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Abstract

Minimizing a convex function over the spectrahedron, i.e., the set of all d × d
positive semidefinite matrices with unit trace, is an important optimization task
with many applications in optimization, machine learning, and signal processing. It
is also notoriously difficult to solve in large-scale since standard techniques require
to compute expensive matrix decompositions. An alternative is the conditional
gradient method (aka Frank-Wolfe algorithm) that regained much interest in recent
years, mostly due to its application to this specific setting. The key benefit of the
CG method is that it avoids expensive matrix decompositions all together, and
simply requires a single eigenvector computation per iteration, which is much more
efficient. On the downside, the CG method, in general, converges with an inferior
rate. The error for minimizing a β-smooth function after t iterations scales like β/t.
This rate does not improve even if the function is also strongly convex. In this work
we present a modification of the CG method tailored for the spectrahedron. The
per-iteration complexity of the method is essentially identical to that of the standard
CG method: only a single eigenvector computation is required. For minimizing an
α-strongly convex and β-smooth function, the expected error of the method after t
iterations is:
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where rank(X∗), λmin(X∗) are the rank of the optimal solution and smallest non-
zero eigenvalue, respectively. Beyond the significant improvement in convergence
rate, it also follows that when the optimum is low-rank, our method provides better
accuracy-rank tradeoff than the standard CG method. To the best of our knowledge,
this is the first result that attains provably faster convergence rates for a CG variant
for optimization over the spectrahedron. We also present encouraging preliminary
empirical results.

1 Introduction

Minimizing a convex function over the set of positive semidefinite matrices with unit trace, aka
the spectrahedron, is an important optimization task which lies at the heart of many optimization,
machine learning, and signal processing tasks such as matrix completion [1, 13], metric learning
[21, 22], kernel matrix learning [16, 9], multiclass classification [2, 23], and more.

Since modern applications are mostly of very large scale, first-order methods are the obvious choice to
deal with this optimization problem. However, even these are notoriously difficult to apply, since most
of the popular gradient schemes require the computation of an orthogonal projection on each iteration
to enforce feasibility, which for the spectraheron, amounts to computing a full eigen-decomposition
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of a real symmetric matrix. Such a decomposition requires O(d3) arithmetic operations for a d× d
matrix and thus is prohibitive for high-dimensional problems. An alternative is to use first-order
methods that do not require expensive decompositions, but rely only on computationally-cheap
leading eigenvector computations. These methods are mostly based on the conditional gradient
method, also known as the Frank-Wolfe algorithm [3, 12], which is a generic method for constrained
convex optimization given an oracle for minimizing linear functions over the feasible domain. Indeed,
linear minimization over the spectrahedron amounts to a single leading eigenvector computation.
While the CG method has been discovered already in the 1950’s [3], it has regained much interest
in recent years in the machine learning and optimization communities, in particular due to its
applications to semidefinite optimization and convex optimization with a nuclear norm constraint
/ regularization1, e.g., [10, 13, 17, 19, 22, 2, 11]. This regained interest is not surprising: while a
full eigen-decomposition for d× d matrix requires O(d3) arithmetic operations, leading eigenvecor
computations can be carried out, roughly speaking, in worst-case time that is only linear in the
number of non-zeros in the input matrix multiplied by either ε−1 for the popular Power Method
or by ε−1/2 for the more efficient Lanczos method, where ε is the target accuracy. These running
times improve exponentially to only depend on log(1/ε) when the eigenvalues of the input matrix
are well distributed [14]. Indeed, in several important machine learning applications, such as matrix
completion, the CG method requires eigenvector computations of very sparse matrices [13]. Also,
very recently, new eigenvector algorithms with significantly improved performance guarantees were
introduced which are applicable for matrices with certain popular structure [5, 8, 20].

The main drawback of the CG method is that its convergence rate is, in general, inferior compared to
projection-based gradient methods. The convergence rate for minimizing a smooth function, roughly
speaking, scales only like 1/t. In particular, this rate does not improve even when the function is
also strongly convex. On the other hand, the convergence rate of optimal projection-based methods,
such as Nesterov’s accelerated gradient method, scales like 1/t2 for smooth functions, and can be
improved exponentially to exp(−Θ(t)) when the objective is also strongly convex.

Very recently, several successful attempts were made to devise natural modifications of the CG method
that retain the overall low per-iteration complexity, while enjoying provably faster convergence rates,
usually under a strong-convexity assumption, or a slightly weaker one. These results exhibit provably-
faster rates for optimization over polyhedral sets [7, 15] and strongly-convex sets [6], but do not apply
to the spectrahedron. For the specific setting considered in this work, several heuristic improvements
of the CG method were suggested which show promising empirical evidence, however, non of them
provably improve over the rate of the standard CG method [19, 17, 4].

In this work we present a new non-trivial variant of the CG method, which, to the best of our
knowledge, is the first to exhibit provably faster convergence rates for optimization over the spectra-
hedron, under standard smoothness and strong convexity assumptions. The per-iteration complexity
of the method is essentially identical to that of the standard CG method, i.e., only a single leading
eigenvector computation per iteration is required. Our method is tailored for optimization over the
spectrahedron, and can be seen as a certain hybridization of the standard CG method and the projected
gradient method. From a high-level view, we take advantage of the fact that solving a `2-regularized
linear problem over the set of extreme points of the spectrahedron is equivalent to linear optimization
over this set, i.e., amounts to a single eigenvector computation. We then show via a novel and
non-trivial analysis, that includes new decomposition concepts for positive semidefinite matrices, that
such an algorithmically-cheap regularization is sufficient, in presence of strong convexity, to derive
faster convergence rates.

2 Preliminaries and Notation

For vectors we let ‖ · ‖ denote the standard Euclidean norm, while for matrices we let ‖ · ‖ denote
the spectral norm, ‖·‖F denote the Frobenius norm, and ‖ · ‖∗ denote the nuclear norm. We
denote by Sd the space of d × d real symmetric matrices, and by Sd the spectrahedron in Sd, i.e.,
Sd := {X ∈ Sd |X � 0,Tr(X) = 1}. We let Tr(·) and rank(·) denote the trace and rank of a given
matrix in Sd, respectively. We let • denote the standard inner-product for matrices. Given a matrix
X ∈ Sd, we let λmin(X) denote the smallest non-zero eigenvalue of X.

1minimizing a convex function subject to a nuclear norm constraint is efficiently reducible to the minimization
of the function over the spectrahedron, as fully detailed in [13].
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Given a matrix A ∈ Sd, we denote by EV(A) an eigenvector of A that corresponds to the largest
(signed) eigenvalue of A, i.e., EV(A) ∈ arg maxv:‖v‖=1 v

>Av. Given a scalar ξ > 0, we also
denote by EVξ(A) an ξ-approximation to the largest (in terms of eigenvalue) eigenvector of A, i.e.,
EVξ(A) returns a unit vector v such that v>Av ≥ λmax(A)− ξ.
Definition 1. We say that a function f(X) : Rm×n → R is α-strongly convex w.r.t. a norm ‖ · ‖, if
for all X,Y ∈ Rm×n it holds that

f(Y) ≥ f(X) + (Y −X) • ∇f(X) +
α

2
‖X−Y‖2.

Definition 2. We say that a function f(X) : Rm×n → R is β-smooth w.r.t. a norm ‖ · ‖, if for all
X,Y ∈ Rm×n it holds that

f(Y) ≤ f(X) + (Y −X) • ∇f(X) +
β

2
‖X−Y‖2.

The first-order optimality condition implies that for a α-strongly convex f , if X∗ is the unique
minimizer of f over a convex set K ⊂ Rm×n, then for all X ∈ K it holds that

f(X)− f(X∗) ≥ α

2
‖X−X∗‖2. (1)

2.1 Problem setting

The main focus of this work is the following optimization problem:

min
X∈Sd

f(X), (2)

where we assume that f(X) is both α-strongly convex and β-smooth w.r.t. ‖ · ‖F . We denote the
(unique) minimizer of f over Sd by X∗.

