
7 Appendix

We first state the large deviation inequality for vector-valued martingales, which is the generalization
of Azuma-Hoeffding inequality for scalar valued martingales.

Theorem 1.8 of [13]: LetX0, X1, . . . , Xm be a weak martingale sequence taking values in euclidean
space Rd, with E[Xi|Xi−1] = Xi−1. Let X0 = 0 and ‖Xi − Xi−1‖2 ≤ 1, for i = 1, 2, . . . ,m.
Then, for every ε > 0,

Pr[‖Xm‖2 ≥ ε] < 2e2e
−ε2
m (8)

We use the concentration inequality to get a uniform confidence bound, over the space of learner’s
action, on the deviation of estimated reward from true reward, after each estimate of mean reward
vector is produced.
Lemma 5. At the end of exploration phase within phase b, b = 1, 2, . . ., of Algorithm PEGE, the

estimator of reward vector θ∗p is θ̂(b) =

∑b
i=1

∑iβ

j=1 θ̃j,i∑b
j=1 j

β
. Then, ∀ η > 0,

Pr[∀ x ∈ X : |r̄(x, θ̂(b))− r̄(x, θ∗p)| ≤ η] ≥ 1− 2e2e
−(

∑bβ
i=1 i

β)η2

R2β2
σ (9)

where βσ is the constant as defined in Eq. 3 and R is the Lipschitz constant defined in Assumption 3.

Proof. Let {Xi,j}j=1,...,iβ
i=1,...,b

be a sequence of random vectors, defined as follows:

Xi,j =

∑i−1
i′=1

∑i′β

j′=1 θ
∗
p +

∑j
k=1 θ

∗
p − (

∑i−1
i′=1

∑i′β

j′=1 θ̃j′,i′ +
∑j
k=1 θ̃k,i)∑b

i′′=1

∑(i′′)β

j′′=1 βσ
(10)

It can be checked that the `2 norm of the difference between any two consecutive random vectors

is bounded by a constant. That is, ‖Xi,j − Xi,j−1‖2 =
‖θ∗p − θ̃j,i‖2∑b
i′′=1

∑(i′′)β

j′′=1 βσ
≤ 1∑b

i′′=1(i′′)β
and

‖Xi+1,1 −Xi,iβ‖2
‖θ∗p − θ̃1,i+1‖2∑b
i′′=1

∑(i′′)β

j′′=1 βσ
≤ 1∑b

i′′=1(i′′)β
.

Also, θ̃j,i is independent of all estimators formed before θ̃j,i in Algorithm PEGE. Thus,

E[Xi,j −Xi,j−1|Xi,j−1] = E

[
θ∗p − θ̃j,i∑b

i′′=1

∑(i′′)β

j′′=1 βσ
|Xi,j−1

]

= E

[
θ∗p − θ̃j,i∑b

i′′=1

∑(i′′)β

j′′=1 βσ

]
= 0

(11)

Thus, {Xi,j}j=1,...,iβ
i=1,...,b

satisfy the criteria of weak martingale sequence and hence, by the large

deviation inequality of vector valued martingales, we have,

∀ ε > 0, Pr[‖Xb,bβ‖2 ≥ ε] < 2e2e

 −ε2∑b
i=1

∑iβ
j=1

1

(
∑b
i=1

iβ)2


= 2e2e−ε

2 ∑b
i=1 i

β

.

Now, it can be clearly seen that ‖θ∗p − θ̂(b)‖2 = βσ‖Xb,bβ‖2 and let η = βσε. Then, ∀ η > 0, we get

Pr[‖θ∗p − θ̂(b)‖2 ≥ η] ≤ 2e2e
−(

∑bβ
i=1 i

β)η2

β2
σ .

Using the Lipschitz property of expected reward function (Assumption 3), we have
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Pr(∃ x ∈ X : |r̄(x, θ̂(b))− r̄(x, θ∗p)| ≥ η) ≤ Pr(R · ‖θ∗p − θ̂(b)‖2 ≥ η)

≤ 2e2e
−(

∑bβ
i=1 i

β)η2

R2β2
σ

(12)

Taking complement of the event completes the proof.

7.1 Proof of Results in Section 3

7.1.1 Proof of Theorem 1

We first restate the theorem.

