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Abstract

We present a general framework for classification of sparse and irregularly-sampled
time series. The properties of such time series can result in substantial uncertainty
about the values of the underlying temporal processes, while making the data
difficult to deal with using standard classification methods that assume fixed-
dimensional feature spaces. To address these challenges, we propose an uncertainty-
aware classification framework based on a special computational layer we refer to
as the Gaussian process adapter that can connect irregularly sampled time series
data to any black-box classifier learnable using gradient descent. We show how
to scale up the required computations based on combining the structured kernel
interpolation framework and the Lanczos approximation method, and how to
discriminatively train the Gaussian process adapter in combination with a number
of classifiers end-to-end using backpropagation.

1 Introduction

In this paper, we propose a general framework for classification of sparse and irregularly-sampled
time series. An irregularly-sampled time series is a sequence of samples with irregular intervals
between their observation times. These intervals can be large when the time series are also sparsely
sampled. Such time series data are studied in various areas including climate science [22], ecology
[4], biology [18], medicine [15] and astronomy [21]. Classification in this setting is challenging both
because the data cases are not naturally defined in a fixed-dimensional feature space due to irregular
sampling and variable numbers of samples, and because there can be substantial uncertainty about
the underlying temporal processes due to the sparsity of observations.

Recently, Li and Marlin [13] introduced the mixture of expected Gaussian kernels (MEG) framework,
an uncertainty-aware kernel for classifying sparse and irregularly sampled time series. Classification
with MEG kernels is shown to outperform models that ignore uncertainty due to sparse and irregular
sampling. On the other hand, various deep learning models including convolutional neural networks
[12] have been successfully applied to fields such as computer vision and natural language processing,
and have been shown to achieve state-of-the-art results on various tasks. Some of these models
have desirable properties for time series classification, but cannot be directly applied to sparse and
irregularly sampled time series.

Inspired by the MEG kernel, we propose an uncertainty-aware classification framework that enables
learning black-box classification models from sparse and irregularly sampled time series data. This
framework is based on the use of a computational layer that we refer to as the Gaussian process
(GP) adapter. The GP adapter uses Gaussian process regression to transform the irregular time series
data into a uniform representation, allowing sparse and irregularly sampled data to be fed into any
black-box classifier learnable using gradient descent while preserving uncertainty. However, the
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O(n3) time and O(n2) space of exact GP regression makes the GP adapter prohibitively expensive
when scaling up to large time series.

To address this problem, we show how to speed up the key computation of sampling from a GP
posterior based on combining the structured kernel interpolation (SKI) framework that was recently
proposed by Wilson and Nickisch [25] with Lanczos methods for approximating matrix functions [3].
Using the proposed sampling algorithm, the GP adapter can run in linear time and space in terms of
the length of the time series, and O(m logm) time when m inducing points are used.

We also show that GP adapter can be trained end-to-end together with the parameters of the chosen
classifier by backpropagation through the iterative Lanczos method. We present results using logistic
regression, fully-connected feedforward networks, convolutional neural networks and the MEG kernel.
We show that end-to-end discriminative training of the GP adapter outperforms a variety of baselines
in terms of classification performance, including models based only on GP mean interpolation, or
with GP regression trained separately using marginal likelihood.

2 Gaussian processes for sparse and irregularly-sampled time series

Our focus in this paper is on time series classification in the presence of sparse and irregular sampling.
In this problem, the data D contain N independent tuples consisting of a time series Si and a label
yi. Thus, D = {(S1, y1), . . . , (SN , yN )}. Each time series Si is represented as a list of time points
ti = [ti1, . . . , ti|Si|]

>, and a list of corresponding values vi = [vi1, . . . , vi|Si|]
>. We assume that

each time series is observed over a common time interval [0, T ]. However, different time series
are not necessarily observed at the same time points (i.e. ti 6= tj in general). This implies that the
number of observations in different time series is not necessary the same (i.e. |Si| 6= |Sj | in general).
Furthermore, the time intervals between observation within a single time series are not assumed to be
uniform.