3 Our Approach

We begin by briefly describing the conditional gradient and projected-gradient methods, pointing out
their advantages and short-comings for solving Problem (2) in Subsection 3.1. We then present our
new method which is a certain combination of ideas from both methods in Subsection 3.2.

3.1 Conditional gradient and projected gradient descent

The standard conditional gradient algorithm is detailed below in Algorithm 1.

Algorithm 1 Conditional Gradient

1: input: sequence of step-sizes {ηt}t≥1 ⊂ [0, 1]
2: let X1 be an arbitrary matrix in Sd
3: for t = 1... do
4: vt ← EV (−∇f(Xt))
5: Xt+1 ← Xt + ηt(vtv

>
t −Xt)

6: end for

Let us denote the approximation error of Algorithm 1 after t iterations by ht := f(Xt)− f(X∗).

The convergence result of Algorithm 1 is based on the following simple observations:

ht+1 = f(Xt + ηt(vtv
>
t −Xt))− f(X∗) (3)

≤ ht + ηt(vtv
>
t −Xt) • ∇f(Xt) +

η2t β

2
‖vtv>t −Xt‖2F

≤ ht + ηt(X
∗ −Xt) • ∇f(Xt) +

η2t β

2
‖vtv>t −Xt‖2F ≤ (1− ηt)ht +

η2t β

2
‖vtv>t −Xt‖2F ,

where the first inequality follows from the β-smoothness of f(X), the second one follows for the
optimal choice of vt, and the third one follows from convexity of f(X). Unfortunately, while we
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expect the error ht to rapidly converge to zero, the term ‖vtv>t −Xt‖2F in Eq. (3), in principal,
might remain as large as the diameter of Sd, which, given a proper choice of step-size ηt, results in
the well-known convergence rate of O(β/t) [12, 10]. This consequence holds also in case f(X) is
not only smooth, but also strongly-convex.

However, in case f is strongly convex, a non-trivial modification of Algorithm 1 can lead to a much
faster convergence rate. In this case, it follows from Eq. (1), that on any iteration t, ‖Xt −X∗‖2F ≤
2
αht. Thus, if we consider replacing the choice of Xt+1 in Algorithm 1 with the following update
rule:

Vt ← arg min
V∈Sd

V • ∇f(Xt) +
ηtβ

2
‖V −Xt‖2F , Xt+1 ← Xt + ηt(Vt −Xt), (4)

then, following basically the same steps as in Eq. (3), we will have that

ht+1 ≤ ht + ηt(X
∗ −Xt) • ∇f(Xt) +

η2t β

2
‖X∗ −Xt‖2F ≤

(
1− ηt +

η2t β

α

)
ht, (5)

and thus by a proper choice of ηt, a linear convergence rate will be attained. Of course the issue now,
is that computing Vt is no longer a computationally-cheap leading eigenvalue problem (in particular
Vt is not rank-one), but requires a full eigen-decomposition of Xt, which is much more expensive.
In fact, the update rule in Eq. (4) is nothing more than the projected gradient decent method.

3.2 A new hybrid approach: rank one-regularized conditional gradient algorithm

At the heart of our new method is the combination of ideas from both of the above approaches: on
one hand, solving a certain regularized linear problem in order to avoid the shortcomings of the
CG method, i.e., slow convergence rate, and on the other hand, maintaining the simple structure
of a leading eigenvalue computation that avoids the shortcoming of the computationally-expensive
projected-gradient method.

Towards this end, suppose that we have an explicit decomposition of the current iterate Xt =∑k
i=1 aixix

>
i , where (a1, a2, ..., ak) is a probability distribution over [k], and each xi is a unit vector.

Note in particular that the standard CG method (Algorithm 1) naturally produces such an explicit
decomposition of Xt (provided X1 is chosen to be rank-one). Consider now the update rule in Eq.
(4), but with the additional restriction that Vt is rank one, i.e, Vt ← arg minV∈Sd, rank(V)=1V •
∇f(Xt) + ηtβ

2 ‖V −Xt‖2F . Note that in this case it follows that Vt is a unit trace rank-one matrix
which corresponds to the leading eigenvector of the matrix −∇f(Xt) + ηtβXt. However, when
Vt is rank-one, the regularization ‖Vt −Xt‖2F makes little sense in general, since unless X∗ is
rank-one, we do not expect Xt to be such (note however, that if X∗ is rank one, this modification
will already result in a linear convergence rate). However, we can think of solving a set of decoupled
component-wise regularized problems:

∀i ∈ [k] : v
(i)
t ← arg min

‖v‖=1
v>∇f(Xt)v + ηtβ

2 ‖vv
> − xix

>
i ‖2F ≡ EV

(
−∇f(Xt) + ηtβxix

>
i

)
Xt+1 ←

∑k
i=1 ai

(
(1− ηt)xix>i + ηtv

(i)
t v

(i)>
t

)
, (6)

where the equivalence in the first line follows since ‖vv>‖F = 1, and thus the minimizer of the LHS
is w.l.o.g. a leading eigenvector of the matrix on the RHS. Following the lines of Eq. (3), we will
now have that

ht+1 ≤ ht + ηt

k∑
i=1

ai(v
(i)
t v

(i)>
t − xix

>
i ) • ∇f(Xt) +

η2t β

2
‖
k∑
i=1

ai(v
(i)
t v

(i)>
t − xix

>
i )‖2F

≤ ht + ηt

k∑
i=1

ai(v
(i)
t v

(i)>
t − xix

>
i ) • ∇f(Xt) +

η2t β

2

k∑
i=1

ai‖v(i)
t v

(i)>
t − xix

>
i ‖2F

= ht + ηtEi∼(a1,...,ak)
[
(v

(i)
t v

(i)>
t − xix

>
i ) • ∇f(Xt) +

ηtβ

2
‖v(i)

t v
(i)>
t − xix

>
i ‖2F

]
, (7)
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where the second inequality follows from convexity of the squared Frobenius norm, and the last
equality follows since (a1, ..., ak) is a probability distribution over [k].

While the approach in Eq. (6) relies only on leading eigenvector computations, the benefit in terms
of potential convergence rates is not trivial, since it is not immediate that we can get non-trivial
bounds for the individual distances ‖v(i)

t v
(i)>
t − xix

>
i ‖F . Indeed, the main novelty in our analysis

is dedicated precisely to this issue. A motivation, if any, is that there might exists a decomposition of
X∗ as X∗ =

∑k
i=1 bix

∗(i)x∗(i)>, which is close in some sense to the decomposition of Xt. We can
then think of the regularized problem in Eq. (6), as an attempt to push each individual component
x(i) towards its corresponding component in the decomposition of X∗, and as an overall result, bring
the following iterate Xt+1 closer to X∗.

Note that Eq. (7) implicitly describes a randomized algorithm in which, instead of solving a
regularized EV problem for each rank-one matrix in the decomposition of Xt, which is expensive as
this decomposition grows large with the number of iterations, we pick a single rank-one component
according to its weight in the decomposition, and only update it. This directly brings us to our
proposed algorithm, Algorithm 2, which is given below.

Algorithm 2 Randomized Rank one-regularized Conditional Gradient

1: input: sequence of step-sizes {ηt}t≥1, sequence of error tolerances {ξt}t≥0
2: let x0 be an arbitrary unit vector
3: X1 ← x1x

>
1 such that x1 ← EVξ0(−∇f(x0x

>
0 ))

4: for t = 1... do
5: suppose Xt is given by Xt =

∑k
i=1 aixix

>
i , where each xi is a unit vector, and (a1, a2, ..., ak)

is a probability distribution over [k], for some integer k
6: pick it ∈ [k] according to the probability distribution (a1, a2, ...ak)
7: set a new step-size η̃t as follows:

η̃t ←
{
ηt/2 if ait ≥ ηt
ait else

8: vt ← EVξt

(
−∇f(Xt) + ηtβxitx

>
it

)
9: Xt+1 ← Xt + η̃t(vtv

>
t − xitx

>
it

)
10: end for

We have the following guarantee for Algorithm 2 which is the main result of this paper.
Theorem 1. [Main Theorem] Consider the sequence of step-sizes {ηt}t≥1 defined by ηt =
18/(t + 8), and suppose that ξ0 = β and for any iteration t ≥ 1 it holds that ξt =

O

(
min{βt ,

(
β
√

rank(X∗)

α1/4t

)4/3

,
(

β√
αλmin(X∗)t

)2
}

)
. Then, all iterates are feasible, and

∀t ≥ 1 : E [f(Xt)− f(X∗)] = O

min{β
t
,

(
β
√

rank(X∗)

α1/4t

)4/3

,

(
β√

αλmin(X∗)t

)2

}

 .