Distribution Independent Regret: When Algorithm PEGE is initialized with the parameters
C(a) = log a, α = 1/2 and β = 0, and the online game is played over T rounds, we get the
following bound on expected regret:

R(T ) ≤ Rmax|σ|T 2/3 + 2RβσT
2/3
√

log 2e2 + 2 log T +Rmax (13)

where βσ is the constant as defined in Eq. 3.

Proof. Let Algorithm PEGE run for K phases, with parameters initialized as C(a) = log a, α = 1/2
and β = 0.

Exploration regret: During every exploration phase, the expected regret is bounded by |σ|Rmax,
whereRmax is as given in Assumption 3. Thus, total expected regret due to exploration isK|σ|Rmax.

Exploitation regret: Let x∗ ∈ argmaxx∈X r̄(x, θ
∗
p) and x(b) ∈ argmaxx∈X r̄(x, θ̂(b)). During

every exploitation round within phase b of Algorithm PEGE, the expected regret is |r̄(x(b), θ∗p)−
r̄(x∗, θ∗p)| .
Now, from Lemma 5, with β = 0, the following holds w.p. ≥ 1− δb,

∀ x, |r̄(x, θ∗p)− r̄(x, θ̂(b)| ≤

√
R2β2

σ log( 2e2

δb
)

b︸ ︷︷ ︸
ηb

(14)

Then, w.p. ≥ 1− δb, the following event holds true: |r̄(x∗, θ∗p)− r̄(x(b), θ∗p)| ≤ 2ηb, as explained:

r̄(x∗, θ∗p) ≤ r̄(x∗, θ̂(b)) + ηb from Eq. 14

≤ r̄(x(b), θ̂(b)) + ηb
≤ r̄(x(b), θ∗p) + 2ηb from Eq. 14

Thus, the event |r̄(x∗, θ∗p) − r̄(x(b), θ∗p)| ≤ 2ηb holds true w.p. ≥ 1 − δb, for every fixed phase b.
Then, w.p. ≥ 1−

∑K
i=1 δi, the following holds true:

∀ b, |r̄(x∗, θ∗p)− r̄(x(b), θ∗p)| ≤ 2ηb

Note that the expected regret per round is always bounded byRmax (since expected reward is bounded
by Rmax) .

The number of rounds of exploitation in phase b is bα. Hence, the total expected regret due to
exploitation, over K phases is:

K∑
i=1

(1−
K∑
j=1

δj)
2Rβσ

√
log(2e2/δi)√
i

+ (

K∑
j=1

δj)Rmax︸ ︷︷ ︸
expected regret per exploitation round

 iα
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Taking δ1 = δ2 = . . . = δK = δ, and summing over exploration and exploitation regret over K
phases, we get

R(T ) ≤ K|σ|Rmax +

K∑
i=1

(
(1−Kδ)

2Rβσ
√

log(2e2/δ)√
i

+ (Kδ)Rmax

)
iα (15)

Using the inequality
∑K
i=1 i

y ≤
∫K

0
iydy ≤ Ky+1, we get expected regret:

R(T ) ≤ K|σ|Rmax + (1−Kδ)2Rβσ
√

log(2e2/δ)Kα+1/2 +KδRmaxK
α+1 (16)

Now, we relate K to total time T as: T = |σ|K +
∑K
i=1 i

α ∼ Kα+1, for large K.

Hence K ∼ T
1

1+α . Substituting value of K in Eq 16, and taking α = 1/2 and δ = 1
KT gives us the

required bound on expected regret.

Our next lemma shows that as the number of phases b grows in Algorithm PEGE, the probability of
selecting a sub-optimal arm for greedy exploitation shrinks.

