetric matrix A.

Since ⌃

†
t = (Y T

1:tY1:t)
†, the matrix Y

1:t⌃
†
tY

T
1:t is a projection matrix, and it can be written as UUT

where U 2 Rt⇥L0
is a matrix with L0 orthonormal columns where L0 L. We now have to bound

26

the term kUT ⇠
1:tk2

2

= ⇠T
1:tUUT ⇠

1:t. Let Hxy = (x
1

, y
1

, . . . , xt, yt) denote the history excluding
the noise. Conditioned on Hxy, the vector ⇠

1:t is a subgaussian random vector with independent
components, so we can apply subgaussian tail bounds. Applying Lemma 25, due to Rudelson and
Vershynin [25], we see that with probability at least 1� �,

⇠T
1:tUUT ⇠

1:t E
⇥

⇠T
1:tUUT ⇠

1:t

�

�Hxy

⇤

+

q

c
0

kUUT k2F ln(2/�) + c
0

kUUT k ln(2/�) (24)

⇣

L+

p

c
0

L ln(2/�) + c
0

ln(2/�)
⌘

⇣p

L+

p

c
0

ln(2/�)
⌘

2

.

To derive the second line, we use the fact that UUT is a projection matrix for an L0-dimensional
subspace, so its Frobenius norm is bounded as kUUT k2F = tr(UUT

) = L0 L, while its spectral
norm is kUUT k = 1. The expectation in Eq. (24) is bounded using the conditional independence of
the noise and the fact that its conditional expectation is zero:

E
⇥

⇠T
1:tUUT ⇠

1:t

�

�Hxy

⇤

= tr

⇣

UUTE[⇠
1:t⇠

T
1:t |Hxy]

⌘

= tr

⇣

UUT
diag(E[⇠2i | xi, yi])it

⌘

 tr(UUT
)

⇣

max

it
E[⇠2i | xi, yi]

⌘

 L0 L.

Finally, when � 2 (0, 2/e) and with c = (1 +

p
c
0

)

2, we obtain the desired bound.

F.3 Analysis of the 2nd-Moment Matrix ⌃t

We now show that the 2nd-moment matrix of reward features has large eigenvalues. This lets us
translate the error in Lemma 17 to the Euclidean norm, which will play a role in bounding the
exploitation regret. Interestingly, the lower bound on the eigenvalues is related to the exploration
regret, so we can explore until the eigenvalues are large, without incurring too much regret.

To prove the bound, we use a full sequence of exploration data, which enables us to bypass the
data-dependent stopping time. Let {xt, yt, At, ⇠t}Tt=1

be a sequence of random variables where
(x, y, ⇠) ⇠ D and At is drawn uniformly at random. Let wt be the least squares solution on the data
in this sequence up to round t, and let ⌃t be the 2nd-moment matrix of the reward features.
Lemma 18. With probability at least 1� �, for all t T ,

⌃t ⌫
⇣

tV � 4L
p

tV ln(4LT/�)� 4L ln(4LT/�)
⌘

IL,

where IL is the L⇥ L identity matrix.

Proof. For K = 1, we have V = 0, so the bound holds. In the remainder, assume K � 2. The proof
has two components: the spectral decomposition of the mean E⌃t and the deviation bound on ⌃t.

Spectral decomposition of E⌃t: The first step in the proof is to analyze the expected value of the 2nd-
moment matrix. Since yt, At are identically distributed, it suffices to consider just one term. Fixing x
and y, we only reason about the randomness in picking A. Let S :

= EA⇠U [y(A)y(A)

T
] 2 RL⇥L be

the mean matrix for that round. We have:

zTSz =

L
X

`=1

z2`
X

a2A

1

K
y(a)2 +

X

` 6=`0

z`z`0
X

a 6=a02A

y(a)y(a0)

K(K � 1)

=

kyk2
2

kzk2
2

K
+

X

` 6=`0

z`z
0
`

X

a,a02A

y(a)y(a0)

K(K � 1)

�
X

` 6=`0

z`z
0
`

X

a

y(a)2

K(K � 1)

.

Define ȳ :

=

1

K

P

a2A y(a), E2

y :

=

1

K

P

a2A y(a)2, and Vy :

= E2

y � ȳ2, and observe that by the
definition of V in Eq. (22), we have Ex,yVy = V . Continuing the derivation, we obtain:

zTSz = E2

ykzk22 +
X

` 6=`0

z`z`0

✓

K

K � 1

ȳ2 � 1

K � 1

E2

y

◆

= E2

ykzk22 +
⇣

(zT1)2 � kzk2
2

⌘

✓

K

K � 1

ȳ2 � 1

K � 1

E2

y

◆

=

K

K � 1

Vykzk2
2

+ (zT1)2
✓

K

K � 1

ȳ2 � 1

K � 1

E2

y

◆

.