It is important to note that the step-size choice in Theorem 1 does not require any knowledge on
the parameters α, β, rank(X∗), and λmin(X∗). The knowledge of β is required however for the EV
computations. While it follows from Theorem 1 that the knowledge of α, rank(X∗), λmin(X∗) is
needed to set the accuracy parameters - ξt, in practice, iterative eigenvector methods are very efficient
and are much less sensitive to exact knowledge of parameters than the choice of step-size for instance.

While the eigenvalue problem in Algorithm 2 is different from the one in Algorithm 1, due to the
additional term in xitx

>
it

, the efficiency of solving both problems is essentially the same since efficient
EV procedures are based on iteratively multiplying the input matrix with a vector. In particular,
multiplying a vector with a rank-one matrix takes O(d) time. Thus, as long as nnz(∇f(Xt)) = Ω(d),
which is highly reasonable, both EV computations run in essentially the same time.

Finally, note also that aside from the computation of the gradient direction and the leading eigenvector
computation, all other operations on any iteration t, can be carried out in O(d2 + t) additional time.
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4 Analysis

The complete proof of Theorem 1 and all supporting lemmas are given in full detail in the appendix.
Here we only detail the two main ingredients in the analysis of Algorithm 2.

Throughout this section, given a matrix Y ∈ Sd, we let PY,τ ∈ Sd denote the projection matrix onto
all eigenvectors of Y that correspond to eigenvalues of magnitude at least τ . Similarly, we let P⊥Y,τ
denote the projection matrix onto the eigenvectors of Y that correspond to eigenvalues of magnitude
smaller than τ (including eigenvectors that correspond to zero-valued eigenvalues).

4.1 A new decomposition for positive semidefinite matrices with locality properties

The analysis of Algorithm 2 relies heavily on a new decomposition idea of matrices in Sd that suggests
that given a matrix X in the form of a convex combination of rank-one matrices: X =

∑k
i=1 αixix

>
i ,

and another matrix Y ∈ Sd, roughly speaking, we can decompose Y as the sum of rank-one matrices,
such that the components in the decomposition of Y are close to those in the decomposition of X in
terms of the overall distance ‖X−Y‖F . This decomposition and corresponding property justifies
the idea of solving rank-one regularized problems, as suggested in Eq. (6), and applied in Algorithm
2.

Lemma 1. Let X,Y ∈ Sd such that X is given as X =
∑k
i=1 aixix

>
i , where each xi is a

unit vector, and (a1, ..., ak) is a distribution over [k], and let τ, γ ∈ [0, 1] be scalars that satisfy
γτ
1−γ ≥ ‖X−Y‖F . Then, Y can be written as Y =

∑k
i=1 biyiy

>
i +

∑k
j=1(aj − bj)W, such that

1. each yi is a unit vector and W ∈ Sd

2. ∀i ∈ [k] : 0 ≤ bi ≤ ai and
∑k
j=1(aj − bj) ≤

√
rank(Y)

(
‖YP⊥Y,τ‖F + ‖X−Y‖F

)
+γ

3.
∑k
i=1 bi‖xix>i − yiy

>
i ‖2F ≤ 2

√
rank(Y)

(
‖YP⊥Y,τ‖F + ‖X−Y‖F

)
4.2 Bounding the per-iteration improvement

The main step in the proof of Theorem 1, is understanding the per-iteration improvement, as captured
in Eq. (7), achievable by applying the update rule in Eq. (6), which updates on each iteration all of
the rank-one components in the decomposition of the current iterate.

Lemma 2. [full deterministic update] Fix a scalar η > 0. Let X ∈ Sd such that X =
∑k
i=1 aixix

>
i ,

where each xi is a unit vector, and (a1, ..., ak) is a probability distribution over [k]. For any i ∈ [k],
let vi := EV

(
−∇f(X) + ηβxix

>
i

)
. Then, it holds that

k∑
i=1

ai

[
(viv

>
i − xix

>
i ) • ∇f(X) +

ηβ

2
‖viv>i − xix

>
i ‖2F

]
≤ − (f(X)− f(X∗))

+ηβ ·min{1, 5

√√
2

α
rank(X∗)

√
f(X)− f(X∗),

3
√

2√
αλmin(X∗)

√
f(X)− f(X∗)}.

proof sketch. The proof is divided to three parts, each corresponding to a different term in the min
expression in the bound in the Lemma. The first bound, at a high-level, follows from the standard
conditional gradient analysis (see Eq. (3)). We continue to derive the second and third bounds.

From Lemma 1 we know we can write X∗ in the following way:

X∗ =

k∑
i=1

b∗iy
∗
i y
∗>
i +

k∑
j=1

(aj − b∗j )W∗, (8)

where for all i ∈ [k], b∗i ∈ [0, ai] and y∗i is a unit vector, and W∗ ∈ Sd.
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Using nothing more than Eq. (8), the optimality of vi for each i ∈ [k], and the bounds in Lemma 1, it
can be shown that

k∑
i=1

ai

[
(viv

>
i − xix

>
i ) • ∇f(X) +

ηβ

2
‖viv>i − xix

>
i ‖2F

]
≤

(X∗ −X) • ∇f(X) +
ηβ

2

k∑
i=1

b∗i ‖y∗i y∗>i − xix
>
i ‖2F + ηβ

k∑
i=1

(ai − b∗i ) ≤

(X∗ −X) • ∇f(X) + ηβ
(

2
√

rank(X∗)
(
‖X∗P⊥X∗,τ‖F + ‖X−X∗‖F

)
+ γ
)
. (9)

Now we can optimize the above bound in terms of τ, γ. One option is to upper bound ‖X∗P⊥X∗,τ‖F ≤√
rank(X∗)τ , which together with the choice τ1 =

√
‖X−X∗‖F
2rank(X∗) , γ1 =

√
2rank(X∗)‖X−X∗‖F ,

give us:

RHS of (9) ≤ (X∗ −X) • ∇f(X) + 5ηβ
√

rank(X∗)‖X−X∗‖F . (10)

Another option, is to choose τ2 = λmin(X∗), γ2 = ‖X−X∗‖F
λmin(X∗) which gives us ‖X∗P⊥X∗,τ‖F = 0.

This results in the bound:

RHS of (9) ≤ (X∗ −X) • ∇f(X) +
3ηβ‖X−X∗‖F

λmin(X∗)
. (11)

Now, using the convexity of f to upper bound (X∗ −X) • ∇f(X) ≤ −(f(X) − f(X∗)) and Eq.
(1) in both Eq. (10) and (11), gives the second the third parts of the bound in the lemma.

5 Preliminary Empirical Evaluation

We evaluate our method, along with other conditional gradient variants, on the task of matrix
completion [13].

Setting The underlying optimization problem for the matrix completion task is the following:

min
Z∈NBd1,d2

(θ)
{f(Z) :=

1

2

n∑
l=1

(Z •Eil,jl − rl)
2}, (12)

where Ei,j is the indicator matrix for the entry (i, j) in Rd1×d2 , {(il, jl, rl)}nl=1 ⊂ [d1]× [d2]× R,
and NBd1,d2(θ) denotes the nuclear-norm ball of radius θ in Rd1×d2 , i.e.,

NBd1,d2(θ) := {Z ∈ Rd1×d2 | ‖Z‖∗ :=

min{d1,d2}∑
i=1

σi(Z) ≤ θ},

where we let σ(Z) denote the vector of singular values of Z. . That is, our goal is to find a matrix
with bounded nuclear norm (which serves as a convex surrogate for bounded rank) which matches
best the partial observations given by {(il, jl, rl)}nl=1.

