
Appendix

Qiang Liu Dilin Wang
Department of Computer Science

Dartmouth College
Hanover, NH 03755

{qiang.liu, dilin.wang.gr}@dartmouth.edu

A Proof of Theorem 3.1

Lemma A.1. Let q and p be two smooth densities, and T = T ε(x) an one-to-one transform on X
indexed by parameter ε, and T is differentiable w.r.t. both x and ε. Define q[T ] to be the density of
z = T ε(x) when x ∼ q, and sp(x) = ∇x log p(x), we have

∇εKL(q[T ] || p) = Eq
[
sp(T (x))>∇εT (x) + trace((∇xT (x))−1 · ∇ε∇xT (x))

]
.

Proof. Denote by q[T−1](z) the density of z = T−1(x) when x ∼ q(x), then

q[T−1](x) = q(T (x)) · | det(∇xT (x))|.
By the change of variable, we have

KL(q[T ] || p) = KL(q || p[T−1]),

and hence
∇εKL(q[T ] || p) = −Ex∼q[∇ε log p[T−1](x)].

We just need to calculate log p[T−1](x); define sp(x) = ∇x log p(x), we get

∇ε log p[T−1](x) = sp(T (x))>∇εT (x) + trace((∇xT (x))−1 · ∇ε∇xT (x)).

Proof of Theorem 3.1. When T (x) = x+ εφ(x) and ε = 0, we have

T (x) = x, ∇εT (x) = φ(x), ∇xT (x) = I, ∇ε∇xT (x) = ∇xφ(x),

where I is the identity matrix. Using Lemma A.1 gives the result.

B Proof of Theorem 3.3

AssumeH is a scalar-valued RKHS with positive definite kernel k(x, x′), thenHd = H× · · · × H
is a vector-valued RKHS, which corresponds to a matrix-valued positive definite kernelK(x, x′) =
k(x, x′)I , where I is the identity matrix. The reproducing property for this vector-valued RKHS is

c>f(x) = 〈f(·), ck(x, ·)〉Hd ,

for ∀f ∈ Hd and c ∈ Rd. Taking derivative on both size, gives

trace(C∇xf(x)) = 〈f(·), C∇xk(x, ·)〉Hd

where ∇xf(x) = [∇xf1(x), . . . ,∇xfd(x)].

Let F [f ] be a functional on f ∈ Hd. The gradient ∇fF [f ] of F [·] is a function inHd that satisfies

F [f + εg] = F [f ] + ε 〈∇fF [f ], g〉Hd +O(ε2).
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Proof. Define F [f ] = KL(q[x+f(x)] || p) = KL(q || p[(x+f(x))−1]), we have

F [f + εg] = KL(q || p[(x+f(x)+εg(x))−1])

= Eq[log q(x)− log p(x+ f(x) + εg(x))− log det(I +∇xf(x) + ε∇xg(x))],

and hence we have
F [f + εg]− F [f ] = −∆1 −∆2,

where

∆1 = Eq[log p(x+ f(x) + εg(x))]− Eq[log p(x+ f(x))],

∆2 = Eq[log det(I +∇xf(x) + ε∇xg(x))]− Eq[log det(I +∇xf(x))].

For the terms in the above equation, we have

∆1 = Eq[log p(x+ f(x) + εg(x))]− Eq[log p(x+ f(x))]

= ε Eq[∇x log p(x+ f(x))>g(x)] +O(ε2)

= ε Eq[〈g, ∇x log p(x+ f(x))k(x, ·)〉Hd ] +O(ε2)

= ε 〈g, Eq[∇x log p(x+ f(x))k(x, ·)]〉Hd +O(ε2),

and

∆2 = Eq[log det(I +∇xf(x) + ε∇xg(x))]− Eq[log det(I +∇xf(x))]

= ε Eq[trace((I +∇xf(x))−1∇xg(x))] + O(ε2)

= ε Eq[〈g, (I +∇xf(x))−1∇xk(x, ·)〉Hd ] + O(ε2)

= ε 〈g, Eq[(I +∇xf(x))−1∇xk(x, ·)]〉Hd + O(ε2)

and hence
F [f + εg]− F [f ] = ε 〈∇fF [f ], g〉Hd + O(ε2),

where

∇fF [f ] = −Eq[∇x log p(x+ f(x))k(x, ·) + (I +∇xf(x))−1∇xk(x, ·)]. (B.1)

Taking f = 0 then gives the desirable result.

C Connection with de Bruijn’s identity and Fisher Divergence

If we take φq,p(x) = ∇x log p(x)−∇x log q(x) in (5), we can show that (5) reduces to

∇εKL(q[T ] || p)
∣∣
ε=0

= −F(q, p),

where F(q, p) is the Fisher divergence between p and q, defined as

F(q, p) = Eq[||∇x log p−∇x log q||22].

Note that this can be treated as a deterministic version of de Bruijn’s identity (Cover and Thomas,
2012; Lyu, 2009), which draws similar connection between KL and Fisher divergence, but uses
randomized linear transform T (x) = x +

√
ε · ξ, where ξ is a standard Gaussian noise. Close

connections can also be drawn with Langevin dynamics, which we will elaborate in future works.