27

To finish the derivation, let u = 1/
p
L be the unit vector in the direction of all ones and P = I�uuT

be the projection matrix on the subspace orthogonal with u. Then

zTSz =

K

K � 1

Vy(z
TuuT z + zTPz) + L(zTuuT z)

✓

ȳ2 � 1

K � 1

Vy

◆

= s

✓

K � L

K � 1

Vy + Lȳ2
◆

(zTuuT z) +
K

K � 1

Vy(z
TPz).

Thus,

S =

✓

K � L

K � 1

Vy + Lȳ2
◆

uuT
+

K

K � 1

VyP.

By taking the expectation, we obtain the spectral decomposition with eigenvalues �u and �P associ-
ated, respectively, with uuT and P :

Ex,y,A[y(A)y(A)

T
] = Ex,y[S] =

✓

K � L

K � 1

V + LE[ȳ2]
◆

| {z }

�
u

uuT
+

✓

K

K � 1

V

◆

| {z }

�
P

P. (25)

We next bound the eigenvalue �u. By positivity of y, note that E2

y
�

maxa y(a)
�

ȳ Kȳ2.
Therefore, Vy = E2

y � ȳ2 (K � 1)ȳ2, and thus E[ȳ2] � V/(K � 1), so

�u =

K � L

K � 1

V + LE[ȳ2] � K

K � 1

V.

Thus, both eigenvalues are lower bounded by K
K�1

V � V .

The deviation bound: For deviation bound, we follow the spectral structure of E⌃t and first
reason about the properties of ⌃tu, followed by the analysis of P⌃tP . Throughout the analysis, let
zi := yi(Ai) denote the L-dimensional reward feature vector on round i, and consider a fixed t T .

Direction u: We begin by the analysis of ⌃tu. Specifically, we will show that k⌃tu� (E⌃t)uk2 is
small. We apply Bernstein’s inequality to a single coordinate `, then take a union bound to obtain a
bound on k·k1, and convert to a bound on k·k

2

. For a fixed ` and i t, define

Xi := zi`z
T
i u

and note that (⌃tu)` =
P

it Xi. The range and variance of Xi are bounded as

0 Xi
p
L

E[X2

i] = E[z2i`(zTi u)2] E[(zTi u)2] = uTE[zizTi]u = �u

where the last equality follows by Eq. (25). Thus, by Bernstein’s inequality, with probability at least
1� �/2L,

�

�

�

�

�

�

X

it

Xi �
X

it

EXi

�

�

�

�

�

�

p

2t�u ln(4L/�) +
p
L ln(4L/�)/3.

Taking a union bound over ` L yields that with probability at least 1� �/2,
�

�

⌃tu� (E⌃t)u
�

�

2

p
L
�

�

⌃tu� (E⌃t)u
�

�

1
p

2Lt�u ln(4L/�) + L ln(4L/�)/3. (26)

Orthogonal to u: In the subspace orthogonal to u, we apply the matrix Bernstein inequality. Let Xi,
for i t, be the matrix random variable

Xi := Pziz
T
i P � PE[zizTi]P

and note that
P

it Xi = P⌃tP � E[P⌃tP]. Since zi are i.i.d., below we analyze a single zi and
Xi and drop the index i. The range can be bounded as

�
max

(X) �
max

(PzzTP) kzk2
2

 L.

To bound the variance, we use Schatten norms, i.e., Lp norms applied to the spectrum of a symmetric
matrix. The Schatten p-norm is denoted as k·k�,p. Note that the operator norm is k·k�,1 and the

28

trace norm is k·k�,1. We begin by upper-bounding the variance by the second moment, then use the
convexity of the norm, the monotonicity of Schatten norms, and the fact that the trace norm of a
positive semi-definite matrix equals its trace to obtain:

�

�

�

E[X2

]

�

�

�

�,1

�

�

�

E[(PzzTP)

2

]

�

�

�

�,1

 E
h

k(PzzTP)

2k�,1
i

 E
h

k(PzzTP)

2k�,1
i

= E
h

tr

⇣

(PzzTP)

2

⌘i

,

and continue by the matrix Holder inequality, tr(ATB) kAk�,1kBk�,1, and Eq. (25) to obtain:

⇣

max

z
kPzzTPk�,1

⌘

E
h

kPzzTPk�,1
i

 L trE
⇥

PzzTP
⇤

= L(L� 1)�P .