Learning in this setting is challenging because the data cases are not naturally defined in a fixed-
dimensional feature space due to the irregular sampling. This means that commonly used classifiers
that take fixed-length feature vectors as input are not applicable. In addition, there can be substantial
uncertainty about the underlying temporal processes due to the sparsity of observations.

To address these challenges, we build on ideas from the MEG kernel [13] by using GP regression
[17] to provide an uncertainty-aware representation of sparse and irregularly sampled time series. We
fix a set of reference time points x = [x1, . . . , xd]

> and represent a time series S = (t,v) in terms
of its posterior marginal distribution at these time points. We use GP regression with a zero-mean
GP prior and a covariance function k(·, ·) parameterized by kernel hyperparameters η. Let σ2 be the
independent noise variance of the GP regression model. The GP parameters are θ = (η, σ2).

Under this model, the marginal posterior GP at x is Gaussian distributed with the mean and covariance
given by

µ = Kx,t(Kt,t + σ2I)−1v, (1)

Σ = Kx,x −Kx,t(Kt,t + σ2I)−1Kt,x (2)

where Kx,t denotes the covariance matrix with [Kx,t]ij = k(xi, tj). We note that it takesO(n3+nd)
time to exactly compute the posterior mean µ, and O(n3 + n2d+ nd2) time to exactly compute the
full posterior covariance matrix Σ, where n = |t| and d = |x|.

3 The GP adapter and uncertainty-aware time series classification

In this section we describe our framework for time series classification in the presence of sparse
and irregular sampling. Our framework enables any black-box classifier learnable by gradient-based
methods to be applied to the problem of classifying sparse and irregularly sampled time series.

3.1 Classification frameworks and the Gaussian process adapter

In Section 2 we described how we can represent a time series through the marginal posterior it induces
under a Gaussian process regression model at any set of reference time points x. By fixing a common
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set of reference time points x for all time series in a data set, every time series can be transformed
into a common representation in the form of a multivariate Gaussian N (z|µ,Σ;θ) with z being the
random vector distributed according to the posterior GP marginalized over the time points x.1 Here
we assume that the GP parameters θ are shared across the entire data set.

If the z values were observed, we could simply apply a black-box classifier. A classifier can be
generally defined by a mapping function f(z;w) parameterized by w, associated with a loss function
`(f(z;w), y) where y is a label value from the output space Y . However, in our case z is a Gaussian
random variable, which means `(f(z;w), y) is now itself a random variable given a label y. Therefore,
we use the expectation Ez∼N (µ,Σ;θ)

[
`(f(z;w), y)

]
as the overall loss between the label y and a time

series S given its Gaussian representation N (µ,Σ;θ). The learning problem becomes minimizing
the expected loss over the entire data set:

w∗,θ∗ = argmin
w,θ

N∑
i=1

Ezi∼N (µi,Σi;θ)

[
`(f(zi;w), yi)

]
. (3)

Once we have the optimal parameters w∗ and θ∗, we can make predictions on unseen data. In
general, given an unseen time series S and its Gaussian representation N (µ,Σ;θ∗), we can predict
its label using (4), although in many cases this can be simplified into a function of f(z;w∗) with the
expectation taken on or inside of f(z;w∗).

y∗ = argmin
y∈Y

Ez∼N (µ,Σ;θ∗)

[
`(f(z;w∗), y)

]
(4)

We name the above approach the Uncertainty-Aware Classification (UAC) framework. Importantly,
this framework propagates the uncertainty in the GP posterior induced by each time series all the way
through to the loss function. Besides, we call the transformation S 7→ (µ,Σ) the Gaussian process
adapter, since it provides a uniform representation to connect the raw irregularly sampled time series
data to a black-box classifier.

Variations of the UAC framework can be derived by taking the expectation at various position of
f(z;w) where z ∼ N (µ,Σ;θ). Taking the expectation at an earlier stage simplifies the computation,
but the uncertainty information will be integrated out earlier as well.2 In the extreme case, if the
expectation is computed immediately followed by the GP adapter transformation, it is equivalent to
using a plug-in estimate µ for z in the loss function, `(f(Ez∼N (µ,Σ;θ)[z];w), y) = `(f(µ;w), y).
We refer to this as the IMPutation (IMP) framework. The IMP framework discards the uncertainty
information completely, which further simplifies the computation. This simplified variation may be
useful when the time series are more densely sampled, where the uncertainty is less of a concern.