Lemma 6. At the end of exploration phase within phase b, b = 1, 2, . . ., the estimator constructed is

θ̂(b) =

∑b
i=1

∑iβ

j=1 θ̃j,i∑b
j=1 j

β
. Then the following holds,

Pr(argmax
x∈X

r̄(x, θ̂(b)) 6⊆ argmax
x∈X

r̄(x, θ∗p)) ≤ 2e2e
−(

∑bβ
i=1 i

β)∆2

4R2β2
σ (17)

Proof. Let us assume x′ ∈ argmaxx∈X r̄(x, θ̂(b)) such that x′ /∈ argmaxx∈X r̄(x, θ
∗
p). Let x∗ ∈

argmaxx∈X r̄(x, θ
∗
p). Then, by our assumption, r̄(x′, θ̂(b)) ≥ r̄(x∗, θ̂(b)). By definition of gap ∆,

we also have r̄(x∗, θ∗p)− r̄(x′, θ∗p) ≥ ∆. The two inequalities imply that at least one of the following
two inequalities has to hold: either |r̄(x∗, θ∗p)− r̄(x∗, θ̂(b))| ≥ ∆

2 or |r̄(x′, θ̂(b))− r̄(x′, θ∗p)| ≥ ∆
2 .

Thus, argmaxx∈X r̄(x, θ̂(b)) 6⊆ argmaxx∈X r̄(x, θ
∗
p) =⇒ ∃ x ∈ X : |r̄(x, θ∗p)− r̄(x, θ̂(b))| ≥ ∆

2 .
By using Lemma 5, and substituting η = ∆

2 , we get our result.

7.1.2 Proof of Theorem 2

We restate the theorem before proving:

Distribution Dependent Regret: When Algorithm PEGE is initialized with the parameters C(a) =
h · a, for a tuning parameter h > 0, α = 1 and β = 1, and the online game is played over T rounds,
we get the following bound on expected regret:

R(T ) ≤
∑
x∈σ

∆x

(
log T

h

)2

+
4
√

2πe2R∆maxβσ
∆

e
h2(2R2β2

σ)

∆2 . (18)

Proof. Let total number of phases that the algorithm runs for be K. We relate K to total time T as
(after substituting parameters C(a) = h · a, α = 1 and β = 1 in Algorithm PEGE):

T =
∑K
i=1 |σ|i+

∑K
i=1 e

hi ≥ ehK =⇒ K ≤ log T

h
.

Exploration regret: Since we are in distribution dependent setting now, expected exploration regret
in each exploration phase is

∑
x∈σ ∆x. Hence, total expected exploration regret is upper bounded by:∑K

i=1(
∑
x∈σ ∆x)i =

∑
x∈σ ∆x

K(K+1)
2 ≤ (

∑
x∈σ ∆x)

log2 T

h2
.
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Exploitation regret: When a sub-optimal arm is picked in an exploitation round, the expected regret
in that round is: ≤ ∆max. Using Lemma 6 with β = 1, the total expected regret due to exploitation
over K phases is upper bounded by:

K∑
i=1

2e2∆max e
hi− i(i+1)

2
∆2

4R2β2
σ︸ ︷︷ ︸

expected exploitation regret upper bound in phase i

≤ 2e2∆max

∞∑
i=1

e
hi− i(i+1)

2
∆2

4R2β2
σ

≤ 2e2∆max

∞∑
i=1

e
hi− i22

∆2

4R2β2
σ

≤ 2e2∆max

∫ ∞
−∞

e
hy− y

2

2
∆2

4R2β2
σ dy

(19)

The integral is the moment generating function (adjusting for normalization constant) of a gaussian

random variable Y ∈ N (0,
4R2β2

σ

∆2 ). Thus, the integral is E[ehY ] = e
2h2R2β2

σ
∆2 and total expected

regret due to exploitation is upper bounded by:
4e2∆max

√
2πRβσ

∆
e

2h2R2β2
σ

∆2 .

Summing over exploration and exploitation regrets completes the proof.

7.2 Proof of Results in Section 4

The following theorem is about the version of PEGE that Algorithm 3 calls on line 8. It will be
needed in the proof of Theorem 4.
Theorem 7. (Distribution Dependent Regret, version 2) When Algorithm 1 is initialized with the
parameters C(a) = h · a, for a tuning parameter 0 < h < ∆2

4R2β2
σ

, α = 1 and β = 0, and the online
game is played over T rounds, we get the following bound on expected regret:

R(T ) ≤
∑
x∈σ

∆x
log T

h
+

2e2∆max

∆2

4R2β2
σ
− h

(20)

Note: Compared to Theorem 2, the regret bound has better dependence on T — O(log T ) instead
of O(log2 T ) — but it also has a disadvantage. If the tuning parameter h is incorrectly set, say
h ≥ ∆2

4R2β2
σ

, then the bound does not even apply.