In order to transform Problem (12) to optimization over the spectrahedron, we use the reduction
specified in full detail in [13], and also described in Section A in the appendix.

The objective function in Eq. (12) is known to have a smoothness parameter β with respect to
‖ · ‖F , which satisfies β = O(1), see for instance [13]. While the objective function in Eq. (12)
is not strongly convex, it is known that under certain conditions, the matrix completion problem
exhibit properties very similar to strong convexity, in the sense of Eq. (1) (which is indeed the only
consequence of strong convexity that we use in our analysis) [18].
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Figure 1: Comparison between conditional gradient variants for solving the matrix completion
problem on the MOVIELENS100K (left) and MOVIELENS1M (right) datasets.

Two modifications of Algorithm 2 We implemented our rank one-regularized conditional gradient
variant, Algorithm 2 (denoted ROR-CG in our figures) with two modifications. First, on each iteration
t, instead of picking an index it of a rank-one matrix in the decomposition of the current iterate at
random according to the distribution (a1, a2, ..., ak), we choose it in a greedy way, i.e., we choose
the rank-one component that has the largest product with the current gradient direction. While this
approach is computationally more expensive, it could be easily parallelized since all dot-product
computations are independent of each other. Second, after computing the eigenvector vt using the
step-size ηt = 1/t (which is very close to that prescribed in Theorem 1), we apply a line-search, as
detailed in [13], in order to the determine the optimal step-size given the direction vtv

>
t − xitx

>
it

.

Baselines As baselines for comparison we used the standard conditional gradient method with exact
line-search for setting the step-size (denoted CG in our figures)[13], and the conditional gradient with
away-steps variant, recently studied in [15] (denoted Away-CG in our figures). While the away-steps
variant was studied in the context of optimization over polyhedral sets, and its formal improved
guarantees apply only in that setting, the concept of away-steps still makes sense for any convex
feasible set. This variant also allows the incorporation of an exact line-search procedure to choose
the optimal step-size.

Datasets We have experimented with two well known datasets for the matrix completion task: the
MOVIELENS100K dataset for which d1 = 943, d2 = 1682, n = 105, and the MOVIELENS1M
dataset for which d1 = 6040, d2 = 3952, n ≈ 106. The MOVIELENS1M dataset was further
sub-sampled to contain roughly half of the observations. We have set the parameter θ in Problem (12)
to θ = 10000 for the ML100K dataset, and θ = 35000 for the ML1M dataset.

Figure 1 presents the objective (12) vs. the number of iterations executed. Each graph is the average
over 5 independent experiments 2. It can be seen that our approach indeed improves significantly
over the baselines in terms of convergence rate, for the setting under consideration.
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A Convex Optimization with a Nuclear Norm Constraint

An important optimization problem highly-related to Problem (2), is the problem of minimizing a
convex function over the set of d1 × d2 real-valued matrices with bounded nuclear norm, i.e,

min
Z∈NBd1,d2

(θ)
f(Z). (13)

Here we let NBd1,d2(θ) denote the nuclear-norm ball of radius θ in Rd1×d2 , i.e.,

NBd1,d2(θ) := {Z ∈ Rd1×d2 | ‖Z‖∗ :=

min{d1,d2}∑
i=1

σi(Z) ≤ θ},

where we let σ(Z) denote the vector of singular values of Z.

Problem (13) could be directly formulated as convex optimization over the spectrahedron. Towards
this end, consider now the following convex optimization problem:

minX∈Sd1+d2
f̂(X),

f̂(X) := f(2θ ·M1XM2), M1 := ( Id1 0d1×d2 ) , M1 :=

(
0d1×d2
Id2

)
.

The following Lemma, whose proof can be found in [13], shows the equivalence between the two
problems.

Lemma 3. Let X ∈ Sd1+d2 such that f̂(X)− f̂(X∗) = ε, for some ε > 0, where X∗ is the minimizer
of f̂ over Sd1+d2 . Consider the following factorization of X:

X =

(
X1 X2

X>2 X3

)
,

where X1 is d1 × d1, X2 is d1 × d2, and X3 is d2 × d2. Define Z := 2θ ·X2. Then it follows that
Z ∈ NBd1,d2(θ), and f(Z)− f(Z∗) = ε, where Z∗ is the minimizer of f over NBd1,d2(θ).

B Omitted Lemmas and Proofs from Subsection 4.1

Here we give a complete proof of Lemma 1. Before we can prove the lemma , we first need two more
technical lemmas.
Lemma 4. Let X,Y ∈ Sd. Let τ, γ ∈ [0, 1] be scalars that satisfy γτ

1−γ ≥ ‖X−Y‖F . Then it holds
that Y � (1− γ)PY,τXPY,τ .

Proof. Given a vector w ∈ Rd let us write it as w = w+ + w− where w+ = PY,τw and
w− = P⊥Y,τw = w −w+.

It holds that

w>Yw = w+>Yw+ + w−>Yw− + 2w−>Yw+

= w+>Yw+ + w−>Yw− + 2w>P⊥Y,τYPY,τw

≥ w+>Yw+, (14)

where the inequality follows since P⊥Y,τYPY,τ = 0 and Y is positive semidefinite.

Similarly, since PY,τw
− = 0, we have that

w−>PY,τXPY,τw
− = w−>PY,τXPY,τw

+ = w+>PY,τXPY,τw
− = 0. (15)

Note also that

w+>PY,τXPY,τw
+ = w+>Xw+. (16)
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Thus, we have that
w> [(1− γ)PY,τXPY,τ ]w = (1− γ)w+>PY,τXPY,τw

+

= (1− γ)w+>Xw+

≤ (1− γ)
(
w+>Yw+ + ‖X−Y‖F · ‖w+‖2

)
≤ w>Yw + (1− γ)‖X−Y‖F · ‖w+‖2 − γw+>Yw+

≤ w>Yw + (1− γ)‖X−Y‖F · ‖w+‖2 − γτ‖w+‖2,
where the first equality follows from Eq. (15), the second equality follows from Eq. (16), the first
inequality follows from the Cauchy-Schwarz ineq., the second inequality follows from Eq. (14), and
the last inequality follows from the definitions of w+ and τ .

Thus, we can see that if γτ
1−γ ≥ ‖X−Y‖F , the lemma follows.

Lemma 5. Let X,Y ∈ Sd and suppose X is given in the form X =
∑k
i=1 aixix

>
i where each xi

is a unit vector, and the weights (a1, ..., ak) are a distribution over [k]. Let P ∈ Sd be a projection
matrix onto a subset of the eigenvectors of Y, and define for any i ∈ [k], x̃i := Pxi. Then, it holds
that

k∑
i=1

ai(1− ‖x̃i‖2) ≤
√

rank(Y)‖Y −PXP‖F .

Proof. Let us write the eigen-decomposition of Y as Y =
∑rank(Y)
j=1 λjvjv

>
j . Using simple algebraic

manipulations we have that

‖Y −PXP‖2F ≥
rank(Y)∑
j=1

(
(Y −PXP) • vjv>j

)2
=

rank(Y)∑
j=1

(
λj −

k∑
i=1

aiv
>
j Pxix

>
i Pvj

)2

=

rank(Y)∑
j=1

(
λj −

k∑
i=1

ai(v
>
j Pxi)

2

)2

≥ 1

rank(Y)

rank(Y)∑
j=1

(
λj −

k∑
i=1

ai(v
>
j Pxi)

2

)2

=
1

rank(Y)

1−
rank(Y)∑
j=1

k∑
i=1

ai(v
>
j Pxi)

2

2

=
1

rank(Y)

 k∑
i=1

ai

1−
rank(Y)∑
j=1

(v>j Pxi)
2

2

=
1

rank(Y)

(
k∑
i=1

ai
(
1− ‖x̃i‖2

))2

,

where the first inequality follows since {vjv>j }
rank(Y)
j=1 is a subset of an orthonormal basis for Rd×d,

the second inequality follows since for any finite set of reals {ri}ki=1 it holds that
∑k
i=1 r

2
i ≥

(
∑k
i=1 ri)

2/k, and the third and forth equalities hold since
∑rank(Y)
j=1 λj =

∑k
i=1 ai = 1.

