
Review Networks for Caption Generation

Zhilin Yang, Ye Yuan, Yuexin Wu, Ruslan Salakhutdinov, William W. Cohen
School of Computer Science
Carnegie Mellon University

{zhiliny,yey1,yuexinw,rsalakhu,wcohen}@cs.cmu.edu

Abstract

We propose a novel extension of the encoder-decoder framework, called a review
network. The review network is generic and can enhance any existing encoder-
decoder model: in this paper, we consider RNN decoders with both CNN and RNN
encoders. The review network performs a number of review steps with attention
mechanism on the encoder hidden states, and outputs a thought vector after each
review step; the thought vectors are used as the input of the attention mechanism
in the decoder. We show that conventional encoder-decoders are a special case of
our framework. Empirically, we show that our framework improves over state-of-
the-art encoder-decoder systems on the tasks of image captioning and source code
captioning.1

1 Introduction

Encoder-decoder is a framework for learning a transformation from one representation to another. In
this framework, an encoder network first encodes the input into a context vector, and then a decoder
network decodes the context vector to generate the output. The encoder-decoder framework was
recently introduced for sequence-to-sequence learning based on recurrent neural networks (RNNs)
with applications to machine translation [3, 15], where the input is a text sequence in one language and
the output is a text sequence in the other language. More generally, the encoder-decoder framework
is not restricted to RNNs and text; e.g., encoders based on convolutional neural networks (CNNs)
are used for image captioning [18]. Since it is often difficult to encode all the necessary information
in a single context vector, an attentive encoder-decoder introduces an attention mechanism to the
encoder-decoder framework. An attention mechanism modifies the encoder-decoder bottleneck by
conditioning the generative process in the decoder on the encoder hidden states, rather than on one
single context vector only. Improvements due to an attention mechanism have been shown on various
tasks, including machine translation [1], image captioning [20], and text summarization [12].

However, there remain two important issues to address for attentive encoder-decoder models. First,
the attention mechanism proceeds in a sequential manner and thus lacks global modeling abilities.
More specifically, at the generation step t, the decoded token is conditioned on the attention results at
the current time step h̃t, but has no information about future attention results h̃t′ with t′ > t. For
example, when there are multiple objects in the image, the caption tokens generated at the beginning
focuses on the first one or two objects and is unaware of the other objects, which is potentially
suboptimal. Second, previous works show that discriminative supervision (e.g., predicting word
occurrences in the caption) is beneficial for generative models [5], but it is not clear how to integrate
discriminative supervision into the encoder-decoder framework in an end-to-end manner.

To address the above questions, we propose a novel architecture, the review network, which extends
existing (attentive) encoder-decoder models. The review network performs a given number of review
steps with attention on the encoder hidden states and outputs a thought vector after each step, where

1Code and data available at https://github.com/kimiyoung/review_net.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

https://github.com/kimiyoung/review_net

the thought vectors are introduced to capture the global properties in a compact vector representation
and are usable by the attention mechanism in the decoder. The intuition behind the review network is
to review all the information encoded by the encoder and produce vectors that are a more compact,
abstractive, and global representation than the original encoder hidden states.

Another role for the thought vectors is as a focus for multitask learning. For instance, one can use the
thought vectors as inputs for a secondary prediction task, such as predicting discriminative signals
(e.g., the words that occur in an image caption), in addition to the objective as a generative model. In
this paper we explore this multitask review network, and also explore variants with weight tying.

We show that conventional attentive encoder-decoders are a special case of the review networks,
which indicates that our model is strictly more expressive than the attentive encoder-decoders. We
experiment with two different tasks, image captioning and source code captioning, using CNNs
and RNNs as the encoders respectively. Our results show that the review network can consistently
improve the performance over attentive encoder-decoders on both datasets, and obtain state-of-the-art
performance.

2 Related Work

The encoder-decoder framework in the context of sequence-to-sequence learning was recently
introduced for learning transformation between text sequences [3, 15], where RNNs were used
for both encoding and decoding. Encoder-decoders, in general, can refer to models that learn a
representation transformation using two network components, an encoder and a decoder. Besides
RNNs, convolutional encoders have been developed to address multi-modal tasks such as image
captioning [18]. Attention mechanisms were later introduced to the encoder-decoder framework for
machine translation, with attention providing an explanation of explicit token-level alignment between
input and output sequences [1]. In contrast to vanilla encoder-decoders, attentive encoder-decoders
condition the decoder on the encoder’s hidden states. At each generation step, the decoder pays
attention to a specific part of the encoder, and generates the next token based on both the current
hidden state in the decoder and the attended hidden states in the encoder. Attention mechanisms
have had considerable success in other applications as well, including image captioning [20] and text
summarization [12].