In practice, we can train the model using the UAC objective (3) and predict instead by IMP. In that
case, the predictions would be deterministic and can be computed efficiently without drawing samples
from the posterior GP as described later in Section 4.

3.2 Learning with the GP adapter

In the previous section, we showed that the UAC framework can be trained using (3). In this paper,
we use stochastic gradient descent to scalably optimize (3) by updating the model using a single time
series at a time, although it can be easily modified for batch or mini-batch updates. From now on,
we will focus on the optimization problem minw,θ Ez∼N (µ,Σ;θ)

[
`(f(z;w), y)

]
where µ,Σ are the

output of the GP adapter given a time series S = (t,v) and its label y. For many classifiers, the
expected loss Ez∼N (µ,Σ;θ)

[
`(f(z;w), y)

]
cannot be analytically computed. In such cases, we use

the Monte Carlo average to approximate the expected loss:

Ez∼N (µ,Σ;θ)

[
`(f(z;w), y)

]
≈ 1

S

S∑
s=1

`(f(zs;w), y), where zs ∼ N (µ,Σ;θ). (5)

To learn the parameters of both the classifier w and the Gaussian process regression model θ jointly
under the expected loss, we need to be able to compute the gradient of the expectation given in (5).

1 The notation N (µ,Σ;θ) explicitly expresses that both µ and Σ are functions of the GP parameters θ.
Besides, they are also functions of S = (t,v) as shown in (1) and (2).

2 For example, the loss of the expected output of the classifier `(Ez∼N (µ,Σ;θ)[f(z;w)], y).
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To achieve this, we reparameterize the Gaussian random variable using the identity z = µ + Rξ
where ξ ∼ N (0, I) and R satisfies Σ = RR> [11]. The gradients under this reparameterization
are given below, both of which can be approximated using Monte Carlo sampling as in (5). We will
focus on efficiently computing the gradient shown in (7) since we assume that the gradient of the
base classifier f(z;w) can be computed efficiently.

∂

∂w
Ez∼N (µ,Σ;θ)

[
`(f(z;w), y)

]
= Eξ∼N (0,I)

[
∂

∂w
`(f(z;w), y)

]
(6)

∂

∂θ
Ez∼N (µ,Σ;θ)

[
`(f(z;w), y)

]
= Eξ∼N (0,I)

[∑
i

∂`(f(z;w), y)

∂zi

∂zi
∂θ

]
(7)

There are several choices for R that satisfy Σ = RR>. One common choice of R is the Cholesky
factor, a lower triangular matrix, which can be computed using Cholesky decomposition in O(d3) for
a d× d covariance matrix Σ [7]. We instead use the symmetric matrix square root R = Σ

1/2. We
will show that this particular choice of R leads to an efficient and scalable approximation algorithm
in Section 4.2.

4 Fast sampling from posterior Gaussian processes

The computation required by the GP adapter is dominated by the time needed to draw samples from
the marginal GP posterior using z = µ+ Σ

1/2ξ. In Section 2 we noted that the time complexity of
exactly computing the posterior mean µ and covariance Σ is O(n3 + nd) and O(n3 + n2d+ nd2),
respectively. Once we have both µ and Σ we still need to compute the square root of Σ, which
requires an additional O(d3) time to compute exactly. In this section, we show how to efficiently
generate samples of z.

4.1 Structured kernel interpolation for approximating GP posterior means

The main idea of the structured kernel interpolation (SKI) framework recently proposed by Wilson
and Nickisch [25] is to approximate a stationary kernel matrix Ka,b by the approximate kernel K̃a,b

defined below where u = [u1, . . . , um]> is a collection of evenly-spaced inducing points.