Reverting to the notation k·k for the operator norm, the matrix Bernstein inequality (Lemma 26)
yields that with probability at least 1� �/2,
�

�

�

P⌃tP � E[P⌃tP]

�

�

�

=

�

�

�

X

it

Xi �
X

it

EXi

�

�

�

p

2L2t�P ln(2L/�) + 2L ln(2L/�)/3. (27)

The final bound: Let x be an arbitrary unit vector. Decompose it along the all-ones direction and the
orthogonal direction as x = ↵u+ �v, where v ? u, and ↵2

+ �2

= 1. Let v0 = (⌃t � E⌃t)u. Then
�

�xT
(⌃t � E⌃t)x

�

�

=

�

�

�

↵uT
(⌃t � E⌃t)x+ �vT (⌃t � E⌃t)↵u+ �vT (⌃t � E⌃t)�v

�

�

�

 |↵| ·
�

�uT
(⌃t � E⌃t)

�

�

2

+ |↵�| ·
�

�

(⌃t � E⌃t)u
�

�

2

+ �2

�

�vT (⌃t � E⌃t)v
�

�

 2|↵| · kv0k
2

+ |�| · kP⌃tP � E[P⌃tP]k . (28)

From Eq. (25), we have
xT

(E⌃t)x � ↵2t�u + �2t�P . (29)
To finish the proof, we will use the identity valid for all A,B, c � 0

A+B � c
p
A+B � A+B � c

p
A� c

p
B + c2/4� c2/4

= A� c
p
A+

�

p
B � c/2

�

2 � c2/4

� A� c
p
A� c2/4. (30)

Combining Eq. (28) and Eq. (29), and plugging in bounds from Eq. (26) and Eq. (27), we have

xT
⌃tx � ↵2t�u + �2t�P � 2|↵| · kv0k

2

� |�| · kP⌃tP � E[P⌃tP]k

� ↵2t�u + �2t�P � 2|↵|
p

2Lt�u ln(4L/�)�
2|↵|L
3

ln(4L/�)

� |�|
p

2L2t�P ln(2L/�)� 2|�|L
3

ln(2L/�)

� ↵2t�u + �2tV �
⇣

2

p

2L ln(4L/�)
⌘

p

↵2t�u

� |�|
p

4L2tV ln(4L/�)� 2L ln(4L/�),

where we used V �P 2V , and |↵| 1, |�| 1. We now apply Eq. (30) with A+B = ↵2t�u
and A = ↵2tV to obtain

xT
⌃tx � ↵2tV + �2tV �

⇣

2

p

2L ln(4L/�)
⌘p

↵2tV � 2L ln(4L/�)

� 2L|�|
p

tV ln(4L/�)� 2L ln(4L/�)

� tV � 2L
p
2 (|↵|+ |�|)

p

tV ln(4L/�)� 4L ln(4L/�)

� tV � 4L
p

tV ln(4L/�)� 4L ln(4L/�),

where we used |↵| + |�|
p

2↵2

+ 2�2

=

p
2. The lemma follows by the union bound over

t T .

29

F.4 Analysis of the Exploration Regret

The analysis here is made complicated by the fact that the stopping time of the exploration phase
is a random variable. If we let ˆt denote the last round of the exploration phase, this quantity is a
random variable that depends on the history of interaction up to and including round ˆt. Our proof
here will use a non-random bound t? that satisfies P(ˆt t?) � 1� �. We will compute t? based on
our analysis of the 2nd-moment matrix ⌃t.

A trivial bound on the exploration regret is

t?
X

t=1

h

rt(⇡
?
(xt))� rt(At)

i

 t?kw?k
2

p
L, (31)

which follows from the Cauchy-Schwarz inequality and the fact that the reward features are in [0, 1].

In addition, we also bound the exploration regret by the following more precise bound:
Lemma 19 (Exploration Regret Lemma). Let t? be a non-random upper bound on the random
variable ˆt satisfying P(ˆt t?) � 1� �. Then with probability at least 1� 2�, the exploration regret
is

ˆt
X

t=1

h

rt(⇡
?
(xt))� rt(At)

i

 t?kw?k
2

min

np
KV ,

p
L
o

+ kw?k
2

p

2Lt? ln(1/�).

Proof. Let {xt, yt, At, ⇠t}Tt=1

be a sequence of random variables where (x, y, ⇠) ⇠ D and At is
drawn uniformly at random. We are interested in bounding the probability of the event

E :

=

8

<

:

ˆt
X

t=1

⇣

yt(⇡
?
(xt))� yt(At)

⌘T

w? ✏

9

=

;

.

This term is exactly the exploration regret, so we want to make sure the probability of this event is
large. We first apply the upper bound

ˆt
X

t=1

⇣

yt(⇡
?
(xt))� yt(At)

⌘T

w?
ˆt
X

t=1

⇣

yt(A
?
t)� yt(At)

⌘T

w?,

where A?
t = argmaxA yt(A)

Tw? is the best possible ranking. This upper bound ensures that every
term in the sum is non-negative. We next remove the dependence on the random stopping time ˆt and
replace it with a deterministic number of terms t?:

P(E) � P

0

@

ˆt
X

t=1

⇣

yt(A
?
t)� yt(At)

⌘T

w? ✏

1

A

� P

0

@

ˆt
X

t=1

⇣

yt(A
?
t)� yt(At)

⌘T

w? ✏ \ ˆt t?