Our work is also related to memory networks [19, 14]. Memory networks take a question embedding
as input, and perform multiple computational steps with attention on the memory, which is usually
formed by the embeddings of a group of sentences. Dynamic memory networks extend memory
networks to model sequential memories [8]. Memory networks are mainly used in the context of
question answering; the review network, on the other hand, is a generic architecture that can be
integrated into existing encoder-decoder models. Moreover, the review network learns thought vectors
using multiple review steps, while (embedded) facts are provided as input to the memory networks.
Another difference is that the review network outputs a sequence of thought vectors, while memory
networks only use the last hidden state to generate the answer. [17] presented a processor unit that
runs over the encoder multiple times, but their model mainly focuses on handling non-sequential
data and their approach differs from ours in many ways (e.g., the encoder consists of small neural
networks operating on each input element, and the process module is not directly connected to the
encoder, etc). The model proposed in [6] performs a number of sub-steps inside a standard recurrent
step, while our decoder generates the output with attention to the thought vectors.

3 Model

Given the input representation x and the output representation y, the goal is to learn a function
mapping from x to y. For example, image captioning aims to learn a mapping from an image x to a
caption y. For notation simplicity, we use x and y to denote both a tensor and a sequence of tensors.
For example, x can be a 3d-tensor that represents an image with RGB channels in image captioning,
or can be a sequence of 1d-tensors (i.e., vectors) x = (x1, · · · ,xTx

) in machine translation, where xt

denotes the one-of-K embedding of the t-th word in the input sequence of length Tx.

In contrast to conventional (attentive) encoder-decoder models, our model consists of three compo-
nents, encoder, reviewer, and decoder. The comparison of architectures is shown in Figure 1. Now
we describe the three components in detail.

2

(a) Attentive Encoder-Decoder
Model.

(b) Review Network. Blue components denote optional discrimina-
tive supervision. Tr is set to 3 in this example.

Figure 1: Model Architectures.

(a) Attentive Input Reviewer. (b) Attentive Output Reviewer. (c) Decoder.

Figure 2: Illustrations of modules in the review network. f ′· and f ′′· denote LSTM units.

3.1 Encoder

The encoder encodes the input x into a context vector c and a set of hidden states H = {ht}t. We
discuss two types of encoders, RNN encoders and CNN encoders.

RNN Encoder: Let Tx = |H| be the length of the input sequence. An RNN encoder processes the
input sequence x = (x1, · · · ,xTx

) sequentially. At time step t, the RNN encoder updates the hidden
state by

ht = f(xt,ht−1).

In this work, we implement f using an LSTM unit. The context vector is defined as the final hidden
state c = hTx

. The cell state and hidden state h0 of the first LSTM unit are initialized as zero.

CNN Encoder: We take a widely-used CNN architecture—VGGNet [13]—as an example to describe
how we use CNNs as encoders. Given a VGGNet, we use the output of the last fully connected layer
fc7 as the context vector c = fc7(x), and use 14× 14 = 196 columns of 512d convolutional output
conv5 as hidden states H = conv5(x). In this case Tx = |H| = 196.

3.2 Reviewer

Let Tr be a hyperparameter that specifies the number of review steps. The intuition behind the
reviewer module is to review all the information encoded by the encoder and learn thought vectors
that are a more compact, abstractive, and global representation than the original encoder hidden states.
The reviewer performs Tr review steps on the encoder hidden states H and outputs a thought vector
ft after each step. More specifically,

ft = gt(H, ft−1),

where gt is a modified LSTM unit with attention mechanism at review step t. We study two variants
of gt, attentive input reviewers and attentive output reviewers. The attentive input reviewer is inspired
by visual attention [20], which is more commonly used for images; the attentive output reviewer is
inspired by attention on text [1], which is more commonly used for sequential tokens.