Ka,b ≈ K̃a,b = WaKu,uW>
b . (8)

Letting p = |a| and q = |b|, Wa ∈ Rp×m is a sparse interpolation matrix where each row
contains only a small number of non-zero entries. We use local cubic convolution interpolation
(cubic interpolation for short) [10] as suggested in Wilson and Nickisch [25]. Each row of the
interpolation matrices Wa,Wb has at most four non-zero entries. Wilson and Nickisch [25] showed
that when the kernel is locally smooth (under the resolution of u), cubic interpolation results in
accurate approximation. This can be justified as follows: with cubic interpolation, the SKI kernel is
essentially the two-dimensional cubic interpolation of Ka,b using the exact regularly spaced samples
stored in Ku,u, which corresponds to classical bicubic convolution. In fact, we can show that K̃a,b

asymptotically converges to Ka,b as m increases by following the derivation in Keys [10].

Plugging the SKI kernel into (1), the posterior GP mean evaluated at x can be approximated by

µ = Kx,t

(
Kt,t + σ2I

)−1
v ≈WxKu,uW>

t

(
WtK

−1
u,uW>

t + σ2I
)−1

v. (9)

The inducing points u are chosen to be evenly-spaced because Ku,u forms a symmetric Toeplitz
matrix under a stationary covariance function. A symmetric Toeplitz matrix can be embedded into a
circulant matrix to perform matrix vector multiplication using fast Fourier transforms [7].

Further, one can use the conjugate gradient method to solve for (WtK
−1
u,uW>

t +σ2I)−1v which only
involves computing the matrix-vector product (WtK

−1
u,uW>

t + σ2I)v. In practice, the conjugate
gradient method converges within only a few iterations. Therefore, approximating the posterior mean
µ using SKI takes onlyO(n+d+m logm) time to compute. In addition, since a symmetric Toeplitz
matrix Ku,u can be uniquely characterized by its first column, and Wt can be stored as a sparse
matrix, approximating µ requires only O(n+ d+m) space.
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Algorithm 1: Lanczos method for approximating Σ
1/2ξ

Input: covariance matrix Σ, dimension of the Krylov subspace k, random vector ξ
β1 = 0 and d0 = 0
d1 = ξ/‖ξ‖
for j = 1 to k do

d = Σdj − βjdj−1
αj = d>j d

d = d− αjdj
βj+1 = ‖d‖
dj+1 = d/βj+1

D = [d1, . . . ,dk]
H = tridiagonal(β,α,β)

return ‖ξ‖DH1/2e1 // e1 = [1, 0, . . . , 0]>

H = tridiagonal(β,α,β) =


α1 β2
β2 α2 β3

β3 α3
. . .

. . . . . . βk
βk αk



4.2 The Lanczos method for covariance square root-vector products

With the SKI techniques, although we can efficiently approximate the posterior mean µ, computing
Σ

1/2ξ is still challenging. If computed exactly, it takes O(n3 + n2d+ nd2) time to compute Σ and
O(d3) time to take the square root. To overcome the bottleneck, we apply the SKI kernel to the
Lanczos method, one of the Krylov subspace approximation methods, to speed up the computation
of Σ

1/2ξ as shown in Algorithm 1. The advantage of the Lanczos method is that neither Σ nor Σ
1/2

needs to be computed explicitly. Like the conjugate gradient method, another example of the Krylov
subspace method, it only requires the computation of matrix-vector products with Σ as the matrix.

The idea of the Lanczos method is to approximate Σ
1/2ξ in the Krylov subspace Kk(Σ, ξ) =

span{ξ,Σξ, . . . ,Σk−1ξ}. The iteration in Algorithm 1, usually referred to the Lanczos process,
essentially performs the Gram-Schmidt process to transform the basis {ξ,Σξ, . . . ,Σk−1ξ} into an
orthonormal basis {d1, . . . ,dk} for the subspace Kk(Σ, ξ).

The optimal approximation of Σ
1/2ξ in the Krylov subspace Kk(Σ, ξ) that minimizes the `2-norm

of the error is the orthogonal projection of Σ
1/2ξ onto Kk(Σ, ξ) as y∗ = DD>Σ

1/2ξ. Since we
choose d1 = ξ/‖ξ‖, the optimal projection can be written as y∗ = ‖ξ‖DD>Σ

1/2De1 where
e1 = [1, 0, . . . , 0]> is the first column of the identify matrix.

