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Abstract

In this work, we take a fresh look at some old and new algorithms for off-policy,
return-based reinforcement learning. Expressing these in a common form, we de-
rive a novel algorithm, Retrace(λ), with three desired properties: (1) it has low
variance; (2) it safely uses samples collected from any behaviour policy, whatever
its degree of “off-policyness”; and (3) it is efficient as it makes the best use of sam-
ples collected from near on-policy behaviour policies. We analyze the contractive
nature of the related operator under both off-policy policy evaluation and control
settings and derive online sample-based algorithms. We believe this is the first
return-based off-policy control algorithm converging a.s. to Q∗ without the GLIE
assumption (Greedy in the Limit with Infinite Exploration). As a corollary, we
prove the convergence of Watkins’ Q(λ), which was an open problem since 1989.
We illustrate the benefits of Retrace(λ) on a standard suite of Atari 2600 games.

One fundamental trade-off in reinforcement learning lies in the definition of the update target: should
one estimate Monte Carlo returns or bootstrap from an existing Q-function? Return-based meth-
ods (where return refers to the sum of discounted rewards

∑
t γ

trt) offer some advantages over
value bootstrap methods: they are better behaved when combined with function approximation, and
quickly propagate the fruits of exploration (Sutton, 1996). On the other hand, value bootstrap meth-
ods are more readily applied to off-policy data, a common use case. In this paper we show that
learning from returns need not be at cross-purposes with off-policy learning.

We start from the recent work of Harutyunyan et al. (2016), who show that naive off-policy policy
evaluation, without correcting for the “off-policyness” of a trajectory, still converges to the desired
Qπ value function provided the behavior µ and target π policies are not too far apart (the maxi-
mum allowed distance depends on the λ parameter). Their Qπ(λ) algorithm learns from trajectories
generated by µ simply by summing discounted off-policy corrected rewards at each time step. Un-
fortunately, the assumption that µ and π are close is restrictive, as well as difficult to uphold in the
control case, where the target policy is greedy with respect to the current Q-function. In that sense
this algorithm is not safe: it does not handle the case of arbitrary “off-policyness”.

Alternatively, the Tree-backup (TB(λ)) algorithm (Precup et al., 2000) tolerates arbitrary tar-
get/behavior discrepancies by scaling information (here called traces) from future temporal dif-
ferences by the product of target policy probabilities. TB(λ) is not efficient in the “near on-policy”
case (similar µ and π), though, as traces may be cut prematurely, blocking learning from full returns.

In this work, we express several off-policy, return-based algorithms in a common form. From this
we derive an improved algorithm, Retrace(λ), which is both safe and efficient, enjoying convergence
guarantees for off-policy policy evaluation and – more importantly – for the control setting.
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Retrace(λ) can learn from full returns retrieved from past policy data, as in the context of experience
replay (Lin, 1993), which has returned to favour with advances in deep reinforcement learning (Mnih
et al., 2015; Schaul et al., 2016). Off-policy learning is also desirable for exploration, since it allows
the agent to deviate from the target policy currently under evaluation.

To the best of our knowledge, this is the first online return-based off-policy control algorithm which
does not require the GLIE (Greedy in the Limit with Infinite Exploration) assumption (Singh et al.,
2000). In addition, we provide as a corollary the first proof of convergence of Watkins’ Q(λ) (see,
e.g., Watkins, 1989; Sutton and Barto, 1998).

Finally, we illustrate the significance of Retrace(λ) in a deep learning setting by applying it to the
suite of Atari 2600 games provided by the Arcade Learning Environment (Bellemare et al., 2013).

1 Notation

We consider an agent interacting with a Markov Decision Process (X ,A, γ, P, r). X is a finite state
space, A the action space, γ ∈ [0, 1) the discount factor, P the transition function mapping state-
action pairs (x, a) ∈ X ×A to distributions over X , and r : X ×A → [−RMAX, RMAX] is the reward
function. For notational simplicity we will consider a finite action space, but the case of infinite –
possibly continuous – action space can be handled by the Retrace(λ) algorithm as well. A policy π
is a mapping from X to a distribution over A. A Q-function Q maps each state-action pair (x, a) to
a value in R; in particular, the reward r is a Q-function. For a policy π we define the operator Pπ:

(PπQ)(x, a) :=
∑
x′∈X

∑
a′∈A

P (x′ |x, a)π(a′ |x′)Q(x′, a′).

The value function for a policy π, Qπ , describes the expected discounted sum of rewards associated
with following π from a given state-action pair. Using operator notation, we write this as

Qπ :=
∑
t≥0

γt(Pπ)tr. (1)

The Bellman operator T π for a policy π is defined as T πQ := r+ γPπQ and its fixed point is Qπ ,
i.e. T πQπ = Qπ = (I − γPπ)−1r. The Bellman optimality operator introduces a maximization
over the set of policies:

T Q := r + γmax
π

PπQ. (2)

Its fixed point is Q∗, the unique optimal value function (Puterman, 1994). It is this quantity that we
will seek to obtain when we talk about the “control setting”.

Return-based Operators: The λ-return extension (Sutton, 1988) of the Bellman operators con-
siders exponentially weighted sums of n-steps returns:

T πλ Q := (1− λ)
∑
n≥0

λn
[
(T π)n+1Q

]
= Q+ (I − λγPπ)−1(T πQ−Q),

where T πQ−Q is the Bellman residual of Q for policy π. Examination of the above shows thatQπ
is also the fixed point of T πλ . At one extreme (λ = 0) we have the Bellman operator T πλ=0Q = T πQ,
while at the other (λ = 1) we have the policy evaluation operator T πλ=1Q = Qπ which can be
estimated using Monte Carlo methods (Sutton and Barto, 1998). Intermediate values of λ trade off
estimation bias with sample variance (Kearns and Singh, 2000).

We seek to evaluate a target policy π using trajectories drawn from a behaviour policy µ. If π = µ,
we are on-policy; otherwise, we are off-policy. We will consider trajectories of the form:

x0 = x, a0 = a, r0, x1, a1, r1, x2, a2, r2, . . .

with at ∼ µ(·|xt), rt = r(xt, at) and xt+1 ∼ P (·|xt, at). We denote by Ft this sequence up to
time t, and write Eµ the expectation with respect to both µ and the MDP transition probabilities.
Throughout, we write ‖ · ‖ for supremum norm.
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2 Off-Policy Algorithms

We are interested in two related off-policy learning problems. In the policy evaluation setting, we
are given a fixed policy π whose value Qπ we wish to estimate from sample trajectories drawn from
a behaviour policy µ. In the control setting, we consider a sequence of policies that depend on our
own sequence of Q-functions (such as ε-greedy policies), and seek to approximate Q∗.

The general operator that we consider for comparing several return-based off-policy algorithms is:

RQ(x, a) := Q(x, a) + Eµ
[∑
t≥0

γt
( t∏
s=1

cs

)(
rt + γEπQ(xt+1, ·)−Q(xt, at)

)]
, (3)

for some non-negative coefficients (cs), where we write EπQ(x, ·) :=
∑
a π(a|x)Q(x, a) and define

(
∏t
s=1 cs) = 1 when t = 0. By extension of the idea of eligibility traces (Sutton and Barto, 1998),

we informally call the coefficients (cs) the traces of the operator.