Attentive Input Reviewer At each review step t, the attentive input reviewer first applies an attention
mechanism on H and use the attention result as the input to an LSTM unit (Cf. Figure 2a). Let

3

f̃t = att(H, ft−1) be the attention result at step t. The attentive input reviewer is formulated as

f̃t = att(H, ft−1) =
|H|∑
i=1

α(hi, ft−1)∑|H|
i′=1 α(hi′ , ft−1)

hi, gt(H, ft−1) = f ′t(f̃t, ft−1), (1)

where α(hi, ft−1) is a function that determines the weight for the i-th hidden state. α(x1,x2) can be
implemented as a dot product between x1 and x2 or a multi-layer perceptron (MLP) that takes the
concatenation of x1 and x2 as input [9]. f ′t is an LSTM unit at step t.

Attentive Output Reviewer In contrast to the attentive input reviewer, the attentive output reviewer
uses a zero vector as input to the LSTM unit, and the thought vector is computed as the weighted
sum of the attention results and the output of the LSTM unit (Cf. Figure 2b). More specifically, the
attentive output reviewer is formulated as

f̃t = att(H, ft−1), gt(H, ft−1) = f ′t(0, ft−1) +Wf̃t,

where the attention mechanism att follows the definition in Eq. (1), 0 denotes a zero vector, W is a
model parameter matrix, and f ′t is an LSTM unit at step t. We note that performing attention on top
of an RNN unit is commonly used in sequence-to-sequence learning [1, 9, 12]. We apply a linear
transformation with a matrix W since the dimensions of f ′t(·, ·) and f̃t can be different.

Weight Tying We study two variants of weight tying for the reviewer module. Let wt denote the
parameters for the unit f ′t . The first variant follows the common setting in RNNs, where weights
are shared among all the units; i.e., w1 = · · · = wTr

. We also observe that the reviewer unit does
not have sequential input, so we experiment with the second variant where weights are untied; i.e.
wi 6= wj ,∀i 6= j.

The cell state and hidden state of the first unit f ′1 are initialized as the context vector c. The cell states
and hidden states are passed through all the reviewer units in both cases of weight tying.

3.3 Decoder

Let F = {ft}t be the set of thought vectors output by the reviewer. The decoder is formulated as an
LSTM network with attention on the thought vectors F (Cf. Figure 2c). Let st be the hidden state of
the t-th LSTM unit in the decoder. The decoder is formulated as follows:

s̃t = att(F, st−1), st = f ′′([s̃t;yt−1], st−1), yt = argmax
y

softmaxy(st), (2)

where [·; ·] denotes the concatenation of two vectors, f ′′ denotes the decoder LSTM, softmaxy is
the probability of word y given by a softmax layer, yt is the t-th decoded token, and yt is the word
embedding of yt. The attention mechanism att follows the definition in Eq. (1). The initial cell state
and hidden state s0 of the decoder LSTM are both set to the review vector r = W′[fTr

; c], where
W′ is a model parameter matrix.

3.4 Discriminative Supervision

In conventional encoder-decoders, supervision is provided in a generative manner; i.e., the model
aims to maximize the conditional probability of generating the sequential output p(y|x). However,
discriminative supervision has been shown to be useful in [5], where the model is guided to predict
discriminative objectives, such as the word occurrences in the output y.

We argue that the review network provides a natural way of incorporating discriminative supervision
into the model. Here we take word occurrence prediction for example to describe how to incorporate
discriminative supervision. As shown in the blue components in Figure 1b, we first apply a linear
layer on top of the thought vector to compute a score for each word at each review step. We then
apply a max-pooling layer over all the review units to extract the most salient signal for each word,
and add a multi-label margin loss as discriminative supervision. Let si be the score of word i after
the max pooling layer, and W be the set of all words that occur in y. The discriminative loss can be
written as

Ld =
1

Z

∑
j∈W

∑
i6=j

max(0, 1− (sj − si)), (3)

where Z is a normalizer that counts all the valid i, j pairs. We note that when the discriminative
supervision is derived from the given data (i.e., predicting word occurrences in captions), we are not
using extra information.

4

3.5 Training

The training loss for a single training instance (x,y) is defined as a weighted sum of the negative
conditional log likelihood and the discriminative loss. Let Ty be the length of the output sequence y.
The loss can be written as

L(x,y) = 1

Ty

Ty∑
t=1

− log softmaxyt
(st) + λLd,

where the definition of softmaxy and st follows Eq. (2), and the formulation of Ld follows Eq. (3). λ
is a constant weighting factor. We adopt adaptive stochastic gradient descent (AdaGrad) [4] to train
the model in an end-to-end manner. The loss of a training batch is averaged over all instances in the
batch.