One can show that the tridiagonal matrix H defined in Algorithm 1 satisfies D>ΣD = H [20]. Also,
we have D>Σ

1/2D ≈ (D>ΣD)1/2 since the eigenvalues of H approximate the extremal eigenvalues
of Σ [19]. Therefore we have y∗ = ‖ξ‖DD>Σ

1/2De1 ≈ ‖ξ‖DH1/2e1.

The error bound of the Lanczos method is analyzed in Ilić et al. [9]. Alternatively one can show that
the Lanczos approximation converges superlinearly [16]. In practice, for a d× d covariance matrix
Σ, the approximation is sufficient for our sampling purpose with k � d. As H is now a k× k matrix,
we can use any standard method to compute its square root in O(k3) time [2], which is considered
O(1) when k is chosen to be a small constant. Now the computation of the Lanczos method for
approximating Σ

1/2ξ is dominated by the matrix-vector product Σd during the Lanczos process.

Here we apply the SKI kernel trick again to efficiently approximate Σd by

Σd ≈WxKu,uW>
x d−WxKu,uW>

t

(
WtKu,uW>

t + σ2I
)−1

WtKu,uW>
x d. (10)

Similar to the posterior mean, Σd can be approximated inO(n+d+m logm) time and linear space.
Therefore, for k = O(1) basis vectors, the entire Algorithm 1 takes O(n+ d+m logm) time and
O(n+ d+m) space, which is also the complexity to draw a sample from the posterior GP.

To reduce the variance when estimating the expected loss (5), we can draw multiple samples from the
posterior GP: {Σ1/2ξs}s=1,...,S where ξs ∼ N (0, I). Since all of the samples are associated with the
same covariance matrix Σ, we can use the block Lanczos process [8], an extension to the single-vector
Lanczos method presented in Algorithm 1, to simultaneously approximate Σ

1/2Ξ for all S random
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vectors Ξ = [ξ1, . . . , ξS ]. Similarly, during the block Lanczos process, we use the block conjugate
gradient method [6, 5] to simultaneously solve the linear equation (WtKu,uW>

t + σ2I)−1α for
multiple α.

5 End-to-end learning with the GP adapter

The most common way to train GP parameters is through maximizing the marginal likelihood [17]

log p(v|t,θ) = −1

2
v>
(
Kt,t + σ2I

)−1
v − 1

2
log
∣∣Kt,t + σ2I

∣∣− n

2
log 2π. (11)

If we follow this criterion, training the UAC framework becomes a two-stage procedure: first we
learn GP parameters by maximizing the marginal likelihood. We then compute µ and Σ given each
time series S and the learned GP parameters θ∗. Both µ and Σ are then fixed and used to train the
classifier using (6).

In this section, we describe how to instead train the GP parameters discriminatively end-to-end using
backpropagation. As mentioned in Section 3, we train the UAC framework by jointly optimizing the
GP parameters θ and the parameters of the classifier w according to (6) and (7).

The most challenging part in (7) is to compute ∂z = ∂µ + ∂(Σ
1/2ξ).3 For ∂µ, we can derive the

gradient of the approximating posterior mean (9) as given in Appendix A. Note that the gradient ∂µ
can be approximated efficiently by repeatedly applying fast Fourier transforms and the conjugate
gradient method in the same time and space complexity as computing (9).

On the other hand, ∂(Σ1/2ξ) can be approximated by backpropagating through the Lanczos method
described in Algorithm 1. To carry out backpropagation, all operations in the Lanczos method must
be differentiable. For the approximation of Σd during the Lanczos process, we can similarly compute
the gradient of (10) efficiently using the SKI techniques as in computing ∂µ (see Appendix A).