Importance sampling (IS): cs = π(as|xs)
µ(as|xs) . Importance sampling is the simplest way to correct

for the discrepancy between µ and π when learning from off-policy returns (Precup et al., 2000,
2001; Geist and Scherrer, 2014). The off-policy correction uses the product of the likelihood ratios
between π and µ. Notice that RQ defined in (3) with this choice of (cs) yields Qπ for any Q. For
Q = 0 we recover the basic IS estimate

∑
t≥0 γ

t
(∏t

s=1 cs
)
rt, thus (3) can be seen as a variance

reduction technique (with a baseline Q). It is well known that IS estimates can suffer from large
– even possibly infinite – variance (mainly due to the variance of the product π(a1|x1)

µ(a1|x1)
· · · π(at|xt)µ(at|xt) ),

which has motivated further variance reduction techniques such as in (Mahmood and Sutton, 2015;
Mahmood et al., 2015; Hallak et al., 2015).

Off-policy Qπ(λ) and Q∗(λ): cs = λ. A recent alternative proposed by Harutyunyan et al. (2016)
introduces an off-policy correction based on a Q-baseline (instead of correcting the probability of
the sample path like in IS). This approach, called Qπ(λ) and Q∗(λ) for policy evaluation and control,
respectively, corresponds to the choice cs = λ. It offers the advantage of avoiding the blow-up of the
variance of the product of ratios encountered with IS. Interestingly, this operator contracts aroundQπ
provided that µ and π are sufficiently close to each other. Defining ε := maxx ‖π(·|x) − µ(·|x)‖1
the level of “off-policyness”, the authors prove that the operator defined by (3) with cs = λ is a
contraction mapping around Qπ for λ < 1−γ

γε , and around Q∗ for the worst case of λ < 1−γ
2γ .

Unfortunately, Qπ(λ) requires knowledge of ε, and the condition for Q∗(λ) is very conservative.
Neither Qπ(λ), nor Q∗(λ) are safe as they do not guarantee convergence for arbitrary π and µ.

Tree-backup, TB(λ): cs = λπ(as|xs). The TB(λ) algorithm of Precup et al. (2000) corrects for
the target/behaviour discrepancy by multiplying each term of the sum by the product of target policy
probabilities. The corresponding operator defines a contraction mapping for any policies π and µ,
which makes it a safe algorithm. However, this algorithm is not efficient in the near on-policy case
(where µ and π are similar) as it unnecessarily cuts the traces, preventing it to make use of full
returns: indeed we need not discount stochastic on-policy transitions (as shown by Harutyunyan
et al.’s results about Qπ).

Retrace(λ): cs = λmin
(

1, π(as|xs)µ(as|xs)

)
. Our contribution is an algorithm – Retrace(λ) – that takes

the best of the three previous algorithms. Retrace(λ) uses an importance sampling ratio truncated
at 1. Compared to IS, it does not suffer from the variance explosion of the product of IS ratios.
Now, similarly to Qπ(λ) and unlike TB(λ), it does not cut the traces in the on-policy case, making
it possible to benefit from the full returns. In the off-policy case, the traces are safely cut, similarly
to TB(λ). In particular, min

(
1, π(as|xs)µ(as|xs)

)
≥ π(as|xs): Retrace(λ) does not cut the traces as much

as TB(λ). In the subsequent sections, we will show the following:

• For any traces 0 ≤ cs ≤ π(as|xs)/µ(as|xs) (thus including the Retrace(λ) operator), the
return-based operator (3) is a γ-contraction around Qπ , for arbitrary policies µ and π

• In the control case (where π is replaced by a sequence of increasingly greedy policies) the
online Retrace(λ) algorithm converges a.s. to Q∗, without requiring the GLIE assumption.

• As a corollary, Watkins’s Q(λ) converges a.s. to Q∗.
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Definition Estimation Guaranteed Use full returns
of cs variance convergence† (near on-policy)

Importance sampling π(as|xs)
µ(as|xs) High for any π, µ yes

Qπ(λ) λ Low for π close to µ yes

TB(λ) λπ(as|xs) Low for any π, µ no

Retrace(λ) λmin
(

1, π(as|xs)µ(as|xs)

)
Low for any π, µ yes

Table 1: Properties of several algorithms defined in terms of the general operator given in (3).
†Guaranteed convergence of the expected operatorR.

3 Analysis of Retrace(λ)

We will in turn analyze both off-policy policy evaluation and control settings. We will show that R
is a contraction mapping in both settings (under a mild additional assumption for the control case).

3.1 Policy Evaluation

Consider a fixed target policy π. For ease of exposition we consider a fixed behaviour policy µ,
noting that our result extends to the setting of sequences of behaviour policies (µk : k ∈ N).

Our first result states the γ-contraction of the operator (3) defined by any set of non-negative coef-
ficients cs = cs(as,Fs) (in order to emphasize that cs can be a function of the whole history Fs)
under the assumption that 0 ≤ cs ≤ π(as|xs)

µ(as|xs) .

Theorem 1. The operator R defined by (3) has a unique fixed point Qπ . Furthermore, if for each
as ∈ A and each history Fs we have cs = cs(as,Fs) ∈

[
0, π(as|xs)µ(as|xs)

]
, then for any Q-function Q

‖RQ−Qπ‖ ≤ γ‖Q−Qπ‖.

The following lemma will be useful in proving Theorem 1 (proof in the appendix).
Lemma 1. The difference betweenRQ and its fixed point Qπ is

RQ(x, a)−Qπ(x, a) = Eµ
[ ∑
t≥1

γt
( t−1∏
i=1

ci

)([
Eπ[(Q−Qπ)(xt, ·)]− ct(Q−Qπ)(xt, at)

])]
.

Proof (Theorem 1). The fact that Qπ is the fixed point of the operator R is obvious from (3) since
Ext+1∼P (·|xt,at)

[
rt + γEπQπ(xx+1, ·) − Qπ(xt, at)

]
= (T πQπ − Qπ)(xt, at) = 0, since Qπ is

the fixed point of T π . Now, from Lemma 1, and defining ∆Q := Q−Qπ , we have

RQ(x, a)−Qπ(x, a) =
∑
t≥1

γt E
x1:t
a1:t

[( t−1∏
i=1

ci

)([
Eπ∆Q(xt, ·)− ct∆Q(xt, at)

])]

=
∑
t≥1

γt E
x1:t
a1:t−1

[( t−1∏
i=1

ci

)([
Eπ∆Q(xt, ·)− Eat [ct(at,Ft)∆Q(xt, at)|Ft]

])]

=
∑
t≥1

γt E
x1:t
a1:t−1

[( t−1∏
i=1

ci

)∑
b

(
π(b|xt)− µ(b|xt)ct(b,Ft)

)
∆Q(xt, b)

]
.

Now since π(a|xt) − µ(a|xt)ct(b,Ft) ≥ 0, we have that RQ(x, a) − Qπ(x, a) =∑
y,b wy,b∆Q(y, b), i.e. a linear combination of ∆Q(y, b) weighted by non-negative coefficients:

wy,b :=
∑
t≥1

γt E
x1:t
a1:t−1

[( t−1∏
i=1

ci

)(
π(b|xt)− µ(b|xt)ct(b,Ft)

)
I{xt = y}

]
.
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The sum of those coefficients is:∑
y,b

wy,b =
∑
t≥1

γt E
x1:t
a1:t−1

[( t−1∏
i=1

ci

)∑
b

(
π(b|xt)− µ(b|xt)ct(b,Ft)

)]

=
∑
t≥1

γt E
x1:t
a1:t−1

[( t−1∏
i=1

ci

)
Eat [1− ct(at,Ft)|Ft]

]
=
∑
t≥1

γt E
x1:t
a1:t

[( t−1∏
i=1

ci

)
(1− ct)

]

= Eµ
[∑
t≥1

γt
( t−1∏
i=1

ci

)
−
∑
t≥1

γt
( t∏
i=1

ci

)]
= γC − (C − 1),

where C := Eµ
[∑

t≥0 γ
t
(∏t

i=1 ci
)]

. Since C ≥ 1, we have that
∑
y,b wy,b ≤ γ. Thus

RQ(x, a) − Qπ(x, a) is a sub-convex combination of ∆Q(y, b) weighted by non-negative coef-
ficients wy,b which sum to (at most) γ, thusR is a γ-contraction mapping around Qπ .