3.6 Connection to Encoder-Decoders

We now show that our model can be reduced to the conventional (attentive) encoder-decoders in a
special case. In attentive encoder-decoders, the decoder takes the context vector c and the set of
encoder hidden states H = {ht}t as input, while in our review network, the input of the decoder is
instead the review vector r and the set of thought vectors F = {ft}t. To show that our model can be
reduced to attentive encoder-decoders, we only need to construct a case where H = F and c = r.

Since r = W′[fTr
; c], it can be reduced to r = c with a specific setting of W′. We further set

Tr = Tx, and define each reviewer unit as an identity mapping gt(H, ft−1) = ht, which satisfies the
definition of both the attentive input reviewer and the attentive output reviewer with untied weights.
With the above setting, we have ht = ft,∀t = 1, · · · , Tx; i.e., H = F . Thus our model can be
reduced to attentive encoder-decoders in a special case. Similarly we can show that our model can
be reduced to vanilla encoder-decoders (without attention) by constructing a case where r = c and
ft = 0. Therefore, our model is more expressive than (attentive) encoder-decoders.

Though we set Tr = Tx in the above construction, in practice, we set the number of review steps Tr
to be much smaller compared to Tx, since we find that the review network can learn a more compact
and effective representation.

4 Experiments

We experiment with two datasets of different tasks, image captioning and source code captioning.
Since these two tasks are quite different, we can use them to test the robustness and generalizability
of our model.

4.1 Image Captioning

4.1.1 Offline Evaluation

We evaluate our model on the MSCOCO benchmark dataset [2] for image captioning. The dataset
contains 123,000 images with at least 5 captions for each image. For offline evaluation, we use the
same data split as in [7, 20, 21], where we reserve 5,000 images for development and test respectively
and use the rest for training. The models are evaluated using the official MSCOCO evaluation scripts.
We report three widely used automatic evaluation metrics, BLEU-4, METEOR, and CIDEr.

We remove all the non-alphabetic characters in the captions, transform all letters to lowercase, and
tokenize the captions using white space. We replace all words occurring less than 5 times with an
unknown token <UNK> and obtain a vocabulary of 9,520 words. We truncate all the captions longer
than 30 tokens.

We set the number of review steps Tr = 8, the weighting factor λ = 10.0, the dimension of word
embeddings to be 100, the learning rate to be 1e−2, and the dimension of LSTM hidden states to
be 1, 024. These hyperparameters are tuned on the development set. We also use early stopping
strategies to prevent overfitting. More specifically, we stop the training procedure when the BLEU-4
score on the development set reaches the maximum. We use an MLP with one hidden layer of size
512 to define the function α(·, ·) in the attention mechanism, and use an attentive input reviewer in

5

Table 1: Comparison of model variants on MSCOCO dataset. Results are obtained with a single model using
VGGNet. Scores in the brackets are without beam search. We use RNN-like tied weights for the review network
unless otherwise indicated. “Disc Sup” means discriminative supervision.

Model BLEU-4 METEOR CIDEr

Attentive Encoder-Decoder 0.278 (0.255) 0.229 (0.223) 0.840 (0.793)

Review Net 0.282 (0.259) 0.233 (0.227) 0.852 (0.816)
Review Net + Disc Sup 0.287 (0.264) 0.238 (0.232) 0.879 (0.833)
Review Net + Disc Sup + Untied Weights 0.290 (0.268) 0.237 (0.232) 0.886 (0.852)

Table 2: Comparison with state-of-the-art systems on the MSCOCO evaluation server. † indicates ensemble
models. Feat. means using task-specific features or attributes. Fine. means using CNN fine-tuning.

Model BLEU-4 METEOR ROUGE-L CIDEr Fine. Feat.

Attention [20] 0.537 0.322 0.654 0.893 No No
MS Research [5] 0.567 0.331 0.662 0.925 No Yes
Google NIC [18]† 0.587 0.346 0.682 0.946 Yes No
Semantic Attention [21]† 0.599 0.335 0.682 0.958 No Yes

Review Net (this paper)† 0.597 0.347 0.686 0.969 No No

our experiments to be consistent with visual attention models [20]. We use beam search with beam
size 3 for decoding. We guide the model to predict the words occurring in the caption through the
discriminative supervision Ld without introducing extra information. We fix the parameters of the
CNN encoders during training.