1

A

� P

t?
X

t=1

⇣

yt(A
?
t)� yt(At)

⌘T

w? ✏ \ ˆt t?
!

� 1� P

t?
X

t=1

⇣

yt(A
?
t)� yt(At)

⌘T

w? > ✏

!

� P
�

ˆt > t?
�

� 1� � � P

t?
X

t=1

⇣

yt(A
?
t)� yt(At)

⌘T

w? > ✏

!

.

The first line follows from the definition of A?
t which only increases the sum, so decreases the

probability of the event. The second inequality is immediate, while the third inequality holds because

30

all terms of the sequence are non-negative. The fourth inequality is the union bound and the last is by
assumption on the event {ˆt t?}.

Now we can apply a standard concentration analysis. The mean of the random variables is

Ex,y,A

h

�

y(A?
)� y(A)

�T
w?
i

 kw?k
2

�

�

�

Ex,y,A

⇥

y(A?
)� y(A)

⇤

�

�

�

2

= kw?k
2

s

X

`L

Ex,y [y(A?
`)� ȳ]2

 kw?k
2

s

X

`L

Ex,y

h

�

y(A?
`)� ȳ

�

2

i

 kw?k
2

p
K

s

1

K

X

a2A

Ex,y

h

�

y(a)� ȳ
�

2

i

= kw?k
2

p
KV .

The first inequality is Cauchy-Schwarz while the second is Jensen’s inequality and the third comes
from adding non-negative terms. The range of the random variable is bounded as

sup

x,y,A

�

�

�

�

�

y(A?
)� y(A)

�T
w? � Ex,y,A

h

�

y(A?
)� y(A)

�T
w?
i

�

�

�

�

 kw?k
2

p
L,

because 0
�

y(A?
)� y(A)

�T
w? kw?k

2

p
L. Thus by Hoeffding’s inequality, with probability at

least 1� �,
t?
X

t=1

�

y(A?
)� y(A)

�T
w?

t?
X

t=1

Ex,y,A

h

�

y(A?
)� y(A)

�T
w?
i

+ kw?k
2

p

2Lt? ln(1/�)

 t?kw?k
2

p
KV + kw?k

2

p

2Lt? ln(1/�).

Combining this bound with the bound of Eq. (31) proves the lemma.

F.5 Analysis of the Exploitation Regret

In this section we show that after the exploration rounds, we can find a policy that has low expected
regret. The technical bulk of this section involves a series of deviation bounds showing that we have
good estimates of the expected reward for each policy.

In addition to ȳ from the previous sections, we will also need the sample quantity ȳt :

=

1

K

P

a2A yt(a), which will allow us to relate the exploitation regret to the variance term V . Since
we are using uniform exploration, the importance-weighted feature vectors are as follows:

ŷt(a) =
1(a 2 At)yt(a)

U(a 2 At)
=

K

L
1(a 2 At)yt(a).

Given any estimate ŵ of the true weight vector w?, the empirical reward estimate for a policy ⇡ is

⌘n(⇡, ŵ) :=
1

n

n
X

t=1

ŷt(⇡(xt))
T ŵ.

A natural way to show that the policy with a low empirical reward has also a low expected regret is to
show that for all policies ⇡, the empirical reward estimate ⌘n(⇡, ŵ) is close to the true reward, ⌘(⇡),
defined as,

⌘(⇡) := Ex,y

⇥

y(⇡(x))Tw?
⇤

.

Rather than bounding the deviation of ⌘n directly, we instead control a shifted version of ⌘n, namely,

 n(⇡, ŵ) :=
1

n

n
X

t=1

⇥

ŷt(⇡(xt))
T ŵ � ȳt1

T ŵ
⇤

,

where 1 is the L-dimensional all-ones vector. Note that ȳt is based on the rewards of all actions, even
those that were not chosen at round t. This is not an issue, since ȳt is only used in the analysis.

31

Lemma 20. Fix � 2 (0, 1) and assume that kŵ � w?k
2

 ✓ for some ✓ � 0. For any � 2 (0, 1),
with probability at least 1� �, we have that for all ⇡ 2 ⇧,

�

� n(⇡, ŵ)� ⌘(⇡, w?
) + Ex,y

⇥

ȳ1Tw?
⇤

�

�

 2(✓ + kw?k
2

)

p
K

r

ln(2N/�)

n
+

r

K

L

ln(2N/�)

n

!

