
Appendix341

A Accelerated Proximal Algorithm342

Algorithm 1 Accelerated Proximal Algorithm
Inputs: X , y.
Initialize: {θ0

i }ki=1 = {0}, α0 = 0, η > 0, 0 < β < 1.
for t = 0, 1, . . . , T do

Set ηt+1 = η.
while true do

for i = 1, . . . , k do
θ̃t+1
i = ΠΩi(θ

t
i − ηt+1∇fθi(θt))

end for
if f(θ̃t+1) ≤ f(θt) +∇T f(θt)(θ̃t+1 − θt) + 1

2ηt+1 (
∑k
i=1 ‖θ̃

t+1
i − θti‖22) then

break
end if
ηt+1 = βηt+1

end while
αt+1 =

1+
√

1+4α2
t

2 , θt+1
i = θ̃t+1

i + αt−1
αt+1

(θ̃t+1
i − θti)

end for

In this section, we propose a general purpose algorithm for solving problem (2). For convenience,343

with θ =
∑k
i=1 θi, we set f(θ) = f(

∑k
i=1 θi) = ‖y − Xθ‖22 and Ωi = {θi|Ri(θi) ≤ Ri(θ

∗
i )}.344

While the norms Ri(.) may be non-smooth, one can design a general algorithm as long as the345

proximal operators ΠΩi(v) = argminu∈Ωi ‖u − v‖
2
2 for each set Ωi can be efficiently computed.346

The algorithm is simply the proximal gradient method [23], where each component θi is cyclically347

updated in each iteration (see Algorithm 1):348

θ̃t+1
i = argmin

θi∈Ωi

〈∇θif(θt), θi − θti〉+
1

2ηt+1
‖θi − θti‖22 ,

= argmin
θi∈Ωi

‖θi − (θti − ηt+1∇θif(θt))‖22 ,
(29)

where ηt+1 is the learning rate. To determine a proper ηt+1, we use a backtracking step [4]. Starting349

from a constant ηt+1 = η, in each step we first update θ̃t+1
i ; then we decide whether θ̃t+1

i satisfies350

condition:351

f(θ̃t+1) ≤ f(θt) +∇T f(θt)(θ̃t+1 − θt) +
1

2ηt+1
(

k∑
i=1

‖θ̃t+1
i − θti‖22). (30)

If the condition (30) does not hold, then we decrease ηt+1 till (30) is satisfied. Based on existing352

results [4], the basic method can be accelerated by setting the starting point of the next iteration θt+1
i353

as a proper combination of θ̃t+1
i and θti . By [4], one can use the updates:354

θt+1
i = θ̃t+1

i +
αt − 1

αt+1
(θ̃t+1
i − θti) , where αt+1 =

1 +
√

1 + 4α2
t

2
. (31)

Convergence of Algorithm 1 has been studied in [4]. The backtracking step ensures that the conver-355

gence of algorithm 1. The work [4] also give the convergence rate of Algorithm 1, which is O(1/t2).356

Therefore, we can always reach a stationary point of problem (2) using Algorithm 1.357

B Related Work358

Structured superposition models have been studied in recent literatures. Early work focus on the359

case when k=2 and noise ω = 0, and assume specific structures such as sparse+sparse [14], and360

low-rank+sparse [11]. [16] analyze error bound for low-rank and sparse matrix decomposition361

with noise. Recent work have considered more generalized models and structures. [1] analyze the362
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decomposition of a low-rank matrix plus another matrix with generalized structure. [15] propose363

an estimator for the decomposition of two generalize structured matrices, while one of them has a364

random rotation. Because of the increase in practical application and non-trivial of such problem,365

people have begun to work on unified frameworks for superposition model. In [30], the authors366

generalize the noiseless matrix decomposition problem to arbitrary number of superposition under367

random orthogonal measurement. [31] consider the superposition of structures of structures captured368

by decomposable norm, while [19] consider general norms but with a different measurement model,369

involving componentwise random rotations. These two papers are similar in spirit to our work, so we370

briefly discuss and differentiate our work from these papers.371

[31] consider a general framework for superposition model, and give a high-probability bound for the372

following estimation problem:373

min
θi,i=1,...,k

∥∥∥∥∥y −X
k∑
i=1

θi

∥∥∥∥∥
2

2

+

k∑
i=1

λiRi(θi) (32)

they assume each Ri() to be a special kind of norm called decomposable norm. the authors used a374

different approach for RE condition. They decompose ‖X
∑k
i=1 ∆i‖2 into two parts. One is375

1
n‖X∆i‖22 ≥ κ‖∆i‖22, (33)

which characterizes the restricted eigenvalue of each error cone. The other is376

2
n |
∑
i<j〈X∆i, X∆j〉| ≤ κ

2

∑k
i=1 ‖∆i‖22, (34)

which characterizes the interaction between different error cones. (34) is a strong assumption, and377

RE condition can hold without it. If ∆i and ∆j are positively correlated, then large interaction terms378

will make our RE condition stronger. Therefore their results are restricted.379

[18] consider an estimator like (2), which is380

min
θi,i=1,...,k

∥∥∥∥∥y −X
k∑
i=1

Qiθi

∥∥∥∥∥
2

2

s.t. Ri(θi) ≤ Ri(θ∗i ), i = 1, . . . , k, (35)

where Qi are known random rotations. Problem (35) is then transformed into a geometric problem:381

whether k random cones intersect. The componentwise random rotation can ensure that any kind of382

combination can be recovered with high probability. However, in practical problems, we need not383

have such random rotations available as part of the measurements. Further, their analysis is primarily384

focused on the noiseless case.385

C Noiseless Case: Comparing Estimators386

In this section, we present a comparative analysis of estimator387

min{θi}
∑k
i=1 λiRi(θi) s.t. X

∑k
i=1 θi = y (36)

with the proposed estimator (2) in the noiseless case, i.e., ω = 0. In essence, we show that the two388

estimators have similar recovery conditions, but the existing estimator (36) needs additional structure389

for unique decomposition of θ into the components {θ̂i}.390

The estimator (36) needs to consider the so-called “infimal convolution” [25, 31] over different norms391

to get a (unique) decomposition of θ in terms of the components {θ̂i}. Denote392

R(θ) = min{θi}:
∑
i θi=θ

∑k
i=1 λiRi(θi) . (37)