Remark 1. Notice that the coefficient C in the proof of Theorem 1 depends on (x, a). If we write

η(x, a) := 1− (1− γ)Eµ
[∑

t≥0 γ
t(
∏t
s=1 cs)

]
, then we have shown that

|RQ(x, a)−Qπ(x, a)| ≤ η(x, a)‖Q−Qπ‖.
Thus η(x, a) ∈ [0, γ] is a (x, a)-specific contraction coefficient, which is γ when c1 = 0 (the trace
is cut immediately) and can be close to zero when learning from full returns (Eµ[ct] ≈ 1 for all t).

3.2 Control

In the control setting, the single target policy π is replaced by a sequence of policies (πk) which
depend on (Qk). While most prior work has focused on strictly greedy policies, here we consider
the larger class of increasingly greedy sequences. We now make this notion precise.
Definition 1. We say that a sequence of policies (πk : k ∈ N) is increasingly greedy w.r.t. a sequence
(Qk : k ∈ N) of Q-functions if the following property holds for all k: Pπk+1Qk+1 ≥ PπkQk+1.

Intuitively, this means that each πk+1 is at least as greedy as the previous policy πk for Qk+1.
Many natural sequences of policies are increasingly greedy, including εk-greedy policies (with non-
increasing εk) and softmax policies (with non-increasing temperature). See proofs in the appendix.

We will assume that cs = cs(as,Fs) = c(as, xs) is Markovian, in the sense that it depends on
xs, as (as well as the policies π and µ) only but not on the full past history. This allows us to define
the (sub)-probability transition operator

(P cµQ)(x, a) :=
∑
x′

∑
a′

p(x′|x, a)µ(a′|x′)c(a′, x′)Q(x′, a′).

Finally, an additional requirement to the convergence in the control case, we assume thatQ0 satisfies
T π0Q0 ≥ Q0 (this can be achieved by a pessimistic initialization Q0 = −RMAX/(1− γ)).
Theorem 2. Consider an arbitrary sequence of behaviour policies (µk) (which may depend on
(Qk)) and a sequence of target policies (πk) that are increasingly greedy w.r.t. the sequence (Qk):

Qk+1 = RkQk,
where the return operator Rk is defined by (3) for πk and µk and a Markovian cs = c(as, xs) ∈
[0, πk(as|xs)µk(as|xs) ]. Assume the target policies πk are εk-away from the greedy policies w.r.t. Qk, in the
sense that T πkQk ≥ T Qk − εk‖Qk‖e, where e is the vector with 1-components. Further suppose
that T π0Q0 ≥ Q0. Then for any k ≥ 0,

‖Qk+1 −Q∗‖ ≤ γ‖Qk −Q∗‖+ εk‖Qk‖.
In consequence, if εk → 0 then Qk → Q∗.

Sketch of Proof (The full proof is in the appendix). Using P cµk , the Retrace(λ) operator rewrites

RkQ = Q+
∑
t≥0

γt(P cµk)t(T πkQ−Q) = Q+ (I − γP cµk)−1(T πkQ−Q).
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We now lower- and upper-bound the term Qk+1 −Q∗.
Upper bound on Qk+1 − Q∗. We prove that Qk+1 − Q∗ ≤ Ak(Qk − Q∗) with Ak := γ(I −
γP cµk)−1

[
Pπk − P cµk

]
. Since ct ∈ [0, π(at|xt)µ(at|xt) ] we deduce that Ak has non-negative elements,

whose sum over each row, is at most γ. Thus
Qk+1 −Q∗ ≤ γ‖Qk −Q∗‖e. (4)

Lower bound on Qk+1 −Q∗. Using the fact that T πkQk ≥ T π
∗
Qk − εk‖Qk‖e we have

Qk+1 −Q∗ ≥ Qk+1 − T πkQk + γPπ
∗
(Qk −Q∗)− γεk‖Qk‖e

= γP cµk(I − γP cµk)−1(T πkQk −Qk) + γPπ
∗
(Qk −Q∗)− εk‖Qk‖e. (5)

Lower bound on T πkQk−Qk. Since the sequence (πk) is increasingly greedy w.r.t. (Qk), we have
T πk+1Qk+1 −Qk+1 ≥ T πkQk+1 −Qk+1 = r + (γPπk − I)RkQk

= Bk(T πkQk −Qk), (6)
whereBk := γ[Pπk−P cµk ](I−γP cµk)−1. Since Pπk−P cµk and (I−γP cµk)−1 are non-negative
matrices, so is Bk. Thus T πkQk −Qk ≥ Bk−1Bk−2 . . . B0(T π0Q0 −Q0) ≥ 0, since we assumed
Tπ0Q0 −Q0 ≥ 0. Thus, (5) implies that

Qk+1 −Q∗ ≥ γPπ
∗
(Qk −Q∗)− εk‖Qk‖e.

Combining the above with (4) we deduce ‖Qk+1−Q∗‖ ≤ γ‖Qk −Q∗‖+ εk‖Qk‖. When εk → 0,
we further deduce that Qk are bounded, thus Qk → Q∗.

3.3 Online algorithms

So far we have analyzed the contraction properties of the expected R operators. We now de-
scribe online algorithms which can learn from sample trajectories. We analyze the algorithms in
the every visit form (Sutton and Barto, 1998), which is the more practical generalization of the
first-visit form. In this section, we will only consider the Retrace(λ) algorithm defined with the
coefficient c = λmin(1, π/µ). For that c, let us rewrite the operator P cµ as λPπ∧µ, where
Pπ∧µQ(x, a) :=

∑
y

∑
b min(π(b|y), µ(b|y))Q(y, b), and write the Retrace operator RQ =

Q+ (I −λγPπ∧µ)−1(T πQ−Q). We focus on the control case, noting that a similar (and simpler)
result can be derived for policy evaluation.
Theorem 3. Consider a sequence of sample trajectories, with the kth trajectory
x0, a0, r0, x1, a1, r1, . . . generated by following µk: at ∼ µk(·|xt). For each (x, a) along
this trajectory, with s being the time of first occurrence of (x, a), update

Qk+1(x, a)← Qk(x, a) + αk
∑
t≥s

δπkt

t∑
j=s

γt−j
( t∏
i=j+1

ci

)
I{xj , aj = x, a}, (7)

where δπkt := rt + γEπkQk(xt+1, ·) − Qk(xt, at), αk = αk(xs, as). We consider the Retrace(λ)
algorithm where ci = λmin

(
1, π(ai|xi)µ(ai|xi)

)
. Assume that (πk) are increasingly greedy w.r.t. (Qk) and

are each εk-away from the greedy policies (πQk), i.e. maxx ‖πk(·|x)−πQk(·|x)‖1 ≤ εk, with εk →
0. Assume that Pπk and Pπk∧µk asymptotically commute: limk ‖PπkPπk∧µk −Pπk∧µkPπk‖ = 0.
Assume further that (1) all states and actions are visited infinitely often:

∑
t≥0 P{xt, at = x, a} ≥

D > 0, (2) the sample trajectories are finite in terms of the second moment of their lengths Tk:
EµkT 2

k <∞, (3) the stepsizes obey the usual Robbins-Munro conditions. Then Qk → Q∗ a.s.