Proof. The proof is similar to proof of Theorem 2. We highlight the key steps:

Let total number of phases that the algorithm runs for be K. First: T =
∑K
i=1 |σ|+

∑K
i=1 e

hi ≥ ehK

=⇒ K ≤ log T

h
.

Expected regret due to exploration:
∑K
i=1(

∑
x∈σ ∆x) =

∑
x∈σ ∆xK ≤ (

∑
x∈σ ∆x)

log T

h
.

Expected regret due to exploitation: When a sub-optimal arm is picked, expected regret ≤ ∆max.
Using Lemma 6 with β = 0, and tuning parameter h < ∆2

4R2β2
σ

, we get total expected regret due to
exploitation

2e2∆max

K∑
i=1

e
hi−i ∆2

4R2β2
σ ≤ 2e2∆max

∞∑
i=1

e
hi−i ∆2

4R2β2
σ

= 2e2∆max

∞∑
i=1

e
−i( ∆2

4R2β2
σ
−h)

≤ 2e2∆max

∫ ∞
0

e
−y( ∆2

4R2β2
σ
−h)

dy

=
2e2∆max

∆2

4R2β2
σ
− h

(21)
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7.2.1 Proof of Theorem 3

Proof. Note that Assumption 1 through Assumption 3 hold. Therefore, from Lemma 5, with β = 0
we get, with probability at least 1− δb,

∀x, |r̄(x, θ∗p)− r̄(x, θ̂(b)| ≤

√
R2β2

σ log( 2e2

δb
)

b

Let δb = δ/2b2 which implies
∑
b≥1 δb = π2δ/12 < δ. Thus, setting w(b) =

√
R2β2

σ log( 4e2b2

δ )

b
,

the event E defined as

∀b ≥ 1,∀x ∈ X , |r̄(x, θ̂(b))− r̄(x, θ∗p)| ≤ w(b). (22)

holds with probability at least 1− δ.

1. Note that b ≥ T1(δ) implies 8w(b) < ∆. This is because the latter has the form eLb > Mb
with M = 2e/δ and L = ∆2/(128R2β2

σ). Setting b ≥ 2/L log(2M/L) guarantees that
eLb/2 ≥ 2M/L which implies that eLb ≥Mb since eLb/2 ≥ 1 + Lb/2 ≥ Lb/2.

If 8w(b) < ∆ then clearly 2w(b) < ∆. Let x 6= x∗ be arbitrary. We have the following
chain of implications:

2w(b) < ∆

⇒ 2w(b) < r̄(x∗, θ∗p)− r̄(x∗−, θ∗p) (def. of ∆)

⇒ 2w(b) < r̄(x∗, θ∗p)− r̄(x, θ∗p) (Assumption 4)

⇒ 0 < r̄(x∗, θ̂(b))− r̄(x, θ̂(b)). (∵ E holds)

This means that the If condition on line 12 will evaluate to true and x̂(b) on line 13 will be
set to x∗.

We also have the following chain of implications:

8w(b) < ∆

⇒ 8w(b) < r̄(x∗, θ∗p)− r̄(x∗−, θ∗p) (def. of ∆)

⇒ 8w(b) < r̄(x∗, θ∗p)− r̄(x̂−(b), θ∗p) (∵ r̄(x̂−(b), θ∗p) ≤ r̄(x∗−, θ∗p))

⇒ 8w(b) < r̄(x̂(b), θ∗p)− r̄(x̂−(b), θ∗p) (∵ x̂(b) = x∗)

⇒ 6w(b) < r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)). (∵ E holds)

This means that the If condition on line 15 will evaluate to true and the algorithm will stop
and output an estimate ∆̂.