Thus we have that
k∑
i=1

ai(1− ‖x̃i‖2) ≤
√

rank(Y)‖Y −PXP‖F ,

which gives the bound in the lemma.

11



We can now prove Lemma 1.

Proof. For each i ∈ [k] let x̃i = PY,τxi. It follows from Lemma 4 that as long as γτ
1−γ ≥

‖X−Y‖F , it holds that

Y �
k∑
i=1

ai(1− γ)x̃ix̃
>
i .

Since Y ∈ Sd and Tr
(∑k

i=1 ai(1− γ)x̃ix̃
>
i

)
=
∑k
i=1 ai(1 − γ)‖x̃i‖2, it follows that Y can be

written as:

Y =

k∑
i=1

ai(1− γ)x̃ix̃
>
i +

 k∑
j=1

aj
(
1− (1− γ)‖x̃j‖2

)W,

where W ∈ Sd.

Let us now define yi := x̃i

‖x̃i‖ and bi := ai(1− γ)‖x̃i‖2. Then indeed it follows that

Y =

k∑
i=1

biyiy
>
i +

k∑
j=1

(aj − bj)W.

We are going to apply Lemma 5 to derive the bounds listed in the lemma. As a first step, we need to
bound the distance ‖Y −PY,τXPY,τ‖F .

‖Y −PY,τXPY,τ‖F ≤ ‖Y −PY,τYPY,τ‖F + ‖PY,τXPY,τ −PY,τYPY,τ‖F
≤ ‖YP⊥Y,τ‖F + ‖X−Y‖F , (17)

where the bound on ‖Y −PY,τYPY,τ‖F follows from the definition of P⊥Y,τ , and the bound
on ‖PY,τXPY,τ −PY,τYPY,τ‖F follows from the inequality ‖AB‖F ≤ ‖A‖ · ‖B‖F (applied
twice, each time with A = PY,τ , and recalling that ‖PY,τ‖ = 1).

By definition of {bi}i∈[k] it holds that
k∑
i=1

(ai − bi) =

k∑
i=1

ai(1− (1− γ)‖x̃i‖2) ≤
k∑
i=1

ai(1− ‖x̃i‖2) + γ

≤
√

rank(Y)
(
‖YP⊥Y,τ‖F + ‖X−Y‖F

)
+ γ,

where the last inequality follows from Lemma 5 and the bound in Eq. (17).

We continue to upper-bound
∑k
i=1 bi‖xix>i − yiy

>
i ‖2F :

k∑
i=1

bi‖xix>i − yiy
>
i ‖2F ≤

k∑
i=1

ai‖xix>i − yiy
>
i ‖2F

= 2

k∑
i=1

ai(1− (x>i yi)
2)

= 2

k∑
i=1

ai

(
1−

(
x>i x̃i
‖x̃i‖

)2
)

= 2

k∑
i=1

ai(1− ‖x̃i‖2)

≤ 2
√

rank(Y)
(
‖YP⊥Y,τ‖F + ‖X−Y‖F

)
,

where the last inequality follows again from the application of Lemma 5 and the bound in Eq.
(17).
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C Omitted Lemmas and Proofs from Subsection 4.2

We now turn to analyze the per-iteration improvement of Algorithm 2. We start by first analyzing a
deterministic, and much less efficient, version that updates all of the rank-one components on each
iteration t, as suggested in Eq. (6). This is done in Lemma 2, whose complete proof is given here.
Then in Lemma 7, we apply Lemma 2, to analyze the randomized step of Algorithm 2. However, first
we need a simple observation regarding Algorithm 2, that shows that it can always take sufficiently
large step-sizes, i.e., step-size of magnitude at least ηt/2 on iteration t.

Observation 1. In case the input sequence of step-sizes in Algorithm 2 - {ηt}t≥1, is monotonically
non-increasing and ηt ∈ [0, 2] for all t ≥ 1, it follows that on each iteration t of the algorithm,
the iterate Xt admits an explicitly-given factorization into a convex sum of rank-one matrices, as
described in the algorithm, such that for every rank-one coefficient ai, it holds that ai ≥ ηt/2.

Proof. The proof is by a simple induction. Since X1 is just a rank-one matrix, it follows that the
corresponding coefficient in the convex sum is a1 = 1. Thus, for any η1 ∈ [0, 2] it indeed follows that
a1 ≥ η1/2. Assume now that the induction holds for time t ≥ 1. On time t we choose a coefficient
ait and move a mass of η̃t from it to a new rank-one matrix yty

>
t , and all other coefficients remain

unchanged. Since we assume that the step-size sequence is monotonically non-increasing, it directly
follows that the induction step holds for all unchanged coefficients. Regarding the affected coefficients
ait and the coefficient of the new rank-one matrix, we consider two cases. First, if ait ≥ ηt then by
the definition of η̃t we have that the mass of the new coefficient is going to be exactly ηt/2 and the
mass of the old coefficient is going to be ait −ηt/2 ≥ ηt/2, and thus the induction holds. In the other
case, we have that η̃t = ait < ηt. By the induction hypothesis we know that ait ≥ ηt/2 ≥ ηt+1/2.
Since we are moving now all the mass from ait to the new rank-one matrix, it follows that its weight
is also going to be at least ηt+1/2, and thus the induction follows.

We now restate Lemma 2 and give its complete proof. In this version of the lemma we also take into
consideration the approximation errors in the eigenvector computations.

Lemma 6. [full deterministic update] Fix a scalar η > 0. Let X ∈ Sd such that X =
∑k
i=1 aixix

>
i ,

where each xi is a unit vector, and (a1, ..., ak) is a probability distribution over [k]. For any i ∈ [k],
let

vi := EVξ

(
−∇f(X) + ηβxix

>
i

)
, (18)

for some parameter ξ > 0. Then, it holds that

k∑
i=1

ai

[
(viv

>
i − xix

>
i ) • ∇f(X) +

ηβ

2
‖viv>i − xix

>
i ‖2F

]
≤ − (f(X)− f(X∗))

+ηβ ·min{1, 5

√√
2

α
rank(X∗)

√
f(X)− f(X∗),

3
√

2√
αλmin(X∗)

√
f(X)− f(X∗)}+ ξ.

Proof. For the sake of clarity, throughout the proof we treat each vi as the result of an exact eigen-
vector computation, i.e., we assume ξ = 0, and at the end we discuss the effect of the approximation
error in the computation of vi.

Let w∗ ∈ arg minw:‖w‖=1 w
>∇f(X)w. Using the optiamlity of vi, and the fact that for every

i ∈ [k], both vi and xi are unit vectors, we have that
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k∑
i=1

ai

[
(viv

>
i − xix

>
i ) • ∇f(X) +

ηβ

2
‖viv>i − xix

>
i ‖2F

]
≤

k∑
i=1

ai

[
(w∗w∗> − xix

>
i ) • ∇f(X) +

ηβ

2
‖w∗w∗> − xix

>
i ‖2F

]
≤

k∑
i=1

ai
[
(w∗w∗> − xix

>
i ) • ∇f(X) + ηβ

]
=

(w∗w∗> −X) • ∇f(X) + ηβ ≤ (X∗ −X) • ∇f(X) + ηβ ≤ − (f(X)− f(X∗)) + ηβ,

(19)

where the third inequality follows from the optimality of w∗ (note that the minimizer of a linear
function A •X when X ∈ Sd and A ∈ Sd, is w.l.o.g. a rank-one matrix corresponding to a leading
eigenvector of A), and the last inequality follows from the convexity of f . Thus, Eq. (19) gives us
the first part of the bound stated in the lemma. We now move on the prove the second part.