Results in [25] show that (37) is also a norm. Thus estimator (36) can be rewritten as393

min
θ
R(θ) s.t. Xθ = y. (38)

Interestingly, the above discussion separates the estimation problem in (36) into two parts—solving394

(38) to get θ̂, and then solving (37) to get the components {θ̂i}. The problem (38) is a simple structured395

recovery problem, and is well studied [10, 27]. Using infimal convolution based decomposition396

problem (37) to get the components {θ̂i} will be our focus in the sequel.397
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(a) (b) (c)

Figure 3: (a) The relationship of different norm balls when k = 2. The blue and purple polygons are
the norm ball of norms R1(.) and R2(.) respectively. The red line is the outline of R(.) norm ball.
Note that for any point in the red line, we will be able to decompose it to the two vertexes around it.
Consider the case when k = 2. Let ci = λiRi(θi) for i = 1, 2. (b) is the structure of error around the
true value θ∗. The green segment C0 is a subspace determined by θ∗1 and θ∗2 . For the superposition in
(a), error of θ∗ is composed of three parts: θ∗ + C0, 1

c1
θ∗1 + C1 and 1

c2
θ∗2 + C2. In (c), we move the

green segment and two error cones to the origin, then the uniquely recovery condition is that if we
reflect one of the three structures, their intersection remains {0}.

To get some properties of decomposition (37), we consider the unit norm balls for norm R(.) and398

component norms Ri(.):399

ΩR = {θ ∈ Rp : R(θ) ≤ 1} and ΩiR = {θi ∈ Rp : Ri(θi) ≤ 1} , i = 1, . . . , k .

The norm balls are related by the following result, we give the proof in appendix K.1.400

Lemma 5 For a given set {λi}, the infimal convolution norm ball ΩR is the convex hull of401 ⋃k
i=1

1
λi

ΩiR, i.e., ΩR = conv(
⋃k
i=1

1
λi

ΩiR).402

Lemma 5 illustrates what the decomposition (37) should be like. If θ is a point on the surface of the403

norm ball ΩR, then the value of R(θ) is the convex combination of some θi on the surface of 1
λi

ΩiR404

such that Ri(θi) = R(θ). Hence if θ can be successfully decomposed into different components405

along the direction of θi, then we should be able to connect θi and θ by a surface on the R(.) norm406

ball, or they have to be “close”. Interestingly, the above intuition of “closeness” between different407

components θi can be described in the language of cones, in a way similar to the structural coherence408

property discussed in Section 3.409

Given the intuition above, we state the main result below. Proof is given in Appendix K.2.410

Theorem 7 Given θ̂1, . . . , θ̂k and define411

C0 =
{∑

θi 6=0

(
c′i
ci
− 1
)
θi | c′i ≥ 0,

∑k
i=1 c

′
i = 1

}
. (39)

Suppose dim(span{θi}) = k, then there exist λ1, . . . , λk such that
∑k
i=1 θ̂i = θ are unique solutions412

of (37) if and only if there are c1, . . . , ck with ci ≥ 0 and
∑k
i=1 ci = 1 such that for the corresponding413

error cone Ci of θ̂i and C0 defined above, −Ci ∩
∑
j 6=i Cj = {0}, for i = 0, 1, . . . , k.414

Theorem 7 illustrate that the successful decomposition of (37) requires an additional condition, i.e.,415

−C0 ∩
∑k
i=1 Ci = {0} beyond that is needed by the SC condition (see Section 3). The additional416

condition needs us to choose parameters {λi} properly. Theorem 7 shows that {λi} depends on417

both {θ∗i } and {ci}. For appropriate {θ∗i }, there may be a range of {ci} such that the solution is418

unique. Therefore, in noiseless situation, if we know {Ri(θ∗i )}, then solving estimator (36) would be419

a better idea, because it requires less condition to recover the true value and we do not need to choose420

parameters {λi}.421

D Examples422

In this section, we instantiate the general error bounds on concrete problems, the proofs are provided423

in appendix J.424
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D.1 Morphological Component Analysis Using L1 Norm425

In Morphological Component Analysis [14], we want to separate a sparse vector θ1 and another426

vector θ2 which is sparse under a rotation Q from their sum. In [14], the authors introduced a quantity427

428

M = max
i,j
|Qij |. (40)

For small enough M , if the sum of their sparsity is lower than a constant related to M , we can429

recovery them. We show that for two given sparse vectors, our SC condition is more general.430

Consider the following estimator431

min
θ1,θ2
‖y −X(θ1 + θ2)‖22 s.t. ‖θ1‖1 ≤ ‖θ∗1‖1, ‖Qθ2‖1 ≤ ‖Qθ∗2‖1, (41)

where vector y ∈ Rn is the observation, vectors θ1, θ2 ∈ Rp are the parameters we want to estimate,432

matrix X ∈ Rn×p is a sub-Gaussian random design, matrix Q ∈ Rp×p is orthogonal. We assume θ1433

and Qθ2 are s1-sparse and s2-sparse vectors respectively. It is easy to see that ‖Q.‖1 is still a norm.434

Suppose s1 = 1, s2 = 1, and the i-th entry of θ1 and the j-th entry of Qθ2 are non-zero. If435

Qijsign(θ∗1)isign(Qθ∗2) > 0,

then we have436

ρ ≥
√

(1−
√

1−Q2
ij)/2. (42)

Thus we will have chance to separate θ1 and θ2 successfully. It is easy to see that M is lower bounded437

by θT1 Qθ2. Large θT1 Qθ2 leads to larger M , but also leads to larger ρ, which is better for separating438

θ1 and θ2. The proof of above bound of ρ is given in appendix J.1.439

In general, it is difficult for us to derive a lower bound of ρ like 42. Instead, we can derive the440

following sufficient condition in terms of M :441

Theorem 8 If M ≤ 1
8
√
s1s2

, then for problem (41) with high probability442

‖θ1 − θ∗1‖2 + ‖θ2 − θ∗2‖2 = O

(
max

{√
s1 log p

n
,

√
s2 log p

n

})
.