The proof extends similar convergence proofs of TD(λ) by Bertsekas and Tsitsiklis (1996) and of
optimistic policy iteration by Tsitsiklis (2003), and is provided in the appendix. Notice that com-
pared to Theorem 2 we do not assume that T π0Q0−Q0 ≥ 0 here. However, we make the additional
(rather technical) assumption that Pπk and Pπk∧µk commute at the limit. This is satisfied for ex-
ample when the probability assigned by the behavior policy µk(·|x) to the greedy action πQk(x)
is independent of x. Examples include ε-greedy policies, or more generally mixtures between the
greedy policy πQk and an arbitrary distribution µ (see Lemma 5 in the appendix for the proof):

µk(a|x) = ε
µ(a|x)

1− µ(πQk(x)|x)
I{a 6= πQk(x)}+ (1− ε)I{a = πQk(x)}. (8)

Notice that the mixture coefficient ε needs not go to 0.
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4 Discussion of the results

4.1 Choice of the trace coefficients cs

Theorems 1 and 2 ensure convergence to Qπ and Q∗ for any trace coefficient cs ∈ [0, π(as|xs)µ(as|xs) ].
However, to make the best choice of cs, we need to consider the speed of convergence, which
depends on both (1) the variance of the online estimate, which indicates how many online updates
are required in a single iteration ofR, and (2) the contraction coefficient ofR.

Variance: The variance of the estimate strongly depends on the variance of the product trace
(c1 . . . ct), which is not an easy quantity to control in general, as the (cs) are usually not inde-
pendent. However, assuming independence and stationarity of (cs), we have that V

(∑
t γ

tc1 . . . ct
)

is at least
∑
t γ

2tV(c)t, which is finite only if V(c) < 1/γ2. Thus, an important requirement for a
numerically stable algorithm is for V(c) to be as small as possible, and certainly no more than 1/γ2.
This rules out importance sampling (for which c = π(a|x)

µ(a|x) , and V(c|x) =
∑
a µ(a|x)

(π(a|x)
µ(a|x) − 1

)2
,

which may be larger than 1/γ2 for some π and µ), and is the reason we choose c ≤ 1.

Contraction speed: The contraction coefficient η ∈ [0, γ] of R (see Remark 1) depends on how
much the traces have been cut, and should be as small as possible (since it takes log(1/ε)/ log(1/η)
iterations of R to obtain an ε-approximation). It is smallest when the traces are not cut at all (i.e. if
cs = 1 for all s,R is the policy evaluation operator which producesQπ in a single iteration). Indeed,
when the traces are cut, we do not benefit from learning from full returns (in the extreme, c1 = 0
andR reduces to the (one step) Bellman operator with η = γ).

A reasonable trade-off between low variance (when cs are small) and high contraction speed (when
cs are large) is given by Retrace(λ), for which we provide the convergence of the online algorithm.

If we relax the assumption that the trace is Markovian (in which case only the result for policy
evaluation has been proven so far) we could trade off a low trace at some time for a possibly larger-
than-1 trace at another time, as long as their product is less than 1. A possible choice could be

cs = λmin
( 1

c1 . . . cs−1
,
π(as|xs)
µ(as|xs)

)
. (9)

4.2 Other topics of discussion

No GLIE assumption. The crucial point of Theorem 2 is that convergence to Q∗ occurs for arbi-
trary behaviour policies. Thus the online result in Theorem 3 does not require the behaviour policies
to become greedy in the limit with infinite exploration (i.e. GLIE assumption, Singh et al., 2000). We
believe Theorem 3 provides the first convergence result to Q∗ for a λ-return (with λ > 0) algorithm
that does not require this (hard to satisfy) assumption.

Proof of Watkins’ Q(λ). As a corollary of Theorem 3 when selecting our target policies πk to be
greedy w.r.t. Qk (i.e. εk = 0), we deduce that Watkins’ Q(λ) (e.g., Watkins, 1989; Sutton and Barto,
1998) converges a.s. to Q∗ (under the assumption that µk commutes asymptotically with the greedy
policies, which is satisfied for e.g. µk defined by (8)). We believe this is the first such proof.

Increasingly greedy policies The assumption that the sequence of target policies (πk) is in-
creasingly greedy w.r.t. the sequence of (Qk) is more general that just considering greedy policies
w.r.t. (Qk) (which is Watkins’s Q(λ)), and leads to more efficient algorithms. Indeed, using non-
greedy target policies πk may speed up convergence as the traces are not cut as frequently. Of
course, in order to converge to Q∗, we eventually need the target policies (and not the behaviour
policies, as mentioned above) to become greedy in the limit (i.e. εk → 0 as defined in Theorem 2).

Comparison to Qπ(λ). Unlike Retrace(λ), Qπ(λ) does not need to know the behaviour policy
µ. However, it fails to converge when µ is far from π. Retrace(λ) uses its knowledge of µ (for the
chosen actions) to cut the traces and safely handle arbitrary policies π and µ.

Comparison to TB(λ). Similarly to Qπ(λ), TB(λ) does not need the knowledge of the behaviour
policy µ. But as a consequence, TB(λ) is not able to benefit from possible near on-policy situations,
cutting traces unnecessarily when π and µ are close.
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Figure 1: Inter-algorithm score distribution for λ-return (λ = 1) variants and Q-Learning (λ = 0).

Estimating the behavior policy. In the case µ is unknown, it is reasonable to build an estimate µ̂
from observed samples and use µ̂ instead of µ in the definition of the trace coefficients cs. This may
actually even lead to a better estimate, as analyzed by Li et al. (2015).
Continuous action space. Let us mention that Theorems 1 and 2 extend to the case of (mea-
surable) continuous or infinite action spaces. The trace coefficients will make use of the densities
min(1, dπ/dµ) instead of the probabilities min(1, π/µ). This is not possible with TB(λ).
Open questions include: (1) Removing the technical assumption that Pπk and Pπk∧µk asymp-
totically commute, (2) Relaxing the Markov assumption in the control case in order to allow trace
coefficients cs of the form (9).

5 Experimental Results

To validate our theoretical results, we employ Retrace(λ) in an experience replay (Lin, 1993) setting,
where sample transitions are stored within a large but bounded replay memory and subsequently
replayed as if they were new experience. Naturally, older data in the memory is usually drawn from
a policy which differs from the current policy, offering an excellent point of comparison for the
algorithms presented in Section 2.

Our agent adapts the DQN architecture of Mnih et al. (2015) to replay short sequences from the
memory (details in the appendix) instead of single transitions. The Q-function target update for a
sample sequence xt, at, rt, · · · , xt+k is

∆Q(xt, at) =

t+k−1∑
s=t

γs−t
( s∏
i=t+1

ci

)[
r(xs, as) + γEπQ(xs+1, ·)−Q(xs, as)

]
.

We compare our algorithms’ performance on 60 different Atari 2600 games in the Arcade Learning
Environment (Bellemare et al., 2013) using Bellemare et al.’s inter-algorithm score distribution.
Inter-algorithm scores are normalized so that 0 and 1 respectively correspond to the worst and best
score for a particular game, within the set of algorithms under comparison. If g ∈ {1, . . . , 60} is a
game and zg,a the inter-algorithm score on g for algorithm a, then the score distribution function is
f(x) := |{g : zg,a ≥ x}|/60. Roughly, a strictly higher curve corresponds to a better algorithm.

