
Learning to Communicate with
Deep Multi-Agent Reinforcement Learning

Supplementary Material

Jakob N. Foerster1,†
jakob.foerster@cs.ox.ac.uk

Yannis M. Assael1,†
yannis.assael@cs.ox.ac.uk

Nando de Freitas1,2,3
nandodefreitas@google.com

Shimon Whiteson1

shimon.whiteson@cs.ox.ac.uk

1University of Oxford, United Kingdom
2Canadian Institute for Advanced Research, CIFAR NCAP Program

3Google DeepMind

A DIAL Details

Algorithm 1 formally describes DIAL. At each time-step, we pick an action for each agent ε-greedily
with respect to the Q-function and assign an outgoing message

Q(·),ma
t = C-Net

(
oat , m̂

a′

t−1, h
a
t−1, u

a
t−1, a; θi

)
. (1)

We feed in the previous action, uat−1, the agent index, a, along with the observation oat , the previous
internal state, hat−1 and the incoming messages m̂a′

t−1 from other agents. After all agents have taken
their actions, we query the environment for a state update and reward information.

When we reach the final time-step or a terminal state, we proceed to the backwards pass. Here, for
each agent, a, and time-step, j, we calculate a target Q-value, yaj , using the observed reward, rt, and
the discounted target network. We then accumulate the gradients, ∇θ, by regressing the Q-value
estimate

Q(oat , m̂
a′

t−1, h
a
t−1, u

a
t−1, a, u; θi), (2)

against the target Q-value, yat , for the chosen action, uat . We also update the message gradient

chain µat , which contains the derivative of the downstream bootstrap error
∑
m,t′>t

(
∆Qa

′

t+1

)2
with

respect to the outgoing message ma
t .

To allow for efficient calculation, this sum can be broken into two parts. The first part,∑
m′ 6=m

∂
∂m̂a

t

(
∆Qa

′

t+1

)2
, captures the impact of the message on the total estimation error of the

next step. The impact of the message ma
t on all other future rewards t′ > t + 1 can be calculated

using the partial derivative of the outgoing messages from the agents at time t+ 1 with respect to the
incoming message ma

t , multiplied with their message gradients, µa
′

t+1. Using the message gradient,
we can calculate the derivative with respect to the parameters, µat

∂m̂a
t

∂θ .

Having accumulated all gradients, we conduct two parameter updates, first θi in the direction of the
accumulated gradients, ∇θ, and then every C steps θ−i = θi. During decentralised execution, the
outgoing activations in the channel are mapped into a binary vector, m̂ = 1{ma

t > 0}. This ensures
that discrete messages are exchanged, as required by the task.

†These authors contributed equally to this work.
30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Algorithm 1 Differentiable Communication (DIAL)

Initialise θ1 and θ−1
for each episode e do
s1 = initial state, t = 0, ha0 = 0 for each agent a
while st 6= terminal and t < T do
t = t+ 1
for each agent a do

Get messages m̂a′

t−1 of previous time-steps from agents m′ and evaluate C-Net:

Q(·),ma
t = C-Net

(
oat , m̂

a′

t−1, h
a
t−1, u

a
t−1, a; θi

)
With probability ε pick random uat , else uat = maxaQ

(
oat , m̂

a′

t−1, h
a
t−1, u

a
t−1, a, u; θi

)
Set message m̂a

t = DRU(m), where DRU(m) =
{ Logistic(N (m,σ)), if training
1{m > 0}, otherwise

Get reward rt and next state st+1

Reset gradients∇θ = 0
for t = T to 1, −1 do

for each agent a do

yat =
{ rt, if st terminal, else
rt + γmaxuQ

(
oat+1, m̂

a′

t , h
a
t , u

a
t , a, u; θ−i

)
Accumulate gradients for action:
∆Qat = yat −Q

(
oaj , h

a
t−1, m̂

a′

t−1, u
a
t−1, a, u

a
t ; θi

)
∇θ = ∇θ + ∂

∂θ (∆Qat)2

Update gradient chain for differentiable communication:

µaj = 1{t < T − 1}
∑
m′ 6=m

∂
∂m̂a

t

(
∆Qa

′

t+1

)2
+ µa

′

t+1
∂m̂a′

t+1

∂m̂a
t

Accumulate gradients for differentiable communication:
∇θ = ∇θ + µat

∂
∂ma

t
DRU(ma

t)
∂ma

t

∂θ

θi+1 = θi + α∇θ
Every C steps reset θ−i = θi

In order to minimise the discretisation error when mapping from continuous values to discrete
encodings, two measures are taken during centralised learning. First, Gaussian noise is added in order
to limit the number of bits that can be encoded in a given range ofm values. Second, the noisy message
is passed through a logistic function to restrict the range available for encoding information. Together,
these two measures regularise the information transmitted through the bottleneck. Furthermore, the
noise also perturbs values in the middle of the range, due to the steeper slope, but leaves the tails of
the distribution unchanged.

Formally, during centralised learning, m is mapped to m̂ = Logistic (N (m,σ)), where σ is chosen
to be comparable to the width of the logistic function. In Algorithm 1, the mapping logic from m to
m̂ during training and execution is contained in the DRU(ma

t) function.