When s1 = s2 = 1, this condition M ≤ 1
8
√
s1s2

is much stronger than (42), because every entry of443

Q has to be smaller than 1/8;444

D.2 Morphological Component Analysis Using k-support Norm445

k-support norm [2] is another way to induce sparse solution instead of L1 norm. Recent works [2, 12]446

have shown that k-support norm has better statistical guarantee than L1 norm. For arbitrary θ ∈ Rp,447

its k-support norm ‖θ‖spk is defined as448

‖θ‖spk = inf

{∑
I∈Gk

‖uI‖2 : supp(uI) ⊆ I,
∑
I∈Gk

uI = θ

}
.

For the superposition of an s1 sparse vector and an s2 sparse vector, the best choice is to use449

s1-support norm and s2-support norm. The new problem is450

min
θ1,θ2
‖y −X(θ1 + θ2)‖22 s.t. ‖θ1‖sps1 ≤ ‖θ

∗
1‖sps1 , ‖Qθ2‖sps2 ≤ ‖Qθ

∗
2‖sps2 . (43)

Denote σs1,s2(Q) as the set of all the largest singular values of Q’s s1 × s2 submatrices. Let451

σ = maxσs1,s2(Q). In this case, we have the following sufficient condition and high probability452

error bound:453

Theorem 9 If σ ≤ 1

4(1+
θ1max
θ1min

)(1+
θ2max
θ2min

)
where θmax = maxi∈supp(θ) |θi| and θmin =454

mini∈supp(θ) |θi|, then we have for problem (43) with high probability455

‖θ1 − θ∗1‖2 + ‖θ2 − θ∗2‖2 = O

(
max

{√
s1 log(p− s1)

n
,

√
s2 log(p− s2)

n

})
.

In the problem setting of theorem 9, both norms are not decomposable. Therefore we can not apply456

the framework of [31] for this problem.457

13



D.3 Low-rank and Sparse Matrix Decomposition458

To recover a sparse matrix and low-rank matrix from their sum [8, 11], one can use k-support norm459

[2] to induce sparsity and nuclear norm to induce low-rank. These two kinds of norm ensure that the460

sparsity and the rank of the estimated matrices are small. If we have k > 1, the framework in [31] is461

not applicable, because k-support norm is not decomposable. When k = 1, the component norms462

simplify to ‖ · ‖1 for sparsity.463

Suppose we have a rank-r matrix L∗ and a sparse matrix S∗ with s nonzero entries, S∗, L∗ ∈ Rd1×d2 .464

Our observation Y comes from the following problem465

Yi = 〈Xi, L
∗ + S∗〉+ Ei, i = 1, . . . , n,

where each Xi ∈ Rd1×d2 is a sub-Gaussian random design matrix. Ei is the noise matrix. We want466

to recover S∗ and L∗ using s-support norm and nuclear norm respectively, so that the estimator takes467

the form:468

min
L,S

n∑
i=1

(Yi − 〈Xi, L+ S〉)2 s.t. |||L|||∗ ≤ |||L
∗|||∗, ‖S‖

sp
s ≤ ‖S∗‖sps . (44)

By using Theorem 6, and existing results on Gaussian widths, the error bound is given by469

Theorem 10 If there is a ρ > 0 for problem (44), then with high probability470

‖L− L∗‖2 + ‖S − S∗‖2 = O

(
max

{√
s log(d1d2 − s)

n
,

√
r(d1 + d2 − r)

n

})
.

Theorem 10 requires SC condition to hold. When will SC condition for (44) holds? Early work have471

shown that to successfully estimate both L and S, the low-rank matrix L should satisfy “incoherence”472

condition [8]. From example in Appendix J.5, we can recovery matrix L and S even incoherence473

condition does not hold.474

E Additional Experiments475

E.1 Recovery using k-support norm476

In our last experiment, we test the impact of sparsity on the estimation error. In this experiment we477

solve problem (43), and let both s1 and s2 vary from 2 to 3. We set the matrix Q to be a p×p discrete478

cosine transformation (DCT) matrix [14]. We use different problem size with p = 100 and p = 150.479

Number of samples n varies from 30 to 70. For each n, we generate 20 pairs of X and ω. For each480

(X,w) pair, we get a solution θ̂1 and θ̂2. We take the average over all ‖θ̂1 − θ∗1‖2 + ‖θ̂2 − θ∗2‖2. The481

plot is shown in figure 4. From figure 4, we can see that the error curve increases as dimensionality482

and sparsity increases. If p is fixed, then lower sparsity implies better estimation result.483

Samples

50 52 54 56 58 60 62 64 66 68 70

‖θ
1
−
θ
∗ 1
‖ 2

+
‖θ

2
−
θ
∗ 2
‖

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

s
1
=2, s

2
=2, p=100

s
1
=3, s

2
=3, p=100

s
1
=2, s

2
=2, p=150

s
1
=3, s

2
=3, p=150

Figure 4: Effect of sparsity s1, s2 on estimation error. In all cases we use k-support norm instead of
l1 norm.
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F Proof of Theorem 1484

Theorem 11 (Deterministic bound) Assume that the RE condition in (6) is satisfied in C with485

parameter κ. Then, if κ2 > γ, we have
∑k
i=1 ‖∆i‖2 6 2sn(γ).486

Proof: By feasibility of θ∗ and optimality of θ̂, we have487

‖Y −Xθ̂‖22 ≤ ‖Y −Xθ∗‖22 .