Across values of λ, λ = 1 performs best, save for Q∗(λ) where λ = 0.5 obtains slightly superior
performance. However, is highly sensitive to the choice of λ (see Figure 1, left, and Table 2 in the
appendix). Both Retrace(λ) and TB(λ) achieve dramatically higher performance than Q-Learning
early on and maintain their advantage throughout. Compared to TB(λ), Retrace(λ) offers a narrower
but still marked advantage, being the best performer on 30 games; TB(λ) claims 15 of the remainder.
Per-game details are given in the appendix.

Conclusion. Retrace(λ) can be seen as an algorithm that automatically adjusts – efficiently and
safely – the length of the return to the degree of ”off-policyness” of any available data.

Acknowledgments. The authors thank Daan Wierstra, Nicolas Heess, Hado van Hasselt, Ziyu
Wang, David Silver, Audrunas Grūslys, Georg Ostrovski, Hubert Soyer, and others at Google Deep-
Mind for their very useful feedback on this work.
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A Proof of Lemma 1

Proof (Lemma 1). Let ∆Q := Q−Qπ . We begin by rewriting (3):

RQ(x, a) =
∑
t≥0

γtEµ

[( t∏
s=1

cs

)(
rt + γ

[
EπQ(xt+1, ·)− ct+1Q(xt+1, at+1)

)]]
.

Since Qπ is the fixed point ofR, we have

Qπ(x, a) = RQπ(x, a) =
∑
t≥0

γtEµ

[( t∏
s=1

cs

)(
rt + γ

[
EπQπ(xt+1, ·)− ct+1Q

π(xt+1, at+1)
)]]

,

from which we deduce that

RQ(x, a)−Qπ(x, a) =
∑
t≥0

γtEµ
[( t∏

s=1

cs

)(
γ
[
Eπ∆Q(xt+1, ·)− ct+1∆Q(xt+1, at+1)

])]

=
∑
t≥1

γtEµ
[( t−1∏

s=1

cs

)([
Eπ∆Q(xt, ·)− ct∆Q(xt, at)

])]
.

B Increasingly greedy policies

Recall the definition of an increasingly greedy sequence of policies.

Definition 2. We say that a sequence of policies (πk) is increasingly greedy w.r.t. a sequence of
functions (Qk) if the following property holds for all k:

Pπk+1Qk+1 ≥ PπkQk+1.

It is obvious to see that this property holds if all policies πk are greedy w.r.t. Qk. Indeed in such
case, T πk+1Qk+1 = T Qk+1 ≥ T πQk+1 for any π.

We now prove that this property holds for εk-greedy policies (with non-increasing (εk)) as well as
soft-max policies (with non-decreasing (βk)), as stated in the two lemmas below.

Of course not all policies satisfy this property (a counter-example being πk(a|x) :=
arg mina′ Qk(x, a′)).

Lemma 2. Let (εk) be a non-increasing sequence. Then the sequence of policies (πk) which are
εk-greedy w.r.t. the sequence of functions (Qk) is increasingly greedy w.r.t. that sequence.

Proof. From the definition of an ε-greedy policy we have:

Pπk+1Qk+1(x, a) =
∑
y

p(y|x, a)
[
(1− εk+1) max

b
Qk+1(y, b) + εk+1

1

A

∑
b

Qk+1(y, b)
]

≥
∑
y

p(y|x, a)
[
(1− εk) max

b
Qk+1(y, b) + εk

1

A

∑
b

Qk+1(y, b)
]

≥
∑
y

p(y|x, a)
[
(1− εk)Qk+1(y, arg max

b
Qk(y, b)) + εk

1

A

∑
b

Qk+1(y, b)
]

= PπkQk+1,

where we used the fact that εk+1 ≤ εk.

Lemma 3. Let (βk) be a non-decreasing sequence of soft-max parameters. Then the sequence
of policies (πk) which are soft-max (with parameter βk) w.r.t. the sequence of functions (Qk) is
increasingly greedy w.r.t. that sequence.
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Proof. For any Q and y, define πβ(b) = eβQ(y,b)∑
b′ e

βQ(y,b′) and f(β) =
∑
b πβ(b)Q(y, b). Then we have

f ′(β) =
∑
b

[
πβ(b)Q(y, b)− πβ(b)

∑
b′

πβ(b′)Q(y, b′)
]
Q(y, b)

=
∑
b

πβ(b)Q(y, b)2 −
(∑

b

πβ(b)Q(y, b)
)2

= Vb∼πβ
[
Q(y, b)

]
≥ 0.

Thus β 7→ f(β) is a non-decreasing function, and since βk+1 ≥ βk, we have

Pπk+1Qk+1(x, a) =
∑
y

p(y|x, a)
∑
b

eβk+1Qk+1(y,b)∑
b′ e

βk+1Qk+1(y,b′)
Qk+1(y, b)

≥
∑
y

p(y|x, a)
∑
b

eβkQk+1(y,b)∑
b′ e

βkQk+1(y,b′)
Qk+1(y, b)

= PπkQk+1(x, a).

C Proof of Theorem 2

As mentioned in the main text, since cs is Markovian, we can define the (sub)-probability transition
operator

(P cµQ)(x, a) :=
∑
x′

∑
a′

p(x′|x, a)µ(a′|x′)c(a′, x′)Q(x′, a′).

The Retrace(λ) operator then writes

RkQ = Q+
∑
t≥0

γt(P cµk)t(T πkQ−Q) = Q+ (I − γP cµk)−1(T πkQ−Q).

Proof. We now lower- and upper-bound the term Qk+1 −Q∗.

Upper bound on Qk+1 −Q∗. Since Qk+1 = RkQk, we have
Qk+1 −Q∗ = Qk −Q∗ + (I − γP cµk)−1

[
T πkQk −Qk

]
= (I − γP cµk)−1

[
T πkQk −Qk + (I − γP cµk)(Qk −Q∗)]

= (I − γP cµk)−1
[
T πkQk −Q∗ − γP cµk(Qk −Q∗)]

= (I − γP cµk)−1
[
T πkQk − T Q∗ − γP cµk(Qk −Q∗)]

≤ (I − γP cµk)−1
[
γPπk(Qk −Q∗)− γP cµk(Qk −Q∗)]

= γ(I − γP cµk)−1
[
Pπk − P cµk

]
(Qk −Q∗),

= Ak(Qk −Q∗), (10)
where Ak := γ(I − γP cµk)−1

[
Pπk − P cµk

]
.

Now let us prove that Ak has non-negative elements, whose sum over each row is at most γ. Let e
be the vector with 1-components. By rewriting Ak as γ

∑
t≥0 γ

t(P cµk)t(Pπk −P cµk) and noticing
that

(Pπk − P cµk)e(x, a) =
∑
x′

∑
a′

p(x′|x, a)[πk(a′|x′)− c(a′, x′)µk(a′|x′)] ≥ 0, (11)

it is clear that all elements of Ak are non-negative. We have

Ake = γ
∑
t≥0

γt(P cµk)t
[
Pπk − P cµk

]
e

= γ
∑
t≥0

γt(P cµk)te−
∑
t≥0

γt+1(P cµk)t+1e

= e− (1− γ)
∑
t≥0

γt(P cµk)te

≤ γe, (12)
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(since
∑
t≥0 γ

t(P cµk)te ≥ e). Thus Ak has non-negative elements, whose sum over each row, is at
most γ. We deduce from (10) that Qk+1 − Q∗ is upper-bounded by a sub-convex combination of
components of Qk −Q∗; the sum of their coefficients is at most γ. Thus

Qk+1 −Q∗ ≤ γ‖Qk −Q∗‖e. (13)