The gradient ∂H1/2 for the last step of Algorithm 1 can be derived as follows. From H = H1/2H1/2,
we have ∂H = (∂H1/2)H1/2 + H1/2(∂H1/2). This is known as the Sylvester equation, which has
the form of AX + XB = C where A,B,C are matrices and X is the unknown matrix to solve
for. We can compute the gradient ∂H1/2 by solving the Sylvester equation using the Bartels-Stewart
algorithm [1] in O(k3) time for a k × k matrix H, which is considered O(1) for a small constant k.

Overall, training the GP adapter using stochastic optimization with the aforementioned approach
takes O(n+ d+m logm) time and O(n+ d+m) space for m inducing points, n observations in
the time series, and d features generated by the GP adapter.

6 Related work

The recently proposed mixtures of expected Gaussian kernels (MEG) [13] for classification of
irregular time series is probably the closest work to ours. The random feature representation of the
MEG kernel is in the form of

√
2/m Ez∼N (µ,Σ)

[
cos(w>i z + bi)

]
, which the algorithm described

in Section 4 can be applied to directly. However, by exploiting the spectral property of Gaussian
kernels, the expected random feature of the MEG kernel is shown to be analytically computable by√
2/m exp(−w>i Σwi/2) cos(w

>
i µ+ bi). With the SKI techniques, we can efficiently approximate

both w>i Σwi and w>i µ in the same time and space complexity as the GP adapter. Moreover, the
random features of the MEG kernel can be viewed as a stochastic layer in the classification network,
with no trainable parameters. All {wi, bi}i=1,...,m are randomly initialized once in the beginning and
associated with the output of the GP adapter in a nonlinear way described above.

Moreover, the MEG kernel classification is originally a two-stage method: one first estimates the
GP parameters by maximizing the marginal likelihood and then uses the optimized GP parameters
to compute the MEG kernel for classification. Since the random feature is differentiable, with the
approximation of ∂µ and ∂(Σd) described in Section 5, we can form a similar classification network
that can be efficiently trained end-to-end using the GP adapter. In Section 7.2, we will show that
training the MEG kernel end-to-end leads to better classification performance.

3 For brevity, we drop 1/∂θ from the gradient notation in this section.
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Figure 1: Left: Sample approximation error versus the number of inducing points. Middle: Sample
approximation error versus the number of Lanczos iterations. Right: Running time comparisons (in
seconds). BP denotes computing the gradient of the sample using backpropagation.

7 Experiments

In this section, we present experiments and results exploring several facets of the GP adapter
framework including the quality of the approximations and the classification performance of the
framework when combined with different base classifiers.

7.1 Quality of GP sampling approximations

The key to scalable learning with the GP adapter relies on both fast and accurate approximation
for drawing samples from the posterior GP. To assess the approximation quality, we first generate
a synthetic sparse and irregularly-sampled time series S by sampling from a zero-mean Gaussian
process at random time points. We use the squared exponential kernel k(ti, tj) = a exp(−b(ti− tj)2)
with randomly chosen hyperparameters. We then infer µ and Σ at some reference x given S. Let z̃

denote our approximation of z = µ+ Σ
1/2ξ. In this experiment, we set the output size z to be |S|,

that is, d = n. We evaluate the approximation quality by assessing the error ‖z̃− z‖ computed with
a fixed random vector ξ.

The leftmost plot in Figure 1 shows the approximation error under different numbers of inducing
points m with k = 10 Lanczos iterations. The middle plot compares the approximation error as the
number of Lanczos iterations k varies, with m = 256 inducing points. These two plots show that the
approximation error drops as more inducing points and Lanczos iterations are used. In both plots,
the three lines correspond to different sizes for z: 1000 (bottom line), 2000 (middle line), 3000 (top
line). The separation between the curves is due to the fact that the errors are compared under the
same number of inducing points. Longer time series leads to lower resolution of the inducing points
and hence the higher approximation error.

Note that the approximation error comes from both the cubic interpolation and the Lanczos method.
Therefore, to achieve a certain normalized approximation error across different data sizes, we should
simultaneously use more inducing points and Lanczos iterations as the data grows. In practice, we
find that k ≥ 3 is sufficient for estimating the expected loss for classification.