We compare our model with encoder-decoders to study the effectiveness of the review network. We
also compare different variants of our model to evaluate the effects of different weight tying strategies
and discriminative supervision. Results are reported in Table 1. All the results in Table 1 are obtained
using VGGNet [13] as encoders as described in Section 3.1.

From Table 1, we can see that the review network can improve the performance over conventional
attentive encoder-decoders consistently on all the three metrics. We also observe that adding discrimi-
native supervision can boost the performance, which demonstrates the effectiveness of incorporating
discriminative supervision in an end-to-end manner. Untying the weights between the reviewer units
can further improve the performance. Our conjecture is that the models with untied weights are
more expressive than shared-weight models since each unit can have its own parametric function to
compute the thought vector. In addition to Table 1, our experiment shows that applying discriminative
supervision on attentive encoder-decoders can improve the CIDEr score from 0.793 to 0.811 without
beam search. We did experiments on the development set with Tr = 0, 4, 8, and 16. The performances
when Tr = 4 and Tr = 16 are slightly worse then Tr = 8 (−0.003 in Bleu-4 and −0.01 in CIDEr).
We also experimented on the development set with λ = 0, 5, 10, and 20, and λ = 10 gives the best
performance.

4.1.2 Online Evaluation on MSCOCO Server

We also compare our model with state-of-the-art systems on the MSCOCO evaluation server in Table
2. Our submission uses Inception-v3 [16] as the encoder and is an ensemble of three identical models
with different random initialization. We take the output of the last convolutional layer (before pooling)
as the encoder states. From Table 2, we can see that among state-of-the-art published systems, the
review network achieves the best performance for three out of four metrics (i.e., METEOR, ROUGE-L,
and CIDEr), and has very close performance to Semantic Attention [21] on BLEU-4 score.

The Google NIC system [18] employs several tricks such as CNN fine-tuning and scheduled sampling
and takes more than two weeks to train; the semantic attention system requires hand-engineering
task-specific features/attributes. Unlike these methods, our approach with the review network is a
generic end-to-end encoder-decoder model and can be trained within six hours on a Titan X GPU.

6

Figure 3: Each row corresponds to a test image: the first is the original image with the caption output by our
model, and the following three images are the visualized attention weights of the first three reviewer units. We
also list the top-5 words with highest scores for each unit. Colors indicate semantically similar words.

4.1.3 Case Study and Visualization

To better understand the review network, we visualize the attention weights α in the review network
in Figure 3. The visualization is based on the review network with untied weights and discriminative
supervision. We also list the top-5 words with highest scores (computed based on the thought vectors)
at each reviewer unit.

We find that the top words with highest scores can uncover the reasoning procedure underlying the
review network. For example, in the first image (a giraffe in a zoo), the first reviewer focuses on the
motion of the giraffe and the tree near it, the second reviewer analyzes the relative position between
the giraffe and the tree, and the third reviewer looks at the big picture and infers that the scene is
in a zoo based on recognizing the fences and enclosures. All the above information is stored in the
thought vectors and decoded as natural language by the decoder.

Different from attentive encoder-decoders [20] that attend to a single object at a time during generation,
it can be clearly seen from Figure 3 that the review network captures more global signals, usually
combining multiple objects into one thought, including objects not finally shown in the caption
(e.g., “traffic light” and “motorcycles”). The thoughts are sometimes abstractive, such as motion
(“standing”), relative position (“near”, “by”, “up”), quantity (“bunch”, “group”), and scene (“city”,
“zoo”). Also, the order of review is not restricted by the order in natural language.

4.2 Source Code Captioning

4.2.1 Data and Settings

The task of source code captioning is to predict the code comment given the source code, which can
be framed under the problem of sequence-to-sequence learning. We experiment with a benchmark

7

Table 3: Comparison of model variants on HabeasCorpus code captioning dataset. “Bidir” indicates using
bidirectional RNN encoders, “LLH” refers to log-likelihood, “CS-k” refers to top-k character savings.