Lower bound on Qk+1 −Q∗. We have

Qk+1 = Qk + (I − γP cµk)−1(T πkQk −Qk)

= Qk +
∑
i≥0

γi(P cµk)i(T πkQk −Qk)

= T πkQk +
∑
i≥1

γi(P cµk)i(T πkQk −Qk)

= T πkQk + γP cµk(I − γP cµk)−1(T πkQk −Qk). (14)

Now, from the definition of εk we have T πkQk ≥ T Qk − εk‖Qk‖ ≥ T π
∗
Qk − εk‖Qk‖, thus

Qk+1 −Q∗ = Qk+1 − T πkQk + T πkQk − T π
∗
Qk + T π

∗
Qk − T π

∗
Q∗

≥ Qk+1 − T πkQk + γPπ
∗
(Qk −Q∗)− εk‖Qk‖e

Using (14) we derive the lower bound:

Qk+1 −Q∗ ≥ γP cµk(I − γP cµk)−1(T πkQk −Qk) + γPπ
∗
(Qk −Q∗)− εk‖Qk‖. (15)

Lower bound on T πkQk −Qk. By hypothesis, (πk) is increasingly greedy w.r.t. (Qk), thus

T πk+1Qk+1 −Qk+1 ≥ T πkQk+1 −Qk+1

= T πkRkQk −RkQk
= r + (γPπk − I)RkQk
= r + (γPπk − I)

[
Qk + (I − γP cµk)−1(T πkQk −Qk)

]
= T πkQk −Qk + (γPπk − I)(I − γP cµk)−1(T πkQk −Qk)

= γ
[
Pπk − P cµk

]
(I − γP cµk)−1(T πkQk −Qk)

= Bk(T πkQk −Qk), (16)

where Bk := γ[Pπk − P cµk ](I − γP cµk)−1. Since Pπk − P cµk has non-negative elements (as
proven in (11)) as well as (I − γP cµk)−1, then Bk has non-negative elements as well. Thus

T πkQk −Qk ≥ Bk−1Bk−2 . . . B0(T π0Q0 −Q0) ≥ 0,

since we assumed Tπ0Q0 −Q0 ≥ 0. Thus (15) implies that

Qk+1 −Q∗ ≥ γPπ
∗
(Qk −Q∗)− εk‖Qk‖.

and combining the above with (13) we deduce

‖Qk+1 −Q∗‖ ≤ γ‖Qk −Q∗‖+ εk‖Qk‖.

Now assume that εk → 0. We first deduce that Qk is bounded. Indeed as soon as εk < (1 − γ)/2,
we have

‖Qk+1‖ ≤ ‖Q∗‖+ γ‖Qk −Q∗‖+
1− γ

2
‖Qk‖ ≤ (1 + γ)‖Q∗‖+

1 + γ

2
‖Qk‖.

Thus lim sup ‖Qk‖ ≤ 1+γ
1−(1+γ)/2‖Q

∗‖. Since Qk is bounded, we deduce that lim supQk = Q∗.
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D Proof of Theorem 3

We first prove convergence of the general online algorithm.
Theorem 4. Consider the algorithm

Qk+1(x, a) = (1− αk(x, a))Qk(x, a) + αk(x, a)(RkQk(x, a) + ωk(x, a) + υk(x, a)), (17)

and assume that (1) ωk is a centered, Fk-measurable noise term of bounded variance, and (2) υk
is bounded from above by θk(‖Qk‖+ 1), where (θk) is a random sequence that converges to 0 a.s.
Then, under the same assumptions as in Theorem 3, we have that Qk → Q∗ almost surely.

Proof. We writeR forRk. Let us prove the result in three steps.

Upper bound onRQk −Q∗. The first part of the proof is similar to the proof of (13), so we have

RQk −Q∗ ≤ γ‖Qk −Q∗‖e. (18)

Lower bound onRQk −Q∗. Again, similarly to (15) we have

RQk −Q∗ ≥ γλPπk∧µk(I − γλPπk∧µk)−1(T πkQk −Qk)

+γPπ
∗
(Qk −Q∗)− εk‖Qk‖. (19)

Lower-bound on T πkQk − Qk. Since the sequence of policies (πk) is increasingly greedy
w.r.t. (Qk), we have

T πk+1Qk+1 −Qk+1 ≥ T πkQk+1 −Qk+1

= (1− αk)T πkQk + αkT πk(RQk + ωk + υk)−Qk+1

= (1− αk)(T πkQk −Qk) + αk
[
T πkRQk −RQk + ω′k + υ′k

]
,(20)

where ω′k := (γPπk − I)ωk and υ′k := (γPπk − I)υk. It is easy to see that both ω′k and υ′k continue
to satisfy the assumptions on ωk, and υk. Now, from the definition of theR operator, we have

T πkRQk −RQk = r + (γPπk − I)RQk
= r + (γPπk − I)

[
Qk + (I − γλPπk∧µk)−1(T πkQk −Qk)

]
= T πkQk −Qk + (γPπk − I)(I − γλPπk∧µk)−1(T πkQk −Qk)

= γ(Pπk − λPπk∧µk)(I − γλPπk∧µk)−1(T πkQk −Qk).

Using this equality into (20) and writing ξk := T πkQk −Qk, we have

ξk+1 ≥ (1− αk)ξk + αk
[
Bkξk + ω′k + υ′k

]
, (21)

where Bk := γ(Pπk − λPπk∧µk)(I − γλPπk∧µk)−1. The matrix Bk is non-negative but may
not be a contraction mapping (the sum of its components per row may be larger than 1). Thus
we cannot directly apply Proposition 4.5 of Bertsekas and Tsitsiklis (1996). However, as we have
seen in the proof of Theorem 2, the matrix Ak := γ(I − γλPπk∧µk)−1(Pπk − λPπk∧µk) is a
γ-contraction mapping. So now we relate Bk to Ak using our assumption that Pπk and Pπk∧µk
commute asymptotically, i.e. ‖PπkPπk∧µk − Pπk∧µkPπk‖ = ηk with ηk → 0. For any (sub)-
transition matrices U and V , we have

U(I − λγV )−1 =
∑
t≥0

(λγ)tUV t

=
∑
t≥0

(λγ)t
[ t−1∑
s=0

V s(UV − V U)V t−s−1 + V tU
]

= (I − λγV )−1U +
∑
t≥0

(λγ)t
t−1∑
s=0

V s(UV − V U)V t−s−1.

Replacing U by Pπk and V by Pπk∧µk , we deduce

‖Bk −Ak‖ ≤ γ
∑
t≥0

t(λγ)tηk = γ
1

(1− λγ)2
ηk.
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Thus, from (21),
ξk+1 ≥ (1− αk)ξk + αk

[
Akξk + ω′k + υ′′k

]
, (22)

where υ′′k := υ′k+γ
∑
t≥0 t(λγ)tηk‖ξk‖ continues to satisfy the assumptions on υk (since ηk → 0).

Now, let us define another sequence ξ′k as follows: ξ′0 = ξ0 and

ξ′k+1 = (1− αk)ξ′k + αk(Akξ
′
k + ω′k + υ′′k ).

We can now apply Proposition 4.5 of Bertsekas and Tsitsiklis (1996) to the sequence (ξ′k). The
matrices Ak are non-negative, and the sum of their coefficients per row is bounded by γ, see (12),
thus Ak are γ-contraction mappings and have the same fixed point which is 0. The noise ω′k is
centered and Fk-measurable and satisfies the bounded variance assumption, and υ′′k is bounded
above by (1 + γ)θ′k(‖Qk‖+ 1) for some θ′k → 0. Thus limk ξ

′
k = 0 almost surely.