The rightmost plot in Figure 1 compares the time to draw a sample using exact computation versus
the approximation method described in Section 4 (exact and Lanczos in the figure). We also compare
the time to compute the gradient with respect to the GP parameters by both the exact method and
the proposed approximation (exact BP and Lanczos BP in the figure) because this is the actual
computation carried out during training. In this part of the experiment, we use k = 10 and m = 256.
The plot shows that Lanczos approximation with the SKI kernel yields speed-ups of between 1 and
3 orders of magnitude. Interestingly, for the exact approach, the time for computing the gradient
roughly doubles the time of drawing samples. (Note that time is plotted in log scale.) This is because
computing gradients requires both forward and backward propagation, whereas drawing samples
corresponds to only the forward pass. Both the forward and backward passes take roughly the same
computation in the exact case. However, the gap is relatively larger for the approximation approach
due to the recursive relationship of the variables in the Lanczos process. In particular, dj is defined
recursively in terms of all of d1, . . . ,dj−1, which makes the backpropagation computation more
complicated than the forward pass.
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Table 1: Comparison of classification accuracy (in percent). IMP and UAC refer to the loss functions
for training described in Section 3.1, and we use IMP predictions throughout. Although not belonging
to the UAC framework, we put the MEG kernel in UAC since it is also uncertainty-aware.

LogReg MLP ConvNet MEG kernel

Marginal likelihood IMP 77.90 85.49 87.61 –
UAC 78.23 87.05 88.17 84.82

End-to-end IMP 79.12 86.49 89.84 –
UAC 79.24 87.95 91.41 86.61

7.2 Classification with GP adapter

In this section, we evaluate the performance of classifying sparse and irregularly-sampled time series
using the UAC framework. We test the framework on the uWave data set,4 a collection of gesture
samples categorized into eight gesture patterns [14]. The data set has been split into 3582 training
instances and 896 test instances. Each time series contains 945 fully observed samples. Following
the data preparation procedure in the MEG kernel work [13], we randomly sample 10% of the
observations from each time series to simulate the sparse and irregular sampling scenario. In this
experiment, we use the squared exponential covariance function k(ti, tj) = a exp(−b(ti − tj)2) for
a, b > 0. Together with the independent noise parameter σ2 > 0, the GP parameters are {a, b, σ2}.
To bypass the positive constraints on the GP parameters, we reparameterize them by {α, β, γ} such
that a = eα, b = eβ , and σ2 = eγ .

To demonstrate that the GP adapter is capable of working with various classifiers, we use the UAC
framework to train three different classifiers: a multi-class logistic regression (LogReg), a fully-
connected feedforward network (MLP), and a convolutional neural network (ConvNet). The detailed
architecture of each model is described in Appendix C.

We use m = 256 inducing points, d = 254 features output by the GP adapter, k = 5 Lanczos
iterations, and S = 10 samples. We split the training set into two partitions: 70% for training and
30% for validation. We jointly train the classifier with the GP adapter using stochastic gradient
descent with Nesterov momentum. We apply early stopping based on the validation set. We also
compare to classification with the MEG kernel implemented using our GP adapter as described in
Section 6. We use 1000 random features trained with multi-class logistic regression.

Table 1 shows that among all three classifiers, training GP parameters discriminatively always leads
to better accuracy than maximizing the marginal likelihood. This claim also holds for the results
using the MEG kernel. Further, taking the uncertainty into account by sampling from the posterior
GP always outperforms training using only the posterior means. Finally, we can also see that the
classification accuracy improves as the model gets deeper.

8 Conclusions and future work

We have presented a general framework for classifying sparse and irregularly-sampled time series
and have shown how to scale up the required computations using a new approach to generating
approximate samples. We have validated the approximation quality, the computational speed-ups,
and the benefit of the proposed approach relative to existing baselines.

There are many promising directions for future work including investigating more complicated
covariance functions like the spectral mixture kernel [24], different classifiers including the encoder
LSTM [23], and extending the framework to multi-dimensional time series and GPs with multi-
dimensional index sets (e.g., for spatial data). Lastly, the GP adapter can also be applied to other
problems such as dimensionality reduction by combining it with an autoencoder.
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