+ ✓min{
p
KV , 2

p
L}.

Proof. We add and subtract several terms to obtain a decomposition. We introduce the shorthands
y⇡ :

= y(⇡(x)), ŷ⇡ :

= ŷ(⇡(x)), and ŷt,⇡ :

= ŷt(⇡(xt)).

 n(⇡, ŵ)� ⌘(⇡, w?
) + Ex,y

⇥

ȳ1Tw?
⇤

=

1

n

n
X

t=1

(ŷt,⇡ � ȳt1)
T ŵ � Ex,y[y⇡ � ȳ1]Tw?

=

1

n

n
X

t=1

⇣

(ŷt,⇡ � ȳt1)
T ŵ � Ex,y[y⇡ � ȳ1]T ŵ

⌘

| {z }

Term 1

+Ex,y[y⇡ � ȳ1]T (ŵ � w?
)

| {z }

Term 2

.

There are two terms to bound here. We bound the first term by Bernstein’s inequality, using that
fact that ŷt is coordinate-wise unbiased for y. The second term will be bounded via a deterministic
analysis, which will yield an upper bound related to the reward-feature variance V .

Term 1: Note that each term of the sum has expectation zero, since ŷt is an unbiased estimate.
Moreover, the range of each individual term in the sum can be bounded as

�

�

�

�

ŷt,⇡ � ȳt1� Ex,y[y⇡ � ȳ1]
�T

ŵ
�

�

�

 kŵk
2

�

�

�

ŷt,⇡ � ȳt1� Ex,y[y⇡ � ȳ1]
�

�

�

2

 (✓ + kw?k
2

)

2Kp
L
.

The second line is derived by bounding the two factors separately. The first factor is bounded by the
triangle inequality: kŵk

2

 kw?k
2

+ kŵ � w?k
2

 kw?k
2

+ ✓. The second factor is a norm of an
L-dimensional vector. The vector ŷt,⇡ has coordinates in [0,K/L], whereas the coordinates of ȳt1,
y⇡, and ȳ1 are all in [0, 1], so the final vector has coordinates in [�2, K/L+ 1], and its Euclidean
norm is thus at most

p
L(2K/L) since K � L.

The variance can be bounded by the second moment, which is

Ex,y,A

h

�

(ŷ⇡ � ȳ1)T ŵ
�

2

i

 kŵk2
2

Ex,y,A

"

L
X

`=1

(ŷ(⇡(x)`)� ȳ)2
#

 kŵk2
2

Ex,y,A

"

L
X

`=1

⇣

ŷ(⇡(x)`)
2

+ ȳ2
⌘

#

 kŵk2
2

L
X

`=1

✓

K

L
Ex,y,A[ŷ(⇡(x)`)] + 1

◆

= kŵk2
2

L
X

`=1

✓

K

L
Ex,y[y(⇡(x)`)] + 1

◆

 2(✓ + kw?k
2

)

2K,

where the last inequality uses K � L. Bernstein’s inequality implies that with probability at least
1� �, for all ⇡ 2 ⇧,
�

�

�

�

�

1

n

n
X

t=1

⇣

(ŷt,⇡ � ȳt1)
T ŵ � Ex,y[y⇡ � ȳ1]T ŵ

⌘

�

�

�

�

�

 (✓+kw?k
2

)

"

r

4K ln(2N/�)

n
+

4K ln(2N/�)

3n
p
L

#

.

Term 2: For the second term, we use the Cauchy-Schwarz inequality,

Ex,y[y⇡ � ȳ1]T (ŵ � w?
)

�

�Ex,y[y⇡ � ȳ1]
�

�

2

kŵ � w?k
2

32

The difference in the weight vectors will be controlled by our analysis of the least squares problem.
We need to bound the other quantity here and we will use two different bounds. First,

�

�Ex,y[y⇡ � ȳ1]
�

�

2

 Ex,yky⇡ � ȳ1k
2

 Ex,yky⇡k2 + ȳk1k
2

 2

p
L.

Second,

kEx,y[y⇡ � ȳ1]k
2

=

v

u

u

tEx,y

L
X

`=1

�

y(⇡(x)`)� ȳ
�

2
s

Ex,y

X

a2A

(y(a)� ȳ)2

=

p
K

s

Ex,y
1

K

X

a2A

(y(a)� ȳ)2 =

p
KV .

Combining everything: Putting everything together, we obtain the bound

(✓ + kw?k
2

)

"

r

4K ln(2N/�)

n
+

4K ln(2N/�)

3n
p
L

#

+ ✓min{
p
KV , 2

p
L}.

Collecting terms together proves the main result.