Now, it is straightforward to see that ξk ≥ ξ′k for all k ≥ 0. Indeed by induction, let us assume that
ξk ≥ ξ′k. Then

ξk+1 ≥ (1− αk)ξk + αk(Akξk + ω′k + υ′′k )

≥ (1− αk)ξ′k + αk(Akξ
′
k + ω′k + υ′′k )

= ξ′k+1,

since all elements of the matrix Ak are non-negative. Thus we deduce that

lim inf
k→∞

ξk ≥ lim
k→∞

ξ′k = 0 (23)

Conclusion. Using (23) in (19) we deduce the lower bound:

lim inf
k→∞

RQk −Q∗ ≥ lim inf
k→∞

γPπ
∗
(Qk −Q∗), (24)

almost surely. Now combining with the upper bound (18) we deduce that

‖RQk −Q∗‖ ≤ γ‖Qk −Q∗‖+O(εk‖Qk‖) +O(ξk).

The last two terms can be incorporated to the υk(x, a) and ωk(x, a) terms, respectively; we thus
again apply Proposition 4.5 of Bertsekas and Tsitsiklis (1996) to the sequence (Qk) defined by (17)
and deduce that Qk → Q∗ almost surely.

It remains to rewrite the update (7) in the form of (17), in order to apply Theorem 4.

Let zks,t denote the accumulating trace (Sutton and Barto, 1998):

zks,t :=

t∑
j=s

γt−j
( t∏
i=j+1

ci

)
I{(xj , aj) = (xs, as)}.

Let us write Qok+1(xs, as) to emphasize the online setting. Then (7) can be written as

Qok+1(xs, as)← Qok(xs, as) + αk(xs, as)
∑
t≥s

δπkt zks,t, (25)

δπkt := rt + γEπkQok(xt+1, ·)−Qok(xt, at),

Using our assumptions on finite trajectories, and ci ≤ 1, we can show that:

E
[∑
t≥s

zks,t|Fk
]
< E

[
T 2
k |Fk

]
<∞ (26)

where Tk denotes trajectory length. Now, let Dk := Dk(xs, as) :=
∑
t≥s P{(xt, at) = (xs, as)}.

Then, using (26), we can show that the total update is bounded, and rewrite

Eµk
[∑
t≥s

δπkt zks,t

]
= Dk(xs, as)

(
RkQk(xs, as)−Q(xs, as)

)
.
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Finally, using the above, and writing αk = αk(xs, as), (25) can be rewritten in the desired form:

Qok+1(xs, as)← (1− α̃k)Qok(xs, as) + α̃k
(
RkQok(xs, as) + ωk(xs, as) + υk(xs, as)

)
, (27)

ωk(xs, as) := (Dk)−1

∑
t≥s

δπkt zks,t − Eµk

∑
t≥s

δπkt zks,t

 ,

υk(xs, as) := (α̃k)−1
(
Qok+1(xs, as)−Qk+1(xs, as)

)
,

α̃k := αkDk.

It can be shown that the variance of the noise term ωk is bounded, using (26) and the fact that the
reward function is bounded. It follows from Assumptions 1-3 that the modified stepsize sequence
(α̃k) satisfies the conditions of Assumption 1. The second noise term υk(xs, as) measures the
difference between online iterates and the corresponding offline values, and can be shown to satisfy
the required assumption analogously to the argument in the proof of Prop. 5.2 in Bertsekas and
Tsitsiklis (1996). The proof relies on the eligibility coefficients (26) and rewards being bounded, the
trajectories being finite, and the conditions on the stepsizes being satisfied.

We can thus apply Theorem 4 to (27), and conclude that the iterates Qok → Q∗ as k →∞, w.p. 1.

E Asymptotic commutativity of P πk and P πk∧µk

Lemma 4. Let (πk) and (µk) two sequences of policies. If there exists α such that for all x, a,

min(πk(a|x), µk(a|x)) = απk(a|x) + o(1), (28)

then the transition matrices Pπk and Pπk∧µk asymptotically commute: ‖PπkPπk∧µk −
Pπk∧µkPπk‖ = o(1).

Proof. For any Q, we have

(PπkPπk∧µk)Q(x, a) =
∑
y

p(y|x, a)
∑
b

πk(b|y)
∑
z

p(z|y, b)
∑
c

(πk ∧ µk)(c|z)Q(z, c)

= α
∑
y

p(y|x, a)
∑
b

πk(b|y)
∑
z

p(z|y, b)
∑
c

πk(c|z)Q(z, c) + ‖Q‖o(1)

=
∑
y

p(y|x, a)
∑
b

(πk ∧ µk)(b|y)
∑
z

p(z|y, b)
∑
c

πk(c|z)Q(z, c) + ‖Q‖o(1)

= (Pπk∧µkPπk)Q(x, a) + ‖Q‖o(1).

Lemma 5. Let (πQk) a sequence of (deterministic) greedy policies w.r.t. a sequence (Qk). Let (πk)
a sequence of policies that are εk away from (πQk), in the sense that, for all x,

‖πk(·|x)− πQk(x)‖1 := 1− πk(πQk(x)|x) +
∑

a 6=πQk (x)

πk(a|x) ≤ εk.

Let (µk) a sequence of policies defined by:

µk(a|x) =
αµ(a|x)

1− µ(πQk(x)|x)
I{a 6= πQk(x)}+ (1− α)I{a = πQk(x)}, (29)

for some arbitrary policy µ and α ∈ [0, 1]. Assume εk → 0. Then the transition matrices Pπk and
Pπk∧µk asymptotically commute.

Proof. The intuition is that asymptotically πk gets very close to the deterministic policy πQk . In
that case, the minimum distribution (πk ∧ µk)(·|x) puts a mass close to 1− α on the greedy action
πQk(x), and no mass on other actions, thus (πk ∧ µk) gets very close to (1 − α)πk, and Lemma 4
applies (with multiplicative constant 1− α).

Indeed, from our assumption that πk is ε-away from πQk we have:

πk(πQk(x)|x) ≥ 1− εk, and πk(a 6= πQk(x)|x) ≤ εk.
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We deduce that

(πk ∧ µk)(πQk(x)|x) = min(πk(πQk(x)|x), 1− α)

= 1− α+O(εk)

= (1− α)πk(πQk(x)|x) +O(εk),

and

(πk ∧ µk)(a 6= πQk(x)|x) = O(εk)

= (1− α)πk(a|x) +O(εk).

Thus Lemma 4 applies (with a multiplicative constant 1 − α) and Pπk and Pπk∧µk asymptotically
commute.