If θ̂ =
∑
i θ̂i is an optimum of (2), we have488

‖Y −Xθ̂‖22 = ‖X(θ̂ − θ∗)‖22 − 2ωTX(θ̂ − θ∗) + ‖ω‖22.

With ∆ = θ̂ − θ∗, ∆i = θ̂i − θ∗i , we have489

‖Y −Xθ̂‖22 − ‖Y −Xθ∗‖22 = ‖X∆‖22 − 2ωTX∆ 6 0. (45)

For any ∆ =
∑k
i=1 ∆i,∆i ∈ Ci, if possible let

∑k
i=1 ‖∆i‖2 ≥ 2sn(γ). Then we have490

1
n (‖X∆‖22 − 2ωTX∆) ≥

(∑k
i=1 ‖∆i‖2

)2

(κ2 − γ) > 0. (46)

since κ2 > γ. However, the inequality contradicts (45). Therefore
∑k
i=1 ‖∆i‖2 ≤ 2sn(γ).491

G Geometry of Structural Coherence492

In this section, our goal is to characterize the geometric property of our SC condition. We start from493

a simple case when k = 2.494

G.1 Proof of Lemma 2495

Lemma 6 If there exists a δ < 1 such that −〈x, y〉 ≤ δ‖x‖2‖y‖2, then496

‖x+ y‖2 ≥
√

1− δ
2

(‖x‖2 + ‖y‖2) . (47)

Proof: We know from [19] that497

‖x+ y‖22 ≥ (1− δ)(‖x‖22 + ‖y‖22)

and498

(‖x‖2 + ‖y‖2)2 ≤ 2(‖x‖22 + ‖y‖22)

Combine them and we will get the conclusion.499

G.2 Proof of Theorem 3500

Theorem 12 (Structural Coherence (SC) Condition) Let δ := maxi δi with δi as defined in (14).501

If δ < 1, there exists a ρ > 0 such that for any ∆i ∈ Ci, i = 1, . . . , k, the SC condition in (9) holds,502

i.e.,503 ∥∥∥∥∥
k∑
i=1

∆i

∥∥∥∥∥
2

≥ ρ
k∑
i=1

‖∆i‖2 . (48)

Proof: We have by lemma (2)504

‖
∑
i ∆i‖2 ≥

√
1−δ

2

(
‖∆i′‖2 +

∥∥∥∑j 6=i′ ∆k

∥∥∥
2

)
.

Sum over all possible combinations, we get505

k ‖
∑
i ∆i‖2 ≥

√
1−δ

2

∑
i′

(
‖∆i′‖2 +

∥∥∥∑j 6=i′ ∆k

∥∥∥
2

)
≥
√

1−δ
2

∑
i′ ‖∆i′‖2.

Therefore506 ∥∥∥∑k
i=1 ∆i

∥∥∥
2
≥ 1

k

√
1−δ

2

∑k
i=1 ‖∆i‖2.

507
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H Restricted Eigenvalue Condition508

H.1 Proof of Lemma 2509

Lemma 7 Let sets C andA be as defined in (7) and (19) respectively. If the SC condition in (9) holds,510

then the marginal tail functions of the two sets have the following relationship:511

Qρξ(H;Z) ≥ Qξ(A;Z). (49)

Proof: By definition, for any u ∈ H, we can find ui ∈ Ci, i = 1, 2, . . . , k and
∑k
i=1 ui = u. Then512

|〈Z, u〉| =
∥∥∥∑k

i=1 ui

∥∥∥
2

∣∣∣〈Z, u
‖
∑k
i=1 ui‖2

〉∣∣∣ ≥ ρ ∣∣∣〈Z, u
‖
∑k
i=1 ui‖2

〉∣∣∣ .
Let v = u

‖
∑k
i=1 ui‖2

, from definition we know that v ∈ A. Hence we also have513

P (|〈Z, u〉| ≥ ρξ) = P
(

1
ρ |〈Z, u〉| ≥ ξ

)
≥ P (|〈Z, v〉| ≥ ξ).

Therefore taking the infimum over all v ∈ A and then all u ∈ C, the conclusion holds.514

H.2 Proof of Theorem 4515

Theorem 13 (Restricted Eigenvalue Condition) Let X be the sub-Gaussian design matrix that516

satisfies the assumptions above. If the SC condition (9) holds with a ρ > 0, then with probability at517

least 1− exp(−t2/2), we have518

inf
u∈H
‖Xu‖2 ≥ c1ρ

√
n− c2w(H)− c3ρt (50)

where c1, c2 and c3 are positive constants determined by σx, σω and α.519

Proof: Let two sets C and A be as defined previously. From Lemma (1) and lemma (2) we know520

that for any ξ > 0, with probability at least 1− e−t2/2521

inf
u∈H
‖Xu‖2 ≥ ρξ

√
nQ2ξ(A;Z)− 2W (H;Z)− ρξt. (51)

We use the "Bowling scheme" in [27], let v be any vector in A, by Paley-Zygmund inequality [6],522

one can get523

P (|〈x, v〉| ≥ 2ξ) ≥
[E|〈x, v〉| − 2ξ]2+

E|〈x, v〉|2
≥ (α− 2ξ)2

4σ2
x

. (52)

From the proof of [27, Theorem 6.3], empirical width can be bounded by524

W (H;Z) ≤ Lσxw(H) (53)

Select ξ = α/6, combine (51), (52), (53) to discover that:525

inf
u∈C
‖Xu‖2 ≥

1

9
ρα3σ−2

x

√
n− 2Lσxw(H)− ρα

6
τ

which completes the proof.526

From the conclusion above, the right hand side contains three parts. The first part is a constant times527

the square root of sample size, and the second part is a measure of the complexity of error sets.528

