
Supplemental Materials for Universal
Correspondence Network

1 Network Architecture

We use the ImageNet pretrained GoogLeNet [8], from the bottom conv1 to the inception_4a
layer, but we used stride 2 for the bottom 2 layers and 1 for the rest of the network. We
followed the convention of [6, 7] to normalize the features, which we found to stabilize
the gradients during training. Since we are densely extracting features convolutionally, we
implement q channel-wise normalization layer which makes all features have a unit L2 norm.
After the inception_4a layer, we place the correspondence contrastive loss layer which takes
features from both images as well as the respective correspondence coordinates in each image.
The correspondences are densely sampled from either flow or matched keypoints. Since
the semantic keypoint correspondences are sparse, we augment them with random negative
coordinates. When we use the active hard-negative sampling, we place the K-NN layer which
returns the nearest neighbor of query image keypoints in the reference image.
We visualize the universal correspondence network on Fig. 1. The model includes the hard
negative mining, the convolutional spatial transfomer, and the correspondence contrastive
loss. The source code, pretrained network weights, caffe prototxt files and the interactive
web visualization using [3] is available at http://www.nec-labs.com/~mas/UCN/.

2 Convolutional Spatial Transformer

The convolutional spatial transformer consists of a number of affine spatial transformers.
The number of affine spatial transformers depends on the size of the image. For each spatial
transformer, the origin of the coordinate is at the center of each kernel. We denote xs

i , y
s
i

as the x, y coordinates of the sampled points from the previous input U and xt
i, y

t
i for x, y

coordinates of the points on the output layer V . Typically, xt
i, y

t
i are the coordinates of

nodes on a grid. θij are affine transformation parameters. The coordinates of the sampled
points and the target points satisfy the following equation.

(
xs

i
ys

i

)
=
[
θ11 θ12
θ21 θ22

](
xt

i
yt

i

)

To get the output Vi at (xt
i, y

t
i), we use bilinear interpolation to sample values U around

(xs
i , y

s
i). Let U00, U01, U10, U11 be the U values at lower left, lower right, upper left, and

upper right respectively.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

 http://www.nec-labs.com/~mas/UCN/

V c
i =

∑
n

∑
m

U c
nm max(0, 1− |xs

i −m|) max(0, 1− |ys
i − n|)

= (x1 − x)(y1 − y)U00 + (x1 − x)(y − y0)U10

+ (x− x0)(y1 − y)U01 + (x− x0)(y − y0)U11

= (x1 − (θ11x
t
i + θ12y

t
i))(y1 − (θ21x

t
i + θ22y

t
i))U00

+ (x1 − (θ11x
t
i + θ12y

t
i))(θ21x

t
i + θ22y

t
i − y0)U10

+ (θ11x
t
i + θ12y

t
i − x0)(y1 − (θ21x

t
i + θ22y

t
i))U01

+ (θ11x
t
i + θ12y

t
i − x0)(θ21x

t
i + θ22y

t
i − y0)U11

The gradients with respect to the input features are

∂L

∂V c
i

∂V c
i

∂U c
00

= ∂L

∂V c
i

(x1 − x)(y1 − y)

∂L

∂V c
i

∂V c
i

∂U c
10

= ∂L

∂V c
i

(x1 − x)(y0 − y)

∂L

∂V c
i

∂V c
i

∂U c
01

= ∂L

∂V c
i

(x0 − x)(y0 − y)

∂L

∂V c
i

∂V c
i

∂U c
11

= ∂L

∂V c
i

(x0 − x)(y1 − y)

Finally, the gradients with respect to the transformation parameters are

∂V c
i

∂θ11
= −xt

i(y1 − y)U c
00 − xt

i(y − y0)U c
10

+ xt
i(y1 − y)U c

01 + xt
i(y − y0)U c

11
∂V c

i

∂θ12
= −yt

i(y1 − y)U c
00 − yt

i(y1 − y)U c
10

+ yt
i(y − y0)U c

01 + yt
i(y − y0)U c

11
∂V c

i

∂θ22
= −xt

i(x1 − x)U c
00 + xt

i(x1 − x)U c
10

− xt
i(x− x0)U c

01 + xt
i(x− x0)U c

11
∂V c

i

∂θ22
= −yt

i(x1 − x)U c
00 + yt

i(x1 − x)U c
10

− yt
i(x− x0)U c

01 + yt
i(x− x0)U c

11

3 Additional tests for semantic correspondence

PASCAL VOC comparison with FlowWeb We compared the performance of UCN
with FlowWeb [10]. As shown in Tab. 1, our approach outperforms FlowWeb. Please note
that FlowWeb is an optimization in unsupervised setting thus we split their data per class
to train and test our network.

Qualitative semantic match results Please refer to Fig 2 and 3 for additional qualitative
semantic match results.