From Lemma 1 we know we can write X∗ in the following way:

X∗ =

k∑
i=1

b∗iy
∗
i y
∗>
i +

k∑
j=1

(aj − b∗j )W∗, (20)

where for all i ∈ [k], b∗i ∈ [0, ai] and y∗i is a unit vector, and W∗ ∈ Sd.

Using again the optimality of vi for each i ∈ [k], we have that

k∑
i=1

ai

[
(viv

>
i − xix

>
i ) • ∇f(X) +

ηβ

2
‖viv>i − xix

>
i ‖2F

]
≤

k∑
i=1

ai ·min{(y∗i y∗>i − xix
>
i ) • ∇f(X) +

ηβ

2
‖y∗i y∗>i − xix

>
i ‖2F ,

(w∗w∗> − xix
>
i ) • ∇f(X) +

ηβ

2
‖w∗w∗> − xix

>
i ‖2F } ≤

k∑
i=1

b∗i

[
(y∗i y

∗>
i − xix

>
i ) • ∇f(X) +

ηβ

2
‖y∗i y∗>i − xix

>
i ‖2F

]

+

k∑
i=1

(ai − b∗i )
[
(w∗w∗> − xix

>
i ) • ∇f(X) +

ηβ

2
‖w∗w∗> − xix

>
i ‖2F

]

≤
k∑
i=1

b∗i

[
(y∗i y

∗>
i − xix

>
i ) • ∇f(X) +

ηβ

2
‖y∗i y∗>i − xix

>
i ‖2F

]

+

k∑
i=1

(ai − b∗i )
[
(W∗ − xix

>
i ) • ∇f(X) +

ηβ

2
‖w∗w∗> − xix

>
i ‖2F

]
, (21)
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where the second inequality follows since min{a, b} ≤ λa+ (1− λ)b for any a, b ∈ R, λ ∈ [0, 1],
and the third inequality follows from the optimality of w∗. Using Eq. (20) we have that

RHS of (21) ≤ (X∗ −X) • ∇f(X) +

k∑
i=1

b∗i
ηβ

2
‖y∗i y∗>i − xix

>
i ‖2F

+

k∑
i=1

(ai − b∗i )
ηβ

2
‖w∗w∗> − xix

>
i ‖2F

≤ (X∗ −X) • ∇f(X) +
ηβ

2

k∑
i=1

b∗i ‖y∗i y∗>i − xix
>
i ‖2F + ηβ

k∑
i=1

(ai − b∗i )

≤ (X∗ −X) • ∇f(X) + ηβ
√

rank(X∗)
(√

rank(X∗)τ + ‖X−X∗‖F
)

+ηβ
(√

rank(X∗)
(√

rank(X∗)τ + ‖X−X∗‖F
)

+ γ
)

= (X∗ −X) • ∇f(X) + ηβ
(

2
√

rank(X∗)
(
‖X∗P⊥X∗,τ‖F + ‖X−X∗‖F

)
+ γ
)
,

(22)

where the last inequality follows from plugging the bounds in Lemma 1 and holds for any τ, γ ∈ [0, 1]
such that τγ

1−γ ≥ ‖X−X∗‖F .

Now we can optimize the above bound in terms τ, γ under the constraint that γτ
1−γ ≥ ‖X−X∗‖F .

One option is to upper bound ‖X∗P⊥X∗,τ‖F ≤
√

rank(X∗)τ , which gives us

RHS of (21) ≤ (X∗ −X) • ∇f(X) + ηβ
(

2
√

rank(X∗)
(√

rank(X∗)τ + ‖X−X∗‖F
)

+ γ
)
.

We can then set:

τ1 =

√
‖X−X∗‖F
2rank(X∗)

, γ1 =
√

2rank(X∗)‖X−X∗‖F ,

as long as ‖X−X∗‖F ≤ 1
2rank(X∗) , which gives us:

RHS of (21) ≤ (X∗ −X) • ∇f(X) + 2ηβ
√

rank(X∗)
(√

2‖X−X∗‖F + ‖X−X∗‖F
)
.

Note that in order for the above bound to improve over that in Eq. (19), it indeed must in particular
hold that ‖X−X∗‖F < 1

2rank(X∗) . In that case it follows that

RHS of (21) ≤ (X∗ −X) • ∇f(X) + 5ηβ
√

rank(X∗)‖X−X∗‖F . (23)

Another option, is to choose

τ2 = λmin(X∗), γ2 =
‖X−X∗‖F
λmin(X∗)

,

as long as ‖X−X∗‖F < λmin(X∗). In this case, it holds that ‖X∗P⊥X∗,τ‖F = 0. Plugging into Eq.
(22) we have that

RHS of (21) ≤ (X∗ −X) • ∇f(X) + ηβ‖X−X∗‖F
(

2
√

rank(X∗) +
1

λmin(X∗)

)
.

Note that since X∗ ∈ Sd it holds thst λmin(X∗)−1 ≥ rank(X∗) and thus we have that

RHS of (21) ≤ (X∗ −X) • ∇f(X) +
3ηβ‖X−X∗‖F

λmin(X∗)
. (24)

Note that here also, the above bound improves over the one in Eq. (19) only when indeed
‖X−X∗‖F < λmin(X∗).
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Now, by using the convexity of f to upper bound (X∗ −X) • ∇f(X) ≤ −(f(X)− f(X∗)) and Eq.

(1) to upper bound ‖X−X∗‖F ≤
√

2
α (f(X)− f(X∗) in both Eq. (23) and (24), gives the rest of

the bound in the lemma.

By going through the analysis above again (basically Eq. (19) and Eq. (21)), it’s clear that an ξ
additive error in the computation of each eigenvector vi results in a single additive term ξ in all of
the above bounds, and hence the lemma follows.

Lemma 7. [randomized update] Consider an iteration t of Algorithm 2. Fix a step-size ηt and
assume that the iterate of the algorithm on this iteration is feasible and given in the following explicit
form: Xt =

∑k
i=1 aixix

>
i , where each xi is a unit vector, and (a1, ..., ak) is a distribution over [k].

Further, suppose that each ai satisfies that ai ≥ ηt/2. Then,

E[ht+1] ≤
(

1− ηt
2

)
E[ht] +

η2t β

2
min{1,

5
√√

2rank(X∗)

α1/4
E[ht]

1/4,
3
√

2√
αλmin(X∗)

E[ht]
1/2}+ ηtξt,

where ∀t ≥ 1 ht := f(Xt)− f(X∗).

Proof. Using the update step of Algorithm 2 we have that

ht+1 = f(Xt+1)− f(X∗) = f(Xt + η̃t(vtv
>
t − xitx

>
it))− f(X∗)

≤ f(Xt)− f(X∗) + η̃t(vtv
>
t − xitx

>
it) • ∇f(Xt) +

η̃2t β

2
‖vtv>t − xitx

>
it‖

2
F

≤ ht + η̃t

[
(vtv

>
t − xitx

>
it) • ∇f(Xt) +

ηtβ

2
‖vtv>t − xitx

>
it‖

2
F

]
,

where the first inequality follows from the smoothness of f and the second one follows since by
definition, ηt ≥ η̃t.
By the choice of vt we have that

(vtv
>
t − xitx

>
it) • ∇f(Xt) +

ηtβ

2
‖vtv>t − xitx

>
it‖

2
F ≤ ξt. (25)

To see why this is true, observe that since ‖vt‖ = ‖xit‖ = 1, we have that

(vtv
>
t − xitx

>
it) • ∇f(Xt) +

ηtβ

2
‖vtv>t − xitx

>
it‖

2
F =

(vtv
>
t − xitx

>
it) • ∇f(Xt)− ηtβvtv>t • xitx>it + ηtβ =

vtv
>
t •

(
∇f(Xt)− ηtβxitx>it

)
− xitx

>
it • ∇f(Xt) + ηtβ ≤(

xitx
>
it •

(
∇f(Xt)− ηtβxitx>it

)
+ ξt

)
− xitx

>
it • ∇f(Xt) + ηtβ = ξt,

where the inequality follows from the approximated optimality of vt.