Assume that we explore for ˆt rounds and then call AMO with weight vector ŵ and importance-
weighted rewards ŷ

1

, . . . ŷ
ˆt to produce a policy ⇡̂ that maximizes ⌘

ˆt(⇡, ŵ). In the remaining exploita-
tion rounds we act according to ⇡̂. With an application of Lemma 20, we can then bound the regret
in the exploitation phase. Note that the algorithm ensures that ˆt is at least equal to the deterministic
quantity n?, so we can remove the dependence on the random variable ˆt:
Lemma 21 (Exploitation Regret Lemma). Assume that we explore for ˆt rounds, where ˆt � n?, and
we find ŵ satisfying kŵ � w?k

2

 ✓. Then for any � 2 (0, 1), with probability at least 1� 2�, the
exploitation regret is at most

T
X

t=ˆt+1

h

rt(⇡
?
(xt))� rt(⇡̂(xt))

i

 4T (✓ + kw?k
2

)

p
K

0

@

s

ln(2N/�)

n?
+

r

K

L

ln(2N/�)

n?

1

A

+ 2T✓min{
p
KV , 2

p
L}+ kw?k

2

p

2LT ln(1/�).

Proof. Using Lemma 20 and the optimality of ŵ for the importance-weighted rewards, with proba-
bility at least 1� �, the expected per-round regret of ⇡̂ is at most

⌘(⇡?, w?
)� ⌘(⇡̂, w?

)

=

⇥

⌘(⇡?, w?
)�

ˆt(⇡
?, ŵ)

⇤

+

⇥

ˆt(⇡̂, ŵ)� ⌘(⇡̂, w?

)

⇤

+

⇥

⌘
ˆt(⇡

?, ŵ)� ⌘
ˆt(⇡̂, ŵ)

⇤

 4(✓ + kw?k
2

)

p
K

r

ln(2N/�)
ˆt

+

r

K

L

ln(2N/�)
ˆt

!

+ 2✓min{
p
KV , 2

p
L}.

To bound the actual exploitation regret, we use Hoeffding’s inequality together with the fact that the
absolute value of the per-round regret is at most kw?k

2

p
L, and finally apply bounds 1/

p
ˆt 1/

p
n?

and 1/ˆt 1/n? to prove the lemma.

F.6 Proving the Final Bound

The final bound will follow from regret bounds of Lemmas 19 and 21. These bounds depend on
parameters t?, n? and ✓. The parameter n? is specified directly by the algorithm and is assured to
be a lower bound on the stopping time. The parameter t? needs to be selected to upper-bound the
stopping time ˆt, and ✓ to upper-bound kŵ � w?k

2

.

The stopping time bound t? and error bound ✓: Our algorithm uses the constants

�? :

= max

n

6L2

ln(4LT/�), (T ˜V /B)

2/3
(L ln(2/�))1/3

o

,

n? :

= T 2/3
(K ln(N/�))1/3 max{L�1/3, (BL)�2/3},

33

and we will show we can set
t? :

= max {6�?/V, n?} , ✓ :=
p

cL ln(2/�)/�?,

where c is the constant from Lemma 17.

Recall that we assume T � (K ln(N/�)/L)max{1, (B
p
L)�2}, which ensures that T � n?, and

that the algorithm stops exploration with the first round ˆt such that ˆt � n? and �
min

(⌃

ˆt) > �?. Thus,
by Lemma 17, ✓ is indeed an upper bound on kŵ � w?k

2

. Furthermore, since t? � n?, it suffices to
argue that ⌃t? ⌫ �?IL with probability at least 1� �. We will show this through Lemma 18.

Specifically, Lemma 18 ensures that after t? rounds the 2nd-moment matrix satisfies, with probability
at least 1� �,

⌃t? ⌫
⇣

t?V � 4L
p

t?V ln(4LT/�)� 4L ln(4LT/�)
⌘

IL.

It suffices to verify that the expression in the parentheses is greater than �?:
⇣

t?V � 4L
p

t?V ln(4LT/�)� 4L ln(4LT/�)
⌘

� �?

(
⇣p

t?V � 2L
p

ln(4LT/�)
⌘

2

� 4L2

ln(4LT/�)� 4L ln(4LT/�) � �?

(
⇣p

t?V � 2L
p

ln(4LT/�)
⌘

2

� �? + 8L2

ln(4LT/�)

(
p
t?V � 2L

p

ln(4LT/�) �
p

�? + 8L2

ln(4LT/�)

(t? � 1

V

⇣

p

�? + 8L2

ln(4LT/�) + 2L
p

ln(4LT/�)
⌘

2

Our setting is an upper bound on this quantity, using the inequality (a + b)2 2a2 + 2b2 and the
fact that �? � 6L2

ln(4LT/�).