Model LLH CS-1 CS-2 CS-3 CS-4 CS-5

Language Model -5.34 0.2340 0.2763 0.3000 0.3153 0.3290
Encoder-Decoder -5.25 0.2535 0.2976 0.3201 0.3367 0.3507
Encoder-Decoder (Bidir) -5.19 0.2632 0.3068 0.3290 0.3442 0.3570
Attentive Encoder-Decoder (Bidir) -5.14 0.2716 0.3152 0.3364 0.3523 0.3651

Review Net -5.06 0.2889 0.3361 0.3579 0.3731 0.3840

dataset for source code captioning, HabeasCorpus [11]. HabeasCorpus collects nine popular open-
source Java code repositories, such as Apache Ant and Lucene. The dataset contains 6, 734 Java
source code files with 7, 903, 872 source code tokens and 251, 565 comment word tokens. We
randomly sample 10% of the files as the test set, 10% as the development set, and use the rest for
training. We use the development set for early stopping and hyperparameter tuning.

Our evaluation follows previous works on source code language modeling [10] and captioning [11].
We report the log-likelihood of generating the actual code captions based on the learned models. We
also evaluate the approaches from the perspective of code comment completion, where we compute
the percentage of characters that can be saved by applying the models to predict the next token. More
specifically, we use a metric of top-k character savings [11] (CS-k). Let n be the minimum number
of prefix characters needed to be filtered such that the actual word ranks among the top-k based on
the given model. Let L be the length of the actual word. The number of saved characters is then
L− n. We compute the average percentage of saved characters per comment to obtain the metric
CS-k.

We follow the tokenization used in [11], where we transform camel case identifiers into multiple
separate words (e.g., “binaryClassifierEnsemble” to “binary classifier ensemble”), and remove all
non-alphabetic characters. We truncate code sequences and comment sequences longer than 300
tokens. We use an RNN encoder and an attentive output reviewer with tied weights. We set the
number of review steps Tr = 8, the dimension of word embeddings to be 50, and the dimension of
the LSTM hidden states to be 256.

4.2.2 Results

We report the log-likelihood and top-k character savings of different model variants in Table 3. The
baseline model “Language Model” is an LSTM decoder whose output is not sensitive to the input code
sequence. A preliminary experiment showed that the LSTM decoder significantly outperforms the N-
gram models used in [11] (+3% in CS-2), so we use the LSTM decoder as a baseline for comparison.
We also compare with different variants of encoder-decoders, including incorporating bidirectional
RNN encoders and attention mechanism. It can be seen from Table 3 that both bidirectional encoders
and attention mechanism can improve over vanilla encoder-decoders. The review network outperforms
attentive encoder-decoders consistently in all the metrics, which indicates that the review network is
effective at learning useful representation.

5 Conclusion

We present a novel architecture, the review network, to improve the encoder-decoder learning
framework. The review network performs multiple review steps with attention on the encoder hidden
states, and computes a set of thought vectors that summarize the global information in the input. We
empirically show consistent improvement over conventional encoder-decoders on the tasks of image
captioning and source code captioning. In the future, it will be interesting to apply our model to more
tasks that can be modeled under the encoder-decoder framework, such as machine translation and
text summarization.

Acknowledgements This work was funded by the NSF under grants CCF-1414030 and IIS-1250956,
Google, Disney Research, the ONR grant N000141512791, and the ADeLAIDE grant FA8750-16C-
0130-001.

8

References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

[2] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325, 2015.

[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. In ACL, 2014.

[4] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 12:2121–2159, 2011.

[5] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K Srivastava, Li Deng, Piotr Dollár, Jianfeng
Gao, Xiaodong He, Margaret Mitchell, John C Platt, et al. From captions to visual concepts and
back. In CVPR, pages 1473–1482, 2015.

[6] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

[7] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. In CVPR, pages 3128–3137, 2015.

[8] Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter
Ondruska, Ishaan Gulrajani, and Richard Socher. Ask me anything: Dynamic memory networks
for natural language processing. In ICML, 2016.

[9] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. In ACL, 2015.

[10] Chris J Maddison and Daniel Tarlow. Structured generative models of natural source code. In
ICML, 2014.

[11] Dana Movshovitz-Attias and William W Cohen. Natural language models for predicting
programming comments. In ACL, 2013.

[12] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. In EMNLP, 2015.

[13] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

[14] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In NIPS,
pages 2431–2439, 2015.

[15] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In NIPS, pages 3104–3112, 2014.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567,
2015.

[17] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for
sets. In ICLR, 2016.

[18] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural
image caption generator. In CVPR, pages 3156–3164, 2015.

[19] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In ICLR, 2015.
[20] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and

Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention.
In ICML, 2015.

[21] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with
semantic attention. In CVPR, 2016.

9