B MNIST Games: Further Analysis

Our results show that DIAL deals more effectively with stochastic rewards in the colour-digit MNIST
game than RIAL. To better understand why, consider a simpler two-agent problem with a structurally
similar reward function r = (−1)(s

1+s2+a2), which is antisymmetric in the observations and action
of the agents. Here random digits s1, s2 ∈ 0, 1 are input to agent 1 and agent 2 and u2 ∈ 1, 2 is
a binary action. Agent 1 can send a single bit message, m1. Until a protocol has been learned,
the average reward for any action by agent 2 is 0, since averaged over s1 the reward has an equal
probability of being +1 or −1. Equally the TD error for agent 1, the sender, is zero for any message
m:

E
[
∆Q(s1,m1)

]
= Q(s1,m1)− E

[
r(s2, a2, s1)

]
s2,a2

= 0− 0, (3)

2

By contrast, DIAL allows for learning. Unlike the TD error, the gradient is a function of the action
and the observation of the receiving agent, so summed across different +1/−1 outcomes the gradient
updates for the message m no longer cancel:

E [∇θ] = E
[(
Q(s2,m1, a2)− r(s2, a2, s1)

) ∂

∂m
Q(s2,m1, a2)

∂

∂θ
m1(s1)

]
<s2,a2>

. (4)

C Effect of Noise: Further Analysis

Given that the amount of noise, σ, is a hyperparameter that needs to be set, it is useful to understand
how it impacts the amount of information that can pass through the channel. A first intuition can be
gained by looking at the width of the sigmoid: Taking the decodable range of the logistic function
to be x values corresponding to y values between 0.01 and 0.99, an initial estimate for the range is
≈ 10. Thus, requiring distinct x values to be at least six standard deviations apart, with σ = 2, only
two bits can be encoded reliably in this range. To get a better understanding of the required σ we can
visualise the capacity of the channel including the logistic function and the Gaussian noise. To do so,
we must first derive an expression for the probability distribution of outgoing messages, m̂, given
incoming activations, m, P (m̂|m):

P (m̂|m) =
1√

2πσm̂(1− m̂)
exp

(
−
(
m− log(1

m̂ − 1)
)2

σ2

)
. (5)

For any m, this captures the distribution of messages leaving the channel. Two m values m1 and m2

can be distinguished when the outgoing messages have a small probability of overlapping. Given a
value m1 we can thus pick a next value m2 to be distinguishable when the highest value m̂1 that m1

is likely to produce is less than the lowest value m̂2 that m2 is likely to produce. An approximation
for when this happens is when (maxm̂ s.t.P (m̂|m1) > ε) = (minm̂ s.t.P (m̂|m2) > ε). Figure 1
illustrates this for three different values of σ. For σ > 2, only two options can be reliably encoded
using ε = 0.1, resulting in a channel that effectively transmits only one bit of information.

-5 0 5
0.0

0.2

0.4

0.6

0.8

1.0

O
u

tp
u

t
m̂

σ= 0. 5

-5 0 5
Input m

σ= 1. 0

-5 0 5

σ= 2. 0

Figure 1: Distribution of regularised messages, P (m̂|m) for different noise levels. Shading indicates
P (m̂|m) > 0.1. Blue bars show a division of the x-range into intervals s.t. the resulting y-values
have a small probability of overlap, leading to decodable values.

Interestingly, the amount of noise required to regularise the channel depends greatly on the benefits of
over-encoding information. More specifically, as illustrated in Figure 2, in tasks where sending more
bits does not lead to higher rewards, small amounts of noise are sufficient to encourage discretisation,
as the network can maximise reward by pushing activations to the tails of the sigmoid, where the
noise is minimised. The figure illustrates the final average evaluation performance normalised by the
training performance of three runs after 50K of the multi-step MNIST game, under different noise

3

2 3 4 5
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
xe

cu
ti

o
n

 /
 T

ra
in

in
g

 R

σ= 0. 0

σ= 0. 5

σ= 1. 0

σ= 2. 0

Regularised

Figure 2: Final evaluation performance on multi-step MNIST of DIAL normalised by training
performance after 50K epochs, under different noise regularisation levels σ ∈ {0, 0.5, 1, 1.5, 2}, and
different numbers of steps step ∈ [2, . . . , 5].

regularisation levels σ ∈ {0, 0.5, 1, 1.5, 2}, and different numbers of steps step ∈ [2, . . . , 5]. When
the lines exceed “Regularised”, the test reward, after discretisation, is higher than the training reward,
i.e., the channel is properly regularised and getting used as a single bit at the end of learning. Given
that there are 10 digits to encode, four bits are required to get full reward. Reducing the number of
steps directly reduces the number of bits that can be communicated, #bits = steps− 1, and thus
creates an incentive for the network to over-encode information in the channel, which leads to greater
discretisation error. This is confirmed by the normalised performance for σ = 0.5, which is around
0.7 for 2 steps (1 bit) and then goes up to > 1 for 5 steps (4 bits). Note also that, without noise,
regularisation is not possible and that with enough noise the channel is always regularised, even if
over-encoding information would yield higher training rewards.

4

	DIAL Details
	MNIST Games: Further Analysis
	Effect of Noise: Further Analysis