Regret decomposition: We next use Lemmas 19 and 21 with the specific values of t?, n? and ✓. The
leading term in our final regret bound will be on the order T 2/3. In the smaller-order terms, we ignore
polynomial dependence on parameters other than T (such as K and L), which we make explicit via
OT notation, e.g., O(

p
LT) = OT (

p
T).

The exploration regret is bounded by Lemma 19, using the bound t? 6�?/V + n?, and the fact
that the exploration vacuously stops at round T , so t? can be replaced by min{t?, T}:

Exploration Regret min{t?, T}kw?k
2

min{
p
KV ,

p
L}+ kw?k

2

p

2LT ln(1/�)

 min

⇢

6�?
V

, T

�

Bmin{
p
KV ,

p
L}

| {z }

Term 1

+n?B
p
L

| {z }

Term 2

+OT (

p
T).

Meanwhile, for the exploitation regret, using the fact that n? = ⌦(T 2/3
), Lemma 21 yields

Exploitation Regret 4T (✓ + kw?k
2

)

p
K

0

@

s

ln(2N/�)

n?
+

r

K

L

ln(2N/�)

n?

1

A

+ 2T✓min{
p
KV , 2

p
L}+ kw?k

2

p

2LT ln(1/�)

= 4T (✓ + kw?k
2

)

s

K ln(2N/�)

n?
+ 2T✓min{

p
KV , 2

p
L}+OT (

p
T)

 4T

0

@

s

cL ln(2/�)

�?
+B

1

A

s

K ln(2N/�)

n?

| {z }

Term 3

+ 2T

s

cL ln(2/�)

�?
min{

p
KV , 2

p
L}

| {z }

Term 4

+OT (

p
T).

34

We now use our settings of n? and �? to bound all the terms. Working with �? is a bit delicate,
because it relies on the estimate ˜V rather than V . However, by Lemma 16 and Eq. (23), we know that

V ˜V 4V + ⌧,

where ⌧ :

= 5 ln(2/�)/(2n?).

Term 1: We proceed by case analysis. First assume that V ⌧ . Then

Term 1 TB
p
KV TB

s

5K ln(2/�)

2n?
 Term 3,

so we can use the bound on Term 3 to control this case.

Next assume that V � ⌧ , which implies ˜V 5V , and distinguish two sub-cases. First, assume that
�? is the second term in its definition, i.e., �? = (T ˜V /B)

2/3
(L ln(2/�))1/3. Then:

Term 1 6�?
V

Bmin

np
KV ,

p
L
o

 6B(T ˜V /B)

2/3
(L ln(2/�))1/3 min{

p
KV ,

p
L}

V

 18B1/3T 2/3V �1/3
(L ln(2/�))1/3 min{

p
KV ,

p
L},

where the last step uses ˜V 2/3 (5V)

2/3 3V 2/3. We now show that the term involving V and the
min{·} is always bounded as follows:
Claim 22. V �1/3

min{
p
KV ,

p
L} K1/3L1/6.

Proof. If KV L, then V L/K, and the expression equals V �1/3
p
KV = V 1/6

p
K

L1/6K1/3. On the other hand, if L KV , then V � L/K, and the expression is equal to
V �1/3

p
L K1/3L1/6.

Thus, in this case, Term 1 is O
�

T 2/3L1/2
(BK log(2/�))1/3

�

.

Finally, assume that �? is the first term in its definition, i.e.,

�? = 6L2

ln(4LT/�) � (T ˜V /B)

2/3
(L ln(2/�))1/3 ,

which implies
V ˜V 6

3/2L5/2
ln(4LT/�)3/2(B/T)(ln(2/�))�1/2. (32)

Thus, we have the bound

Term 1 TB
p
KV = O

⇣

T 1/2B3/2L5/4K1/2
log(LT/�)

⌘

= OT (

p
T).

In summary, we have the bound,

Term 1 Term 3 +O
⇣

T 2/3L1/2
�

BK log(2/�)
�

1/3
⌘

+OT (

p
T). (33)

Term 2: Plugging in the definition of n? yields

Term 2 = n?B
p
L T 2/3

(K ln(N/�))1/3 max{BL1/6, B1/3L�1/6}. (34)

Term 3: Note that
1/
p
n? = T�1/3

(K ln(N/�))�1/6
min{L1/6, (BL)1/3},

�? � 6L2

ln(4LT/�) � L2

ln(2/�),

so

Term 3 = 4T

0

@

s

cL ln(2/�)

�?
+B

1

A

s

K ln(2N/�)

n?

 O

✓

T 2/3

✓

1p
L

+B

◆

�

K ln(N/�)
�

1/3
min{L1/6, (BL)1/3}

◆

.

35

Now if B � 1p
L

, then the min above is achieved by the L1/6 term, so the bound is

O
⇣

T 2/3BL1/6
(K log(N/�))1/3

⌘

.