Therefore, when the number of samples is large enough or the error set has low complexity, the right529

terms will be larger than zero.530

H.3 Proof of Proposition 5531

Proposition 14 If there is a matrix X such that condition (6) holds for ∆i ∈ Ci, then SC (9) holds.532

Proof: If such ρ does not exist, then there are some ∆i ∈ Ci, i = 1, . . . , k not all zero such that533 ∥∥∥∑k
i=1 ∆i

∥∥∥
2

= 0⇒
∑k
i=1 ∆i = 0,

which implies ‖X
∑k
i=1 ∆i‖2 = 0 for every X . This is a contradiction.534
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I Error Bound535

I.1 Proof of Lemma 3536

Lemma 8 Let design X ∈ Rn×p be a row-wise i.i.d. sub-Gaussian random matrix, and noise537

ω ∈ Rn be a centered sub-Gaussian random vector. Then sn(γ) ≤ cw(H̄)
γ
√
n
. for some constant c > 0538

with probability at least 1− c1 exp(−c2w2(H̄))− c3 exp(−c4n). Constant c depends on σx and σω .539

Proof: First notice that540

ωTX∆ = ‖ω‖2.
ωX∆

‖ω‖2
.

We can first bound ωX∆
‖ω‖2 then bound ‖ω‖2.541

(a). Bound ωX∆
‖ω‖2 : Note that ωX∆

‖ω‖2 is not centered. In the first step we center it using542

1

‖ω‖2
εiωix

T
i ∆,

where εi is a Radmacher random variable, its probability of being +1 and −1 are both half. xi ∈ Rp543

is the i-th row of X . By assumption we know different xi are independent and have same distribution.544

Here we fix ω. By proposition 5.10 in [28], the following bound holds:545

P

(∣∣∣∣ωX∆

‖ω‖2

∣∣∣∣ ≥ t) ≤ e. exp

(
− c1t

2

σ2
x‖∆‖2

)
. (54)

Through simple transform we know that546

P

(∣∣∣∣〈 ωX

‖ω‖2
, u− v

〉∣∣∣∣ ≥ t) ≤ e.e−c1t2/(σ2
x‖u−v‖

2
2)

for any u, v ∈ Rp. Then use [26, Theorem 2.2.27]547

P

(
sup
∆∈H̄

∣∣∣∣∣ 1

‖ω‖2

∑
i

εiωix
T
i ∆

∣∣∣∣∣ ≥ c2w(H̄) + 2c3t

)
≤ c4 exp

(
−4c1t

2

σ2
x

)
(b). Bound ω: We first notice that ‖ω‖22 is a sub-exponential random variable. Therefore if the548

sub-gaussian norm of ω is ‖ω‖φ2 , then for each entry ωi the sub-expoential norm ‖ω2
i ‖φ1 ≤ 2‖ω‖2φ2

.549

Through definition we reach:550

E‖ω‖2 ≤
√

E‖ω‖22 ≤ σω
√

2n.

Applying proposition 5.16 in [28] to ‖ω‖22, we obtain551

P (|‖ω‖22 − E‖ω‖22| ≥ t) ≤ 2 exp

[
−c5 min

(
t2

4σ4
ω

,
t

2σ2
ω

)]
.

Replace t with σ2
ωn gives552

P (‖ω‖2 ≥ 2σx
√
n) ≤ 2 exp(−c5n).

Combine (a) and (b): First we have553

P

(
sup
∆∈H̄

1√
n

∣∣∣∣∣∑
i

εiωix
T
i ∆

∣∣∣∣∣ ≤ 2c2σxw(H̄) + 4c3σxt

)

≥P

(
sup
∆∈H̄

∣∣∣∣∣ 1

‖ω‖2

∑
i

εiωix
T
i ∆

∣∣∣∣∣ ≥ c2w(H̄) + 2c3t ∧
‖ω‖2√
n
≥ 2σx

)

≥P

(
sup
∆∈H̄

∣∣∣∣∣ 1

‖ω‖2

∑
i

εiωix
T
i ∆

∣∣∣∣∣ ≥ c2w(H̄) + 2c3t|ω

)
P

(
‖ω‖2√
n
≥ 2σx

)
≥1− 2 exp(−c5n)− c4 exp

(
−4c1t

2

σ2
x

)
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Then choose t = c2
2c3
w(H̄),554

P

(
sup
∆∈H̄

1√
n

∣∣∣∣∣∑
i

εiωix
T
i ∆

∣∣∣∣∣ ≤ 4c2σωw(H̄)

)
≥ 1− c4. exp

(
−c1c

2
2w(H̄)

c3σ2
x

)
− 2 exp(−c5n)

Now we have bounded the symmetrized ωTX∆, then ωTX∆ can be bounded using symmetrization555

of probability [17]:556

P

(
sup
∆∈H̄

1√
n
|ωTX∆− EωTX∆| > 16c5σωw(H̄)

)

≤4P

(
sup
∆∈H̄

1√
n

∣∣∣∣∣∑
i

εiωix
T
i ∆

∣∣∣∣∣ > 4c5σωw(H̄)

)
≤ 4c4. exp

(
−c1c

2
2w(H̄)

c3σ2
x

)
+ 8 exp(−c5n).

Because ω has zero mean, there the above inequality give us:557

sup
∆∈H̄

|ωTX∆|√
n

≤ 16c5σωw(H̄)

with high probability. Hence by definition558

sn(γ) ≤ 16c5σωw(H̄)

γ
√
n

with probability at least 1− 4c4. exp
(
− c1c

2
2w(H̄)
c3σ2

x

)
− 8 exp(−c5n).559

Now as we have the high probability bound of both κ and sn(γ), we can derive our error bound for560

random case.561

I.2 Proof of Lemma 4562

Lemma 9 (Gaussian width bound) LetH and H̄ be as defined in (7) and (8) respectively. Then, we563

have w(H) = O
(
maxi w(Ci ∩ Sp−1) +

√
log k

)
and w(H̄) = O

(
maxi w(Ci ∩Bp) +

√
log k

)
.564

Proof: By definition and the fact that the Gaussian width of convex hull of sets is equal to the565

Gaussian width of their union [10]566

w(H) = E sup
u∈H
〈u, g〉 = Emax

i
sup

ui∈Ci∩Sp−1

〈ui, g〉

By concentration inequality for Lipschitz functions [17], for each i = 1, . . . , k567

P ( sup
ui∈Ci∩Sp−1

〈ui, g〉 ≥ E sup
ui∈Ci∩Sp−1

〈ui, g〉+ r) ≤ exp(−r2/2).