Thus, since by our assumption on {ai}i∈[k] it also holds that η̃t ≥ ηt/2, we have using Eq. (25) that

ht+1 ≤ ht +
ηt
2

[
(vtv

>
t − xitx

>
it) • ∇f(Xt) +

ηtβ

2
‖vtv>t − xitx

>
it‖

2
F

]
+
(
η̃t −

ηt
2

)
ξt

≤ ht +
ηt
2

[
(vtv

>
t − xitx

>
it) • ∇f(Xt) +

ηtβ

2
‖vtv>t − xitx

>
it‖

2
F

]
+
ηt
2
ξt, (26)

where the last inequality follows again by using ηt ≥ η̃t.
Taking expectation over the random choice of it in Eq. (26), and plugging Lemma 6, we have that

Eit [ht+1 |Xt] ≤ ht −
ηt
2
ht +

η2t β

2
min{1,

5
√√

2rank(X∗)

α1/4
h
1/4
t ,

3
√

2√
αλmin(X∗)

h
1/2
t }+

ηt
2
ξt +

ηt
2
ξt.
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Taking expectation over the randomness introduced on iterations 1, ..., t−1 we have that

E[ht+1] ≤
(

1− ηt
2

)
E[ht] +

η2t β

2
min{1,

5
√√

2rank(X∗)

α1/4
E[h

1/4
t ],

3
√

2√
αλmin(X∗)

E[h
1/2
t ]}+ ηtξt

≤
(

1− ηt
2

)
E[ht] +

η2t β

2
min{1,

5
√√

2rank(X∗)

α1/4
E[ht]

1/4,
3
√

2√
αλmin(X∗)

E[ht]
1/2}+ ηtξt,

where the first inequality follows since the function f(x, y, z) = min{x, y, z} is concave, and thus
the inequality follows from applying Jensen’s inequality. Similarly, the second inequality follows
since both functions g(x) = x1/4, q(x) = x1/2 are also concave on (0,∞).

D Proof of Theorem 1

We can now turn to prove our main theorem, Theorem 1. The proof follows from deriving each one
of the convergence rates in the theorem independently using the result of Lemma 7. This is done in
the following Lemmas 8,9, 10. We then show that there exists a choice of step-size sequence and
error-tolerance bounds for the eigenvector computations that satisfy all lemmas at once, and thus the
theorem is obtained.

Lemma 8. Let C,t0 be non-negative scalars that satisfy:

C ≥ 18,
C

2
− 1 ≥ t0 ≥

C

6
− 1.

Then if for all t ≥ 1 we define ηt = C
3(t+t0)

, and we set ξ0 = β and ∀t ≥ 1 : ξt = βC
6(t+t0)

, it follows
that all iterates of Algorithm 2 are feasible, and

∀t ≥ 1 : E[ht] ≤
βC

t+ t0
.

Proof. From Lemma 7 we have that for all t ≥ 1,

∀t ≥ 1 : E[ht+1] ≤
(

1− ηt
2

)
E[ht] +

η2t β

2
+ ηtξt.

We are going to assume throughout the proof that ξt ≤ E[ht]/6. It thus follows that

∀t ≥ 1 : E[ht+1] ≤
(

1− ηt
3

)
E[ht] +

η2t β

2
. (27)

For all t ≥ 1, define vt := β−1E[ht]. Dividing both sides of Eq. (27) by β, we have that

∀t ≥ 1 : vt+1 ≤
(

1− ηt
3

)
vt +

η2t
2
. (28)

We are going to prove by induction on t that vt ≤ C
t+t0

for suitable valus of C, t0 and a sequence of
step-sizes {ηt}t≥1. Obviously for the base case t = 1 to hold, we must restrict C

t0+1 ≥ v1.

Let us assume now that the induction hypothesis holds for some t ≥ 1.

Setting ηt = C
3(t+t0)

in Eq. (28) we have that

vt+1 ≤ vt

(
1− C

9(t+ t0)

)
+

C2

18(t+ t0)2
≤ C

t+ t0

(
1− C

9(t+ t0)

)
+

C2

18(t+ t0)2

=
C

t+ t0

(
1− C

18(t+ t0)

)
=

C

t+ t0 + 1

(
1 +

1

t+ t0

)(
1− C

18(t+ t0)

)
.
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Thus, choosing C ≥ 18 gives:

vt+1 ≤
C

t+ 1 + t0

(
1 +

1

t+ t0

)(
1− 1

t+ t0

)
<

C

t+ 1 + t0

as needed.

We can now set values for C, t0 under the constraints that

i. C ≥ 18, ii.
C

t0 + 1
≥ v1, iii.∀t ≥ 1 : ηt =

C

3(t+ t0)
∈ [0, 2]. (29)

In order for our choice of step-sizes to satisfy the conditions of Observation 1, it must hold that
{ηt}t≥1 ⊂ [0, 2]. Since by definition this sequence is monotonic decreasing it suffices to show it for
η1. Thus we must require that C

3(1+t0)
≤ 2, which gives us the constraint t0 ≥ C

6 − 1.

It remains to deal with base case of the induction, i.e., we need to show that v1 = β−1h1 ≤ C
1+t0

for
our choice of C, t0.

Recall that according to Algorithm 2 it holds that X1 = x1x
>
1 , such that x1 = EV(∇f(x0x

>
0 )),

where x0 is some unit vector. Using the smoothness of f we have that

h1 = f(x1x
>
1 )− f(X∗) = f(x0x

>
0 + x1x

>
1 − x0x

>
0 )− f(X∗)

≤ f(x0x
>
0 )− f(X∗) + (x1x

>
1 − x0x

>
0 ) • ∇f(x0x

>
0 ) +

β

2
‖x1x

>
1 − x0x

>
0 ‖2F

≤ f(x0x
>
0 )− f(X∗) + (X∗ − x0x

>
0 ) • ∇f(x0x

>
0 ) +

β

2
‖x1x

>
1 − x0x

>
0 ‖2F + ξ0

≤ β

2
‖x1x

>
1 − x0x

>
0 ‖2F + ξ0 ≤ β + ξ0, (30)

where the second inequality follows from the choice of x1, and the third inequality follows from the
convexity of f(X).

Setting ξ0 = β, it follows that

v1 ≤ β−1 · 2β = 2.

Thus we must require that C
1+t0

≥ 2, which gives us the constraint t0 ≤ C
2 − 1.

Thus, the conditions in Eq. (29) boils down to the following constraints:

C ≥ 18,
C

2
− 1 ≥ t0 ≥

C

6
− 1.

For C, t0 that indeed satisfy these constraints we can thus conclude that

∀t ≥ 1 : E[ht] ≤ βvt ≤
βC

t+ t0
.

Lemma 9. Let C,t0 be non-negative scalars that satisfy:

C ≥ 304/3, C3/4 − 1 ≥ t0 ≥
C3/4

6
− 1.

Then if for all t ≥ 1 we define ηt = C3/4

3(t+t0)
, and set ξ0 = β, ∀t ≥ 1 : ξt =

1
6

(
5C3/4β

√√
2rank(X∗)

α1/4(t+t0)

)4/3

, it follows that all iterates of Algorithm 2 are feasible, and

∀t ≥ 1 : E[ht] ≤

5C3/4β
√√

2rank(X∗)

α1/4(t+ t0)

4/3

.
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Proof. From Lemma 7 we have that for all t ≥ 1,

∀t ≥ 1 : E[ht+1] ≤
(

1− ηt
2

)
E[ht] +

5η2t β
√√

2rank(X∗)

2α1/4
E[ht]

1/4 + ηtξt.