If B 1p
L

, then the min is achieved by the (BL)1/3 term, so the bound is

O
⇣

T 2/3B1/3L�1/6
(K log(N/�))1/3

⌘

.

Thus,

Term 3 = O
⇣

T 2/3
(K log(N/�))1/3

⇣

BL1/6
+B1/3L�1/6

⌘⌘

. (35)

Term 4: We distinguish two cases. If �? = 6L2

ln(4LT/�) then Eq. (32) holds and thus

V = O
⇣

L5/2
ln(4LT/�)3/2(B/T)

⌘

.

We then have

Term 4 = 2T

s

cL ln(2/�)

�?
min{

p
KV , 2

p
L}

 O

✓

Tp
L

p
KV

◆

= O
⇣p

BTKL3/4
ln(LT/�)

⌘

= OT (

p
T).

Otherwise, �? = (T ˜V /B)

2/3
(L ln(2/�))1/3, and since ˜V � V , we obtain

Term 4 = 2T

s

cL ln(2/�)

�?
min{

p
KV , 2

p
L}

 O

T

s

L log(2/�)

(TV/B)

2/3
(L log(2/�))1/3

min{
p
KV ,

p
L}
!

= O
⇣

T 2/3B1/3L1/3V �1/3
(log(2/�))1/3 min{

p
KV ,

p
L}
⌘

= O
⇣

T 2/3
(BK)

1/3L1/2
(log(2/�))1/3

⌘

, (36)

where the last step is Claim 22. This is the leading-order term since the other cases are OT (
p
T).

Putting everything together: Combining Eqs. (33), (34), (35), and (36), we obtain the bound on
the sum of the exploration and exploitation regret:

Regret = O
⇣

T 2/3
(K log(N/�))1/3 max{B1/3L1/2, BL1/6}

⌘

+OT (

p
T).

G Deviation Bounds

Here, we collect several deviation bounds that we use in our proofs. All of these results are well known
and we point to references rather than provide proofs. The first inequality, which is a Bernstein-type
deviation bound for martingales, is Freedman’s inequality, taken from Beygelzimer et. al [24]
Lemma 23 (Freedman’s Inequality). Let X

1

, X
2

, . . . , XT be a sequence of real-valued random
variables. Assume for all t 2 {1, 2, . . . , T} that Xt R and E[Xt|X1

, . . . , Xt�1

] = 0. Define
S =

PT
t=1

Xt and V =

PT
t=1

E[X2

t |X1

, . . . , Xt�1

]. For any � 2 (0, 1) and � 2 [0, 1/R], with
probability at least 1� �:

S (e� 2)�V +

ln(1/�)

�

We also use Azuma’s inequality, a Hoeffding-type inequality for martingales.

36

Lemma 24 (Azuma’s Inequality). Let X
1

, X
2

, . . . , XT be a sequence of real-valued random vari-
ables. Assume for all t 2 {1, 2, . . . , T} that Xt R and E[Xt|X1

, . . . , Xt�1

] = 0. Define
S =

PT
t=1

Xt. For any � 2 (0, 1), with probability at least 1� �:

S R
p

2T ln(1/�)

We also make use of a vector-valued version of Hoeffding’s inequality, known as the Hanson-Wright
inequality, due to Rudelson and Vershynin [25].
Lemma 25 (Hanson-Wright Inequality [25]). Let X = (X

1

, . . . , Xn) be a random vector with
independent components satisfying EXi = 0 and |Xi| almost surely. There exists a universal
constant c

0

> 0 such that, for any A 2 Rn⇥n and any � 2 (0, 1), with probability at least 1� �,

|XTAX � EXTAX| 2
q

c
0

kAk2F log(2/�) + c
0

2kAk log(2/�),

where k · kF is the Frobenius norm and k·k is the spectral norm.

Finally, we use a well known matrix-valued version of Bernstein’s inequality, taken from Tropp [26].
Lemma 26 (Matrix Bernstein). Consider a finite sequence {Xk} of independent, random, self-
adjoint matrices with dimension d. Assume that for each random matrix we have EXk = 0 and
�
max

(Xk) R almost surely. Then for any � 2 (0, 1), with probability at least 1� �:

�
max

⇣

X

k

Xk

⌘

p

2�2

ln(d/�) +
2

3

R log(d/�) with �2

=

�

�

�

X

k

E(X2

k)

�

�

�

,

where k·k is the spectral norm.

Additional References
[24] A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandit algorithms with

supervised learning guarantees. In AISTATS, 2011.

[25] M. Rudelson and R. Vershynin. Hanson-wright inequality and sub-gaussian concentration. Electronic
Communications in Probability, 2013.

[26] J. A. Tropp. User-Friendly Tail Bounds for Sums of Random Matrices. FOCM, 2011.

37