Then denote Di = supui∈Ci∩Sp−1
〈ui, g〉, we have568

w(H) =Emax
i
Di

≤max
i
EDi + δ +

k∑
i=1

∫ ∞
δ

P
(
Di ≥ max

i
EDi + r

)
dr

≤max
i
EDi + δ + k

∫ ∞
δ

exp(−r2/2)dr

≤max
i
EDi + δ + η′k exp(−δ2/2).

Let δ =
√

log k, we get569

w(H) ≤ max
i
EDi +

√
log k + η = O

(
max
i
w(Ci ∩ Sp−1) +

√
log k

)
.

the conclusion holds. The conclusion for w(H̄) can be proved the same as above.570
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I.3 Proof of Theorem 6571

Theorem 15 For estimator (3), let Ci = cone{∆ : Ri(θ
∗
i + ∆) ≤ Ri(θ∗i )}, design X be a random572

matrix with each row an independent copy of sub-Gaussian random vector Z, noise ω be a centered573

sub-Gaussian random vector, and Bp ⊆ Rp be the a centered unit euclidean ball. If sample size574

n > c(maxi w
2(Ci ∩ Sp−1) + log k)/ρ2, then with high probability,575

k∑
i=1

‖θ̂i − θ∗i ‖2 ≤ C
maxi w(Ci ∩Bp) +

√
log k

ρ2
√
n

, (55)

for constants c, C > 0 that depend on sub-Gaussian norms |||Z|||φ2
and |||ω|||φ2

.576

Proof: Firstly, we choose577

t =
1

3
α2σ−2

x

√
n− 6Lσxρ

−1α−1w(H).

From theorem 4, RE condition holds for578

κ ≥ 1

2

(
1

9
ρα3σ−2

x − 2Lσx
w(H)√

n

)
with probability at least579

1− exp

(
−(

1

3
α2σ−2

x

√
n− 6Lσxρ

−1α−1w(H))2/2

)
.

Next we choose γ = ρ2α6

1296σ4
x

, and let sn(γ) be defined as above. Thus from theorem (1) and our580

discussion above, if581

1

4

(
1

9
ρα3σ−2

x − 2Lσx
w(H)√

n

)2

>
ρ2α6

1296σ4
x

⇒ n > c1w
2(H),

for some constant c1 > 0, then κ > 2γ. Using theorem 1, we have582

k∑
i=1

‖∆i‖2 ≤ c2
w(H̄)√

n
.

with probability at least583

1− c3 exp(−c4w(H̄))− c5 exp(−c6n)− exp(−(c7
√
n− c8w(H))2),

which completes the proof.584

J Examples585

J.1 Structural Coherence For 1-sparse + 1-sparse MCA586

Proposition 16 Suppose both vector θ1 and vector Qθ2 are one sparse, and the i-th entry of θ1 and587

the j-th entry of Qθ2 are non-zero. If588

Qijsign(θ∗1)isign(Qθ∗2) > 0,

then we have589

ρ ≥
√

(1−
√

1−Q2
ij)/2. (56)

Proof: Denote ∆−i as a vector whose ith entry is 0, and other entries are equal to those of ∆.590

Suppose both θ1 and Qθ2 are 1-sparse vectors, and the ith entry of θ1 jth entry of Qθ2 are nonzero.591

Then error vector ∆1 and ∆2 satisfy the following inequalities:592

−〈sign(θ1i),∆1i〉 ≥ ‖∆1−i‖1,−〈sign(θ2j),∆2j〉 ≥ ‖∆2−j‖1.
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Therefore593

−〈sign(θ1i),∆1i〉
‖∆1‖2

≥ 1√
1 +

‖∆1−i‖22
∆2

1i

≥ 1√
1 +

‖∆1−i‖22
‖∆1−i‖21

≥ 1√
2
.

The same holds for Q∆2. Then when Qijsign(θ1i)sign(Qθ2j) > 0 we have from geometry that594

−〈∆1,∆2〉 ≤ − cos(2 arccos(
1√
2

) + arccos(Qijsign(θ1i)sign(Qθ2j))) ≤
√

1−Q2
ij

Therefore ρ ≥
√

1−
√

1−Q2
ij

2 by proposition 2.595

J.2 Proof of Theorem 8596

Theorem 17 If M ≤ 1
8
√
s1s2

, then for problem (41) with high probability597

‖θ1 − θ∗1‖2 + ‖θ2 − θ∗2‖2 = O

(
max

{√
s1 log p

n
,

√
s2 log p

n

})
.

Proof: Let ∆i = θi − θ∗i for i = 1, 2, then we have598

〈∆1,∆2〉 = 〈∆1, Q
TQ∆2〉 ≤ max

ij
|Qij |‖∆1‖1‖Q∆2‖1

≤M(‖PΩ∆1‖1 + ‖PΩc1
∆1‖1)(‖PΩ2Q∆2‖1 + ‖PΩc2

Q∆2‖1)

≤ 4M‖PΩ∆1‖1‖PΩ2
Q∆2‖1 ≤ 4M

√
s1s2‖∆1‖2‖Q∆2‖2

Let 4M
√
s1s2 ≤ 1

2 , we get M ≤ 1
8
√
s1s2

and ρ ≥ 1
2 .599

From the result of [10], we know that the Gaussian width for the error cone of a s-sparse vector is600

O(
√
s log(ps )). Therefore by theorem 6, if n ≥ C maxs∈{s1,s2} s log(ps ) for some C > 0, then601

‖θ1 − θ∗1‖2 + ‖θ2 − θ∗2‖2 = O

(
max

{√
s1 log p

n
,

√
s2 log p

n

})
.