Now suppose the algorithm stops and does not output “threshold exceeded” which means
that the If conditions on line 12 and line 15 were both true at some episode b. Let x 6= x̂(b)
be arbitrary. We have the following chain of implications:

6w(b) < r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)) (line 15)

⇒ 6w(b) < r̄(x̂(b), θ̂(b))− r̄(x, θ̂(b)) (x̂(b) unique maximizer by line 12)
⇒ 4w(b) < r̄(x̂(b), θ∗p)− r̄(x, θ∗p). (∵ E holds)

This means, along with Assumption 4, that x̂(b) = x∗. We also have,

6w(b) < r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)) (line 15)

⇒ 6w(b) < r̄(x̂(b), θ̂(b))− r̄(x∗−, θ̂(b)) (∵ r̄(x̂−(b), θ̂(b)) ≥ r̄(x∗−, θ̂(b)))
⇒ 4w(b) < r̄(x̂(b), θ∗p)− r̄(x∗−, θ∗p) (∵ E holds)

⇒ 4w(b) < r̄(x∗, θ∗p)− r̄(x∗−, θ∗p) (∵ x̂(b) = x∗)

⇒ 4w(b) < ∆. (def. of ∆)

14



Now we prove that the output ∆̂ lies in the right range. We have

∆̂ = r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)) (line 16)
≥ r̄(x̂(b), θ∗p)− r̄(x̂−(b), θ∗p)− 2w(b) (∵ E holds)

= r̄(x∗, θ∗p)− r̄(x̂−(b), θ∗p)− 2w(b) (∵ x̂(b) = x∗)

≥ r̄(x∗, θ∗p)− r̄(x∗−, θ∗p)− 2w(b) (∵ r̄(x̂−(b), θ∗p) ≤ r̄(x∗−, θ∗p))

≥ ∆− 2w(b) (def. of ∆)

≥ ∆

2
. (∵ w(b) < ∆/4)

Similarly,

∆̂ = r̄(x̂(b), θ̂(b))− r̄(x̂−(b), θ̂(b)) (line 16)

≤ r̄(x̂(b), θ̂(b))− r̄(x∗−, θ̂(b)) (∵ r̄(x̂−(b), θ̂(b)) ≥ r̄(x∗−, θ̂(b)))
= r̄(x∗, θ̂(b))− r̄(x∗−, θ̂(b)) (∵ x̂(b) = x∗)

≤ r̄(x∗, θ∗p)− r̄(x∗−, θ∗p) + 2w(b) (∵ E holds)

≤ ∆ + 2w(b) (def. of ∆)

≤ 3∆

2
. (∵ w(b) < ∆/4)

2. In this case T0 ≤ T1(δ) but it could still be that the algorithm stops not because the threshold
is exceeded but because line 12 and line 15 were true at some episode b. Clearly b < T0,
otherwise we would have output “threshold exceeded” and not produced an estimate ∆̂.
Under the event E, the previous part shows that if stopping occurs with an estimate ∆̂, it
must be that 4w(b) < ∆, i.e.

4

√
R2β2

σ log( 4e2b2

δ )

b
< ∆ ⇒ b >

16R2β2
σ

∆2
log

4e2

δ
= T2(δ).

This means T0 > b > T2(δ).

3. Finally, suppose Assumptions 1 through 3 hold but Assumption 4 fails. Event E still holds
with probability at least 1− δ. However, if there are at least two optimal actions then, under
E, their confidence intervals will always overlap and If condition on line 15 will never be
true. That means that the algorithm can only stop when the threshold T0 is exceeded.

7.2.2 Proof of Theorem 4

Proof. We break the proof into the two cases mentioned in the theorem statement.

Part 1: Assumption 4 fails. From Theorem 3 we know, that with probability at least 1 − δ,
Algorithm 2 outputs “threshold exceeded” in this case. Because of Eq. (22), we also have, for an
optimal action x∗:

|r̄(x̂(T0), θ∗p)− r̄(x∗, θ∗p)| ≤ 2w(T0)

which implies a total regret of

2w(T0)(T − T0|σ|) ≤ 2w(T0)T

in the remaining T −T0|σ| rounds since we execute line 5. The regret when Algorithm 2 was running
is bounded by RmaxT0|σ|. On the bad event, which occurs with probability at most 1− δ, the regret
is at most TRmax giving us a total expected regret of

2w(T0)T + T0|σ|Rmax + δTRmax = 2

√
R2β2

σ log(
4e2T 2

0

δ )

T0
T + T0|σ|Rmax + δTRmax
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