We are going to assume throughout the proof that ξt ≤ E[ht]/6. It thus follows that

∀t ≥ 1 : E[ht+1] ≤
(

1− ηt
3

)
E[ht] +

5η2t β
√√

2rank(X∗)

2α1/4
E[ht]

1/4. (31)

For all t ≥ 1, define vt :=

(
5
√√

2rank(X∗)β

α1/4

)−4/3
E[ht]. Dividing both sides of Eq. (31) by(

5
√√

2rank(X∗)β

α1/4

)4/3

, we have that

∀t ≥ 1 : vt+1 ≤
(

1− ηt
3

)
vt +

η2t
2
v
1/4
t . (32)

We are going to prove by induction on t that vt ≤ C
(t+t0)4/3

for suitable valus of C, t0 and a sequence

of step-sizes {ηt}t≥1. Obviously for the base case t = 1 to hold, we must restrict C
(t0+1)4/3

≥ v1.

Let us assume now that the induction hypothesis holds for some t ≥ 1.

Setting ηt = C3/4

3(t+t0)
in Eq. (32) we have that

vt+1 ≤ vt

(
1− C3/4

9(t+ t0)

)
+

C3/2

18(t+ t0)2
v
1/4
t

≤ C

(t+ t0)4/3

(
1− C3/4

9(t+ t0)

)
+

C7/4

18(t+ t0)7/3

=
C

(t+ t0)4/3

(
1− C3/4

18(t+ t0)

)
=

C

(t+ 1 + t0)4/3

(
1 +

1

t+ t0

)4/3(
1− C3/4

18(t+ t0)

)
=

C

(t+ 1 + t0)4/3

(
1 +

1

t+ t0

)(
1 +

1

t+ t0

)1/3(
1− C3/4

18(t+ t0)

)
The single variable function g(x) = x1/3 is concave on (0,∞), and thus, g(1+x) ≤ g(1)+g′(1)·x =
1 + x

3 . Using this fact, we have that

vt+1 ≤ C

(t+ 1 + t0)4/3

(
1 +

1

t+ t0

)(
1 +

1

3(t+ t0)

)(
1− C3/4

18(t+ t0)

)
<

C

(t+ 1 + t0)4/3

(
1 +

5

3(t+ t0)

)(
1− C3/4

18(t+ t0)

)
.

Thus, choosing C ≥ (90/3)4/3 gives:

vt+1 ≤
C

(t+ 1 + t0)4/3

(
1 +

5

3(t+ t0)

)(
1− 5

3(t+ t0)

)
<

C

(t+ 1 + t0)4/3
,

as needed.

We can now set values for C, t0 under the constraints that

i. C ≥ 304/3, ii.
C

(t0 + 1)4/3
≥ v1, iii.∀t ≥ 1 : ηt =

C3/4

3(t+ t0)
∈ [0, 2]. (33)
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As in the proof of Lemma 8 it follows that constraining t0 ≥ C3/4

6 − 1, will result in step-sizes that
satisfy the conditions of Observation 1.

Moving to deal with the base case of the induction, again similarly to Lemma 8, we have that

v1 =

 α1/4

5β
√√

2rank(X∗)

4/3

h1 ≤

 α1/4

5β
√√

2rank(X∗)

4/3

· 2β

=

( √
2α1/4

5β1/4
√

rank(X∗)

)4/3

< 1,

where the inequality follows since α ≤ β. Thus we must require that C
(1+t0)4/3

≥ 1, which gives us

the constraint t0 ≤ C3/4 − 1.

Thus, the conditions in Eq. (33) boils down to the following constraints:

C ≥ 304/3, C3/4 − 1 ≥ t0 ≥
C3/4

6
− 1.

For C, t0 that indeed satisfy these constraints we can thus conclude that

∀t ≥ 1 : E[ht] ≤

(
5β
√

rank(X∗)

23/4α1/4

)4/3

vt ≤

(
5C3/4β

√
rank(X∗)

23/4α1/4(t+ t0)

)4/3

.

Lemma 10. Let C,t0 be non-negative scalars that satisfy:

C ≥ 2916, C1/2 − 1 ≥ t0 ≥
C1/2

6
− 1.

Then if for all t ≥ 1 we define ηt = C1/2

3(t+t0)
and ξ0 = β, ∀t ≥ 1 : ξt = 1

6

(
3
√
2Cβ√

αλmin(X∗)(t+t0)

)2
, it

follows that all iterates of Algorithm 2 are feasible, and

∀t ≥ 1 : E[ht] ≤

(
3
√

2Cβ√
αλmin(X∗)(t+ t0)

)2

.

Proof. From Lemma 7 we have that for all t ≥ 1,

∀t ≥ 1 : E[ht+1] ≤
(

1− ηt
2

)
E[ht] +

3
√

2η2t β

2
√
αλmin(X∗)

E[ht]
1/2 + ηtξt.

We are going to assume throughout the proof that ξt ≤ E[ht]/6. It thus follows that

∀t ≥ 1 : E[ht+1] ≤
(

1− ηt
3

)
E[ht] +

3
√

2η2t β

2
√
αλmin(X∗)

E[ht]
1/2. (34)

For all t ≥ 1, define vt :=
(

3
√
2β√

αλmin(X∗)

)−2
E[ht]. Dividing both sides of Eq. (31) by(

3
√
2β√

αλmin(X∗)

)2
, we have that

∀t ≥ 1 : vt+1 ≤
(

1− ηt
3

)
vt +

η2t
2
v
1/2
t . (35)

We are going to prove by induction on t that vt ≤ C
(t+t0)2

for suitable valus of C, t0 and a sequence
of step-sizes {ηt}t≥1. Obviously for the base case t = 1 to hold, we must restrict C

(t0+1)2 ≥ v1.
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Let us assume now that the induction hypothesis holds for some t ≥ 1.

Setting ηt = C1/2

3(t+t0)
in Eq. (32) we have that

vt+1 ≤ vt

(
1− C1/2

9(t+ t0)

)
+

C

18(t+ t0)2
v
1/2
t

≤ C

(t+ t0)2

(
1− C1/2

9(t+ t0)

)
+

C3/2

18(t+ t0)3

=
C

(t+ 1 + t0)2

(
1 +

1

t+ t0

)2(
1− C1/2

18(t+ t0)

)
≤ C

(t+ 1 + t0)2

(
1 +

3

t+ t0

)(
1− C1/2

18(t+ t0)

)

Thus, choosing C ≥ 2916 gives:

vt+1 ≤
C

(t+ 1 + t0)2

(
1 +

3

t+ t0

)(
1− 3

t+ t0

)
<

C

(t+ 1 + t0)2
,

as needed.

We can now set values for C, t0 under the constraints that

i. C ≥ 2916 ii.
C

(t0 + 1)2
≥ v1, iii.∀t ≥ 1 : ηt =

C1/2

3(t+ t0)
∈ [0, 2]. (36)

As in Lemma 8, it follows that in order for our step-sizes satisfy the conditions of Observation 1, we
need to require that t0 ≥ C1/2

6 − 1.

Also, for the base case of the induction, also similarly to Lemma 8, it holds that

v1 ≤
(√

αλmin(X∗)

3
√

2β

)2

· 2β =

(√
2αλmin(X∗)

3
√

2
√
β

)2

< 1

where the second inequality follows since α ≤ β and λmin(X∗) ≤ 1. Thus in order to satisfy the
constraint v1 ≤ C

(t0+1)2 , it suffices to require t0 ≤
√
C − 1.

Thus, the conditions in Eq. (33) boils down to the following constraints:

C ≥ 2916, C1/2 − 1 ≥ t0 ≥
C1/2

6
− 1.

For C, t0 that indeed satisfy these constraints we can thus conclude that We can thus conclude that

∀t ≥ 1 : E[ht] ≤

(
3
√

2β√
αλmin(X∗)

)2

vt ≤

(
3
√

2Cβ√
αλmin(X∗)(t+ t0)

)2

.

We can now finally wrap-up the proof of Theorem 1.

Proof. The proof is an immediate consequence of Lemmas 8, 9, 10, and the observation that the
step-size ηt = 54

3(t+8) = 18
t+8 , which implicitly sets t0 = 8 in all of above lemmas and corresponds

to setting C = 54 for Lemma 8, C = 544/3 in Lemma 9, and C = 2916 in Lemma 10, satisfies all
lemmas together.
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