602

J.3 Proof of Theorem 9603

Theorem 18 If σ ≤ 1

4(1+
θ1max
θ1min

)(1+
θ2max
θ2min

)
where θmax = maxi∈supp(θ) |θi| and θmin =604

mini∈supp(θ) |θi|, then we have for problem (43) with high probability605

‖θ1 − θ∗1‖2 + ‖θ2 − θ∗2‖2 = O

(
max

{√
s1 log(p− s1)

n
,

√
s2 log(p− s2)

n

})
.

Proof: We first characterize the interaction between cones:606

〈∆1,∆2〉 = 〈∆1, Q
TQ∆2〉.

because k-support norm is an atomic norm, and its atomic set is all unit k-sparse vectors. Therefore607

we can decompose ∆1 into combination of unit s1-sparse vectors ∆1 =
∑
i αiui and Q∆2 into608

combination of unit s2-sparse vectors Q∆2 =
∑
j βjvj . Then609

〈∆1, Q
TQ∆2〉 ≤

∑
i

|αi|
∑
j

|βj |max
ij
|uTi QT vj | ≤ σ‖∆1‖sps1‖∆2‖sps2 .

By Theorem 9 in [13], we have610

‖∆1‖sps1 ≤
√

2(1 +
θ1max

θ1min
)‖∆1‖2 and ‖∆2‖sps2 ≤

√
2(1 +

θ2max

θ2min
)‖∆1‖2.
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Therefore611

〈∆1,∆2〉 ≤ 2σ(1 +
θ1max

θ1min
)(1 +

θ2max

θ2min
)‖∆1‖2‖∆2‖2.

Let 2σ(1 + θ1max
θ1min

)(1 + θ2max
θ2min

) ≤ 1
2 , then σ ≤ 1

4(1+
θ1max
θ1min

)(1+
θ2max
θ2min

)
and ρ ≥ 1

2 .612

From [13], when we set k to be the sparsity s, the corresponding Gaussian width of tangent cone is613

O(s log(p− s)), therefore plus this result in Theorem 6 we get614

‖θ1 − θ∗1‖2 + ‖θ2 − θ∗2‖2 = O

(
max

{√
s1 log(p− s1)

n
,

√
s2 log(p− s2)

n

})
.

615

J.4 Proof of Theorem 10616

Theorem 19 If there is a ρ > 0 for problem (44), then with high probability617

‖L− L∗‖2 + ‖S − S∗‖2 = O

(
max

{√
s log(d1d2 − s)

n
,

√
r(d1 + d2 − r)

n

})
.

Proof: From [10], we know that for error cone of d1 × d2 rank-r matrix, its Gaussian width is618

O(r(d1 + d2 − r)). Therefore if ρ > 0, then by applying theorem 6, the error bound is619

‖L− L∗‖2 + ‖S − S∗‖2 = O

(
max

{√
s log(d1d2 − s)

n
,

√
r(d1 + d2 − r)

n

})
.

620

J.5 Additional Example for Low-rank ans Sparse Matrix Decomposition621

Example 1 Suppose noise ω = 0,622

S0 = L0 =


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 , (57)

and M = S0 + L0, then the SC condition of problem (44) holds.623

Proof: Suppose the singular value decomposition of L∗0 is UΣV T . Denote624

C′S = cl{∆| − 〈sign(S′0),∆〉 ≥ ‖PΩc(∆)‖1}, C′L = cl{∆| − 〈UV T ,∆〉 ≥ ‖PT⊥(∆)‖∗}.

From [19] we know that SC is equivalent to −C′S
⋂
C′L = {0}. To prove −C′S

⋂
C′L = {0}, we need625

the following inequalities:626

〈sign(S′0),∆〉 ≥ ‖PΩc(∆)‖1, − 〈UV T ,∆〉 ≥ ‖PT⊥(∆)‖∗.

has unique solution 0.627

It is easy to notice that 〈sign(S′0),∆〉 = 〈UV T ,∆〉 = ∆11. As the value of norms is non-negative,628

we have ∆11 ≥ 0 and −∆11 ≥ 0. Therefore ∆11 = 0. Besides,629

‖PΩc(∆)‖1 =
∑

(i,j)6=(1,1) |∆ij | ≤ 0,

which leads to ∆ij = 0 for (i, j) 6= (1, 1).630

Finally, ∆ = 0 and the conclusion holds.631

People tend to think that we cannot obtain the correct decomposition in this situation. Note that the632

cone CS is centered at one point, and the cone CL contains CS but their surface contacts only at the633

origin. Therefore the reflection of one cone will touch the other cone only at the origin. As a result,634

for M = M0 = S0 + L0, i.e., SC condition holds.635

21



K Noiseless Case: Comparing Estimators636

In this section we try to explore the structures that are different between problem (2) and problem637

(36) and the structures that they share.638

K.1 Proof of Lemma 5639

Lemma 10 For a given set {λi}, the infimal convolution norm ball ΩR is the convex hull of640 ⋃k
i=1

1
λi

ΩiR, i.e., ΩR = conv(
⋃k
i=1

1
λi

ΩiR).641

Proof: If θ ∈ Ω, then from definition there are
∑k
i=1 θi = θ such that R(θ) =

∑k
i=1 λiRi(θi).642

Without loss of generalization, suppose θi 6= 0 for each i, then we have the following decomposition:643

644
k∑
i=1

λiRi(θi)

R(θ)

R(θ)

λiRi(θi)
θi = θ. (58)

It is easy to know that
∑k
i=1

λiRi(θi)
R(θ) = 1 and Ri(

R(θ)
λiRi(θi)

θi) = 1
λR(θ) ≤ 1

λi
. Therefore645

R(θ)
λiRi(θi)

θi ∈ 1
λΩiR, and θ ∈ conv(

⋃k
i=1

1
λi

ΩiR).646

If θ ∈ conv(
⋃k
i=1

1
λi

ΩiR), then we can find θi ∈ 1
λi

ΩiR and ci > 0,
∑k
i=1 ci = 1 such that647

k∑
i=1

ciθi = θ.