D Additional Experiments

We collect additional experimental results that can not fitted into the main paper.
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D.1 Bayesian Logistic Regression on Small Datasets

We consider the Bayesian logistic regression model for binary classification, on which the regression
weights w is assigned with a Gaussian prior p0(w) = N (w,α−1) and p0(α) = Γ(α, a, b), and apply
inference on posterior p(x | D), where x = [w, logα]. The hyper-parameter is taken to be a = 1 and
b = 0.01. This setting is the same as that in Gershman et al. (2012). We compared our algorithm
with the no-U-turn sampler (NUTS)1 (Hoffman and Gelman, 2014) and non-parametric variational
inference (NPV)2 on the 8 datasets (N > 500) as used in Gershman et al. (2012), in which we use
100 particles, NPV uses 100 mixture components, and NUTS uses 1000 draws with 1000 burnin
period. We find that all these three algorithms almost always performs the same across the 8 datasets
(See Figure in Appendix), and this is consistent with Figure 2 of Gershman et al. (2012).

We further experimented on a toy dataset with only two features and visualize the prediction probabil-
ity of the three algorithms in Figure D.1. We again find that all the three algorithms tend to perform
similarly. Note, however, that NPV is relatively inconvenient to use since it requires the Hessian
matrix, and NUTS tends to be very small when applied on massive datasets.
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Figure 1: Bayesian logistic regression on the 8 datasets studied in Gershman et al. (2012). We find
our method performs similarly as NPV and NUTS on all the 8 datasets.
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Figure 2: Bayesian logistic regression. The posterior prediction uncertainty as inferred by different
approaches on a toy data.

References
M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. JMLR, 2013.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.

D. Maclaurin and R. P. Adams. Firefly Monte Carlo: Exact MCMC with subsets of data. In UAI, 2014.

R. Ranganath, S. Gerrish, and D. M. Blei. Black box variational inference. In AISTATS, 2014.

S. Gershman, M. Hoffman, and D. Blei. Nonparametric variational inference. In ICML, 2012.

A. Kucukelbir, R. Ranganath, A. Gelman, and D. Blei. Automatic variational inference in STAN. In NIPS, 2015.

1code: http://www.cs.princeton.edu/ mdhoffma/
2code: http://gershmanlab.webfactional.com/pubs/npv.v1.zip

3



B. Dai, N. He, H. Dai, and L. Song. Provable Bayesian inference via particle mirror descent. In AISTATS, 2016.

Q. Liu, J. D. Lee, and M. I. Jordan. A kernelized Stein discrepancy for goodness-of-fit tests and model evaluation.
arXiv preprint arXiv:1602.03253, 2016.

C. J. Oates, M. Girolami, and N. Chopin. Control functionals for Monte Carlo integration. Journal of the Royal
Statistical Society, Series B, 2017.

K. Chwialkowski, H. Strathmann, and A. Gretton. A kernel test of goodness-of-fit. arXiv preprint
arXiv:1602.02964, 2016.

J. Gorham and L. Mackey. Measuring sample quality with Stein’s method. In NIPS, pages 226–234, 2015.

C. Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In ICML, 2015.

Y. Marzouk, T. Moselhy, M. Parno, and A. Spantini. An introduction to sampling via measure transport. arXiv
preprint arXiv:1602.05023, 2016.

P. Del Moral. Mean field simulation for Monte Carlo integration. CRC Press, 2013.

M. Kac. Probability and related topics in physical sciences, volume 1. American Mathematical Soc., 1959.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177–1184, 2007.

D. Tran, R. Ranganath, and D. M. Blei. Variational Gaussian process. In ICLR, 2016.

M. Titsias and M. Lázaro-Gredilla. Doubly stochastic variational Bayes for non-conjugate inference. In ICML,
pages 1971–1979, 2014.

E. Challis and D. Barber. Affine independent variational inference. In NIPS, 2012.

S. Han, X. Liao, D. B. Dunson, and L. Carin. Variational Gaussian copula inference. In AISTATS, 2016.

D. Tran, D. M. Blei, and E. M. Airoldi. Copula variational inference. In NIPS, 2015.

C. M. B. N. Lawrence and T. J. M. I. Jordan. Approximating posterior distributions in belief networks using
mixtures. In NIPS, 1998.

T. S. Jaakkola and M. I. Jordon. Improving the mean field approximation via the use of mixture distributions. In
Learning in graphical models, pages 163–173. MIT Press, 1999.

N. D. Lawrence. Variational inference in probabilistic models. PhD thesis, University of Cambridge, 2001.

T. D. Kulkarni, A. Saeedi, and S. Gershman. Variational particle approximations. arXiv preprint arXiv:1402.5715,
2014.

C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science & Business Media, 2013.

A. Smith, A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo methods in practice. Springer
Science & Business Media, 2013.

M. D. Hoffman and A. Gelman. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte
Carlo. The Journal of Machine Learning Research, 15(1):1593–1623, 2014.

J. M. Hernández-Lobato and R. P. Adams. Probabilistic backpropagation for scalable learning of Bayesian
neural networks. In ICML, 2015.

C. Stein, P. Diaconis, S. Holmes, G. Reinert, et al. Use of exchangeable pairs in the analysis of simulations. In
Stein’s Method, pages 1–25. Institute of Mathematical Statistics, 2004.

Y. Li, J. M. Hernández-Lobato, and R. E. Turner. Stochastic expectation propagation. In NIPS, 2015.

Y. Li and R. E. Turner. Variational inference with Renyi divergence. arXiv preprint arXiv:1602.02311, 2016.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep
learning. arXiv preprint arXiv:1506.02142, 2015.

T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

S. Lyu. Interpretation and generalization of score matching. In UAI, pages 359–366, 2009.

4


	Proof of Theorem 3.1
	Proof of Theorem 3.3
	Connection with de Bruijn's identity and Fisher Divergence
	Additional Experiments
	Bayesian Logistic Regression on Small Datasets