4 Additional KITTI Raw Results

We used a subset of KITTI raw video sequences for all our experiments. The dataset has
9268 frames which amounts to 15 minutes of driving. Each frame consists of Velodyne scan,

2

aero bike boat bottle bus car chair table mbike sofa train tv mean
DSP 17 30 5 19 33 34 9 3 17 12 12 18 17
FlowWeb [10] 29 41 5 34 54 50 14 4 21 16 15 33 26
Ours-RN 33.3 27.6 10.5 34.8 53.9 41.1 18.9 0 16.0 22.2 17.5 39.5 31.5
Ours-HN 35.3 44.6 11.2 39.7 61.0 45.0 16.5 4.2 18.2 32.4 24.0 48.3 36.7
Ours-HN-ST 38.6 50.0 12.6 40.0 67.7 57.2 26.7 4.2 28.1 27.8 27.8 45.1 43.0

Table 1: PCK on 12 rigid PASCAL VOC, as split in FlowWeb [10] (α = 0.05, L = max(w, h)).

stereo RGB images, GPS-IMU sensor input. In addition, we used proprietary segmentation
data from NEC to evaluate the performance on different semantic classes.

Scene type City Road Residential
Training 1, 2, 5, 9, 11, 13,

14, 27, 28, 29,
48, 51, 56, 57,
59, 84,

15, 32, 19, 20, 22, 23,
35, 36, 39, 46,
61, 64, 79,

Testing 84, 91 52, 70, 79, 86, 87,

Table 2: KITTI Correspondence Dataset: we used a subset of all KITTI raw sequences to
construct a dataset.

We excluded the sequence number 17, 18, 60 since the scenes in the videos are mostly static.
Also, we exclude 93 since the GPS-IMU inputs are too noisy.
In Figure 5, we plot the variation in PCK at 30 pixels for various camera baselines in our
test set. We label semantic classes on the KITTI raw sequences and evaluate the PCK
performance on different semantic classes in Figure 4. The curves have same color codes as
Figure 5 in the main paper.

5 KITTI Dense Correspondences

In this section, we present more qualitative results of nearest neighbor matches using our
universal correspondence network on KITTI images on Fig. 6.

6 Sintel Dense Correspondences

In this section, we present more qualitative results of nearest neighbor matches using our
universal correspondence network on Sintel images on Fig. 7.

References
[1] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d pose annotations. In

ICCV, 2009.
[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for

optical flow evaluation. In ECCV, 2012.
[3] S. Dasgupta. Netscope: network architecture visualizer or something, 2015.
[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL

Visual Object Classes Challenge 2011 (VOC2011) Results.
[5] M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In CVPR, 2015.
[6] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition

and clustering. In CVPR, 2015.
[7] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric learning via lifted structured

feature embedding. In Computer Vision and Pattern Recognition (CVPR), 2016.
[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. In CVPR 2015, 2015.
[9] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD

Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.
[10] T. Zhou, Y. Jae Lee, S. X. Yu, and A. A. Efros. Flowweb: Joint image set alignment by

weaving consistent, pixel-wise correspondences. In CVPR, June 2015.