Then648

R(θ) ≤
k∑
i=1

λiRi(ciθi) =

k∑
i=1

ciλiRi(θi) ≤ 1.

Therefore θ ∈ ΩR which completes the proof.649

K.2 Proof of theorem 7650

Theorem 20 Given θ̂1, . . . , θ̂k and define651

C0 =

∑
θi 6=0

(
c′i
ci
− 1

)
θi | c′i ≥ 0,

k∑
i=1

c′i = 1

 . (59)

Suppose dim(span{θi}) = k, then there exist λ1, . . . , λk such that
∑k
i=1 θ̂i = θ are unique solutions652

of (37) if and only if there are c1, . . . , ck with ci ≥ 0 and
∑k
i=1 ci = 1 such that for the corresponding653

error cone Ci of θ̂i and C0 defined above, −Ci ∩
∑
j 6=i Cj = {0}, for i = 0, 1, . . . , k.654

Proof: Before proofing the main result we need the following lemma, it is proved in appendix K.3.655

Lemma 11 For fixed λ1, . . . , λk, suppose
∑k
i=1 θi = θ is a solution of decomposition (37) under656

this set of {λi}, and dim(span{θi}) = k. Let Ci, i = 1, 2, . . . , k be the corresponding error cones657

of {θi}, ci = λiRi(θi)/R(θ) and C0 be as defined in (59). The decomposition (37) for θ is unique if658

and only if for any i = 0, 1, . . . , k,659

−Ci ∩
∑
j 6=i

Cj = {0}. (60)

We come to the main result and the necessity is obvious from lemma 11;660

Without loss of generality, suppose ci ≥ 0. If such c1, . . . , ck exist for θ̂1, . . . , θ̂k, let λi = ci
Ri(θ̂i)

.661

Suppose θ1, . . . , θk is a set of optimal solution under the λ defined above. From 58 we can write662

the decomposition as θ =
∑k
i=1 c

′
iθ
′
i where c′i is a coefficient of convex combination, c′iθ

′
i = θi and663

λiRi(θ
′
i) = R(θ) under coefficient λi.664
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If θi 6= θ̂i for some i, then as
∑k
i=1 λiRi(θ̂i) =

∑k
i=1 ci = 1, we have665

λiRi(θi) ≤ 1⇒ Ri(ciθi) ≤ Ri(θ̂i).

Therefore ciθi − θ̂i ∈ Ci by definition. We also have666

k∑
i=1

θ̂i +

k∑
i=1

(
c′i
ci
− 1)θ̂i +

k∑
i=1

c′i
ci

(ciθi − θi) = θ ⇒ c′i
ci

(ciθi − θi) = −
k∑
i=1

(
c′i
ci
− 1)θ̂i

which is contradict to our condition. Therefore θ̂i is a solution. Uniqueness is a direct conclusion of667

lemma 11.668

Note that in this proof we set λi = ci
Ri(θi)

. This is also a general way to choose the parameter {λi}.669

K.3 Proof of Lemma 11670

Proof: Without loss of generality, assume θi 6= 0.According to (58), let671

ci =
λiRi(θi)

R(θ)
, and θ′i =

1

ci
θi.

Suppose θi is a unique decomposition, for any ∆i ∈ Ci, if
∑k
i=1 c

′
iλiRi(θ

′
i + ∆i) ≤ R(θ) and672 ∑k

i=1 c
′
i(θ
′
i + ∆i) = θ for some c′i ≥ 0,

∑k
i=1 c

′
i = 1. Therefore we obtain the following decompo-673

sition of θ:674

θ =

k∑
i=1

ciθ
′
i +

k∑
i=1

(c′i − ci)θi +

k∑
i=1

c′i∆i.

It is obvious from observation that
∑k
i=1(c′i − ci)θi +

∑k
i=1 c

′
i∆i = 0 and

∑k
i=1(c′i − ci)θi ∈ C0,675 ∑k

i=1 c
′
i∆i ∈

∑k
i=1 Ci.676

By minimal of R(θ),
∑k
i=1 c

′
iλiRi(θ

′
i + ∆i) = R(θ). By our assumption, such decomposition of θ677

is unique, thus678
k∑
i=1

(c′i − ci)θi =

k∑
i=1

c′i∆i = 0.

which implies −C0 ∩
∑k
i=1 Ci = {0}. Uniqueness also give that c′i∆i = 0 for each i = 1, 2, . . . , k.679

Therefore −Ci ∩
∑
j 6=i Cj = {0}.680

If θi is not a unique decomposition then there are some ∆i 6= 0 such that
∑k
i=1 ∆i = 0 and681

k∑
i=1

λiRi(θi + ∆i) = R(θ).

Let682

c′′i =
λiRi(θi + ∆i)

R(θ)
, and θ′′i =

1

c′′i
(θi + ∆i),

we have683

λiRi(θ
′′
i ) = R(θ),

and hence θ′′i − θ′i ∈ Ci for λiRi(θ′i) = R(θ). Unfold θ′i and θ′′i gives684

c′′i (θ′′i − θ′i) = c′′i (
1

c′′i
− 1

c′i
)θi + ∆i.

Sum over all i, we get685
k∑
i=1

c′′i (θ′′i − θ′i) =

k∑
i=1

c′′i (
1

c′′i
− 1

c′i
)θi,

which is contradict to our assumption that−C0∩
∑k
i=1 Ci = {0}. Therefore the conclusion holds.686
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