F Experimental Methods

Although our experiments’ learning problem closely matches the DQN setting used by Mnih et al.
(2015) (i.e. single-thread off-policy learning with large replay memory), we conducted our trials
in the multi-threaded, CPU-based framework of Mnih et al. (2016), obtaining ample result data
from affordable CPU resources. Key differences from the DQN are as follows. Sixteen threads
with private environment instances train simultaneously; each infers with and finds gradients w.r.t. a
local copy of the network parameters; gradients then update a “master” parameter set and local
copies are refreshed. Target network parameters are simply shared globally. Each thread has private
replay memory holding 62,500 transitions (1/16th of DQN’s total replay capacity). The optimizer is
unchanged from (Mnih et al., 2016): “Shared RMSprop” with step size annealing to 0 over 3× 108

environment frames (summed over threads). Exploration parameter (ε) behaviour differs slightly:
every 50,000 frames, threads switch randomly (probability 0.3, 0.4, and 0.3 respectively) between
three schedules (anneal ε from 1 to 0.5, 0.1, or 0.01 over 250,000 frames), starting new schedules at
the intermediate positions where they left old ones.1

Our experiments comprise 60 Atari 2600 games in ALE (Bellemare et al., 2013), with “life” loss
treated as episode termination. The control, minibatched (64 transitions/minibatch) one-step Q-
learning as in (Mnih et al., 2015), shows performance comparable to DQN in our multi-threaded
setup. Retrace, TB, and Q* runs use minibatches of four 16-step sequences (again 64 transi-
tions/minibatch) and the current exploration policy as the target policy π. All trials clamp rewards
into [−1, 1]. In the control, Q-function targets are clamped into [−1, 1] prior to gradient calculation;
analogous quantities in the multi-step algorithms are clamped into [−1, 1], then scaled (divided by)
the sequence length. Coarse, then fine logarithmic parameter sweeps on the games Asterix, Break-
out, Enduro, Freeway, H.E.R.O, Pong, Q*bert, and Seaquest yielded step sizes of 0.0000439 and
0.0000912, and RMSprop regularization parameters of 0.001 and 0.0000368, for control and multi-
step algorithms respectively. Reported performance averages over four trials with different random
seeds for each experimental configuration.

F.1 Algorithmic Performance in Function of λ

We compared our algorithms for different values of λ, using the DQN score as a baseline. As before,
for each λ we compute the inter-algorithm scores on a per-game basis. We then averaged the inter-
algorithm scores across games to produce Table 2 (see also Figure 2 for a visual depiction). We first
remark that Retrace always achieve a score higher than TB, demonstrating that it is efficient in the
sense of Section 2. Next, we note that Q∗ performs best for small values of λ, but begins to fail for
values above λ = 0.5. In this sense, it is also not safe. This is particularly problematic as the safe
threshold of λ is likely to be problem-dependent. Finally, there is no setting of λ for which Retrace
performs particularly poorly; for high values of λ, it achieves close to the top score in most games.
For Retrace(λ) it makes sense to use a values λ = 1 (at least in deterministic environments) as the
trace cutting effect required in off-policy learning is taken care of by the use of the min(1, π/µ)
coefficient. On the contrary, Q∗(λ) only relies on a value λ < 1 to take care of cutting traces for
off-policy data.

1We evaluated a DQN-style single schedule for ε, but our multi-schedule method, similar to the one used
by Mnih et al., yielded improved performance in our multi-threaded setting.
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λ DQN TB Retrace Q∗

0.0 0.5071 0.5512 0.4288 0.4487
0.1 0.4752 0.2798 0.5046 0.651
0.3 0.3634 0.268 0.5159 0.7734
0.5 0.2409 0.4105 0.5098 0.8419
0.7 0.3712 0.4453 0.6762 0.5551
0.9 0.7256 0.7753 0.9034 0.02926
1.0 0.6839 0.8158 0.8698 0.04317

Table 2: Average inter-algorithm scores for each value of λ. The DQN scores are fixed across
different λ, but the corresponding inter-algorithm scores varies depending on the worst and best
performer within each λ.
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Figure 2: Average inter-algorithm scores for each value of λ. The DQN scores are fixed across
different λ, but the corresponding inter-algorithm scores varies depending on the worst and best
performer within each λ. Note that average scores are not directly comparable across different
values of λ.
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Tree-backup(λ) Retrace(λ) DQN Q∗(λ)
ALIEN 2508.62 3109.21 2088.81 154.35

AMIDAR 1221.00 1247.84 772.30 16.04
ASSAULT 7248.08 8214.76 1647.25 260.95
ASTERIX 29294.76 28116.39 10675.57 285.44

ASTEROIDS 1499.82 1538.25 1403.19 308.70
ATLANTIS 2115949.75 2110401.90 1712671.88 3667.18

BANK HEIST 808.31 797.36 549.35 1.70
BATTLE ZONE 22197.96 23544.08 21700.01 3278.93
BEAM RIDER 15931.60 17281.24 8053.26 621.40

BERZERK 967.29 972.67 627.53 247.80
BOWLING 40.96 47.92 37.82 15.16

BOXING 91.00 93.54 95.17 -29.25
BREAKOUT 288.71 298.75 332.67 1.21
CARNIVAL 4691.73 4633.77 4637.86 353.10

CENTIPEDE 1199.46 1715.95 1037.95 3783.60
CHOPPER COMMAND 6193.28 6358.81 5007.32 534.83

CRAZY CLIMBER 115345.95 114991.29 111918.64 1136.21
DEFENDER 32411.77 33146.83 13349.26 1838.76

DEMON ATTACK 68148.22 79954.88 8585.17 310.45
DOUBLE DUNK -1.32 -6.78 -5.74 -23.63

ELEVATOR ACTION 1544.91 2396.05 14607.10 930.38
ENDURO 1115.00 1216.47 938.36 12.54

FISHING DERBY 22.22 27.69 15.14 -98.58
FREEWAY 32.13 32.13 31.07 9.86

FROSTBITE 960.30 935.42 1124.60 45.07
GOPHER 13666.33 14110.94 11542.46 50.59

GRAVITAR 30.18 29.04 271.40 13.14
H.E.R.O. 25048.33 21989.46 17626.90 12.48

ICE HOCKEY -3.84 -5.08 -4.36 -15.68
JAMES BOND 560.88 641.51 705.55 21.71

KANGAROO 11755.01 11896.25 4101.92 178.23
KRULL 9509.83 9485.39 7728.66 429.26

KUNG-FU MASTER 25338.05 26695.19 17751.73 39.99
MONTEZUMA’S REVENGE 0.79 0.18 0.10 0.00

MS. PAC-MAN 2461.10 3208.03 2654.97 298.58
NAME THIS GAME 11358.81 11160.15 10098.85 1311.73

PHOENIX 13834.27 15637.88 9249.38 107.41
PITFALL -37.74 -43.85 -392.63 -121.99
POOYAN 5283.69 5661.92 3301.69 98.65

PONG 20.25 20.20 19.31 -20.99
PRIVATE EYE 73.44 87.36 44.73 -147.49

Q*BERT 13617.24 13700.25 12412.85 114.84
RIVER RAID 14457.29 15365.61 10329.58 922.13

ROAD RUNNER 34396.52 32843.09 50523.75 418.62
ROBOTANK 36.07 41.18 49.20 5.77
SEAQUEST 3557.09 2914.00 3869.30 175.29

SKIING -25055.94 -25235.75 -25254.43 -24179.71
SOLARIS 1178.05 1135.51 1258.02 674.58

SPACE INVADERS 6096.21 5623.34 2115.80 227.39
STAR GUNNER 66369.18 74016.10 42179.52 266.15

SURROUND -5.48 -6.04 -8.17 -9.98
TENNIS -1.73 -0.30 13.67 -7.37

TIME PILOT 8266.79 8719.19 8228.89 657.59
TUTANKHAM 164.54 199.25 167.22 2.68

UP AND DOWN 14976.51 18747.40 9404.95 530.59
VENTURE 10.75 22.84 30.93 0.09

VIDEO PINBALL 103486.09 228283.79 76691.75 6837.86
WIZARD OF WOR 7402.99 8048.72 612.52 189.43
YAR’S REVENGE 14581.65 26860.57 15484.03 1913.19

ZAXXON 12529.22 15383.11 8422.49 0.40
Times Best 16 30 12 2

Table 3: Final scores achieved by the different λ-return variants (λ = 1). Highlights indicate high
scores.
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