3

10/26/2016 Netscope

http://ethereon.github.io/netscope/#/editor 1/1

GoogleNet

data_loading

image_1

conv1/7x7_s2

conv1/relu_7x7

pool1/3x3_s2

pool1/norm1

conv2/3x3_reduce

conv2/relu_3x3_reduce

conv2/3x3

conv2/relu_3x3

conv2/norm2

pool2/3x3_s2

inception_3a/pool

inception_3a/pool_proj

inception_3a/relu_pool_proj

inception_3a/5x5_reduce

inception_3a/relu_5x5_reduce

inception_3a/5x5

inception_3a/relu_5x5

inception_3a/3x3_reduce

inception_3a/relu_3x3_reduce

inception_3a/3x3

inception_3a/relu_3x3

inception_3a/1x1

inception_3a/relu_1x1

inception_3a/output

inception_3b/pool

inception_3b/pool_proj

inception_3b/relu_pool_proj

inception_3b/5x5_reduce

inception_3b/relu_5x5_reduce

inception_3b/5x5

inception_3b/relu_5x5

inception_3b/3x3_reduce

inception_3b/relu_3x3_reduce

inception_3b/3x3

inception_3b/relu_3x3

inception_3b/1x1

inception_3b/relu_1x1

inception_3b/output

pool3/3x3_s2

inception_4a/pool

inception_4a/pool_proj

inception_4a/relu_pool_proj

inception_4a/5x5_reduce

inception_4a/relu_5x5_reduce

inception_4a/5x5_reduce_param

inception_4a/relu_5x5_reduce_param

inception_4a/5x5_reduce_param2

inception_4a/relu_5x5_reduce_param2

inception_4a/5x5_reduce_param3

spatial_transformation_5x5

inception_4a/3x3_reduce

inception_4a/relu_3x3_reduce

inception_4a/3x3_reduce_param

inception_4a/relu_3x3_reduce_param

inception_4a/3x3_reduce_param2

inception_4a/relu_3x3_reduce_param2

inception_4a/3x3_reduce_param3

spatial_transformation

inception_4a/1x1

inception_4a/relu_1x1

image_2

conv1/7x7_s2_p

conv1/relu_7x7_p

pool1/3x3_s2_p

pool1/norm1_p

conv2/3x3_reduce_p

conv2/relu_3x3_reduce_p

conv2/3x3_p

conv2/relu_3x3_p

conv2/norm2_p

pool2/3x3_s2_p

inception_3a/pool_p

inception_3a/pool_proj_p

inception_3a/relu_pool_proj_p

inception_3a/5x5_reduce_p

inception_3a/relu_5x5_reduce_p

inception_3a/5x5_p

inception_3a/relu_5x5_p

inception_3a/3x3_reduce_p

inception_3a/relu_3x3_reduce_p

inception_3a/3x3_p

inception_3a/relu_3x3_p

inception_3a/1x1_p

inception_3a/relu_1x1_p

inception_3a/output_p

inception_3b/pool_p

inception_3b/pool_proj_p

inception_3b/relu_pool_proj_p

inception_3b/5x5_reduce_p

inception_3b/relu_5x5_reduce_p

inception_3b/5x5_p

inception_3b/relu_5x5_p

inception_3b/3x3_reduce_p

inception_3b/relu_3x3_reduce_p

inception_3b/3x3_p

inception_3b/relu_3x3_p

inception_3b/1x1_p

inception_3b/relu_1x1_p

inception_3b/output_p

pool3/3x3_s2_p

inception_4a/pool_p

inception_4a/pool_proj_p

inception_4a/relu_pool_proj_p

inception_4a/5x5_reduce_p

inception_4a/relu_5x5_reduce_p

inception_4a/5x5_reduce_param_p

inception_4a/relu_5x5_reduce_param_p

inception_4a/5x5_reduce_param2_p

inception_4a/relu_5x5_reduce_param2_p

inception_4a/5x5_reduce_param3_p

spatial_transformation_5x5_p

inception_4a/3x3_reduce_p

inception_4a/relu_3x3_reduce_p

inception_4a/3x3_reduce_param_p

inception_4a/relu_3x3_reduce_param_p

inception_4a/3x3_reduce_param2_p

inception_4a/relu_3x3_reduce_param2_p

inception_4a/3x3_reduce_param3_p

spatial_transformation_p

inception_4a/1x1_p

inception_4a/relu_1x1_p

correspondence

num_coord

transformed_inception_4a/3x3_reduce

inception_4a/3x3

inception_4a/relu_3x3
transformed_inception_4a/3x3_reduce_p

inception_4a/3x3_p

inception_4a/relu_3x3_p

transformed_inception_4a/5x5_reduce

inception_4a/5x5

inception_4a/relu_5x5

inception_4a/output

feature1_unnorm

feature1

feature1_extraction

transformed_inception_4a/5x5_reduce_p

inception_4a/5x5_p

inception_4a/relu_5x5_p

inception_4a/output_p

feature2_unnorm

feature2

knn

dist

dist_silence

ind

negative_processing

hard-negative-correspondence

pair

PCK

pair_loss

Figure 1: Visualization of the universal correspondence network with the hard negative
mining layer and the convolutional spatial transformer. The Siamese network shares the same
weights for all layers. To implement the Siamese network in Caffe, we appended _p to all
layer names on the second network. Each image goes through the universal correspondence
network and the output features named feature1 and feature2 are fed into the K-NN layer
to find the hard negatives on-the-fly. After the hard negative mining, the pairs are used to
compute the correspondence contrastive loss.

4

Query Ground Truth Ours HN-ST VGG conv4_3 NN Query Ground Truth Ours HN-ST VGG conv4_3 NN

Figure 2: Additional qualitative semantic correspondence results on PASCAL [4] correspon-
dences with Berkeley keypoint annotation [1].

Query Ground Truth Ours HN-ST VGG conv4_3 NN Query Ground Truth Ours HN-ST VGG conv4_3 NN

Figure 3: Additional qualitative semantic correspondence results on Caltech-UCSD Bird
dataset [9].

5

Figure 4: PCK evaluations for semantic classes on KITTI raw dataset

6

Figure 5: PCK performance for various camera baselines on KITTI raw dataset.

Query keypoints at frame t Predicted keypoint matches at frame t + 1

Figure 6: Visualization of dense feature nearest neighbor matches on the KITTI dataset [5].
For each row, we visualize the query points (left) on the image It at frame t and the nearest
neighbor matches (right) on the image It+1 at the next frame t+ 1.

7

Query keypoints at frame t Predicted keypoint matches at frame t + 1

Figure 7: Visualization of dense feature nearest neighbor matches on the Sintel dataset [2].
For each row, we visualize the query points (left) on the image It at frame t and the nearest
neighbor matches (right) on the image It+1 at the next frame t+ 1.

8

	Network Architecture
	Convolutional Spatial Transformer
	Additional tests for semantic correspondence
	Additional KITTI Raw Results
	KITTI Dense Correspondences
	Sintel Dense Correspondences

