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Abstract

This paper studies the trade-off between two different kinds of pure exploration:
breadth versus depth. We focus on the most biased coin problem, asking how
many total coin flips are required to identify a “heavy” coin from an infinite bag
containing both “heavy” coins with mean θ1 ∈ (0, 1), and “light" coins with
mean θ0 ∈ (0, θ1), where heavy coins are drawn from the bag with proportion
α ∈ (0, 1/2). When α, θ0, θ1 are unknown, the key difficulty of this problem lies in
distinguishing whether the two kinds of coins have very similar means, or whether
heavy coins are just extremely rare. While existing solutions to this problem require
some prior knowledge of the parameters θ0, θ1, α, we propose an adaptive algorithm
that requires no such knowledge yet still obtains near-optimal sample complexity
guarantees. In contrast, we provide a lower bound showing that non-adaptive
strategies require at least quadratically more samples. In characterizing this gap
between adaptive and nonadaptive strategies, we make connections to anomaly
detection and prove lower bounds on the sample complexity of differentiating
between a single parametric distribution and a mixture of two such distributions.

1 Introduction
The trade-off between exploration and exploitation has been an ever-present trope in the online
learning literature. In contrast, this paper studies the trade-off between two different kinds of pure
exploration: breadth versus depth. Consider a bag that contains an infinite number of two kinds
of biased coins: “heavy” coins with mean θ1 ∈ (0, 1) and “light” coins with mean θ0 ∈ (0, θ1).
When a player picks a coin from the bag, with probability α the coin is “heavy” and with probability
(1− α) the coin is “light.” The player can flip any coin she picks from the bag as many times as she
wants, and the goal is to identify a heavy coin using as few total flips as possible. When α, θ0, θ1 are
unknown, the key difficulty of this problem lies in distinguishing whether the two kinds of coins have
very similar means, or whether heavy coins are just extremely rare. That is, how does one balance
flipping an individual coin many times to better estimate its mean against considering many new coins
to maximize the probability of observing a heavy one. Previous work has only proposed solutions
that rely on some or full knowledge α, θ0, θ1, limiting their applicability. In this work we propose
the first algorithm that requires no knowledge of α, θ0, θ1, is guaranteed to return a heavy coin with
probability at least 1− δ, and flips a total number of coins, in expectation, that nearly matches known
lower bounds. Moreover, our fully adaptive algorithm supports more general sub-Gaussian sources in
addition to just coins, and only ever has one “coin” outside the bag at a given time, a constraint of
practical importance to some applications.

In addition, we connect the most biased coin problem to anomaly detection and prove novel lower
bounds on the difficulty of detecting the presence of a mixture versus just a single component of
a known family of distributions (e.g. X ∼ (1 − α)gθ0 + αgθ1 versus X ∼ gθ for some θ). We
show that in detecting the presence of a mixture distribution, there is a stark difference of difficulty
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between when the underlying distribution parameters are known (e.g. α, θ0, θ1) and when they are
not. The most biased coin problem can be viewed as an online, adaptive mixture detection problem
where source distributions arrive one at a time that are either gθ0 with probability (1 − α) or gθ1
with probability α (e.g. null or anomolous) and the player adaptively chooses how many samples
to take from each distribution (to increase the signal-to-noise ratio) with the goal of identifying an
anomolous distribution fθ1 using as few total number of samples as possible. One consequence of
this work is drawing a contrast between the power of an adaptive versus non-adaptive (e.g. taking
the same number of samples each time) approaches to this problem, specifically when α, θ0, θ1 are
unknown.

1.1 Motivation and Related Work for the Most Biased Coin Problem

The most biased coin problem characterizes the inherent difficulty of real-world problems including
anomaly and intrusion detection and discovery of vacant frequencies in the radio spectrum. Our
interest in the problem stemmed from automated hiring of crowd workers: data labeling for machine
learning applications is often performed by humans, and recent work in the crowdsourcing literature
accelerates labeling by organizing workers into pools of labelers and paying them to wait for incoming
data [3, 11]. Workers hired on marketplaces such as Amazon’s Mechanical Turk [15] vary widely in
skill, and identifying high-quality workers as quickly as possible is an important challenge. We can
model each worker’s performance (e.g. accuracy or speed) as a random variable so that selecting
a good worker is equivalent to identifying a worker with a high mean. Since we do not observe a
worker’s expected performance directly, we must give them tasks from which we estimate it (like
repeatedly flipping a biased coin).

The most biased coin problem was first proposed by Chandrasekaran and Karp [7]. In that work,
it was shown that if α, θ0, θ1 were known then there exists an algorithm based on the sequential
probability ratio test (SPRT) that is optimal in that it minimizes the expected number of total flips to
find a “heavy” coin whose posterior probability of being heavy is at least 1 − δ, and the expected
sample complexity of this algorithm was upper-bounded by
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(θ1 − θ0)2

(
1− α
α

+ log

(
(1− α)(1− δ)

αδ

))
. (1)

However, the practicality of the proposed algorithm is severely limited as it relies critically on
knowing α, θ0, and θ1 exactly. In addition, the algorithm returns to coins it has previously flipped
and thus requires more than one coin to be outside the bag at a time, ruling out some applications.
Malloy et al. [14] addressed some of the shortcomings of [8] (a preprint of [7]) by considering both
an alternative SPRT procedure and a sequential thresholding procedure. Both of these proposed
algorithms only ever have one coin out of the bag at a time. However, the former requires knowledge
of all relevant parameters α, θ0, θ1, and the latter requires knowledge of α, θ0. Moreover, these results
are only presented for the asymptotic case where δ → 0.

The most biased coin problem can be viewed through the lens of multi-armed bandits. In the
best-arm identification problem, the player has access to K distributions (arms) such that if arm
i ∈ [K] is sampled (pulled), an iid random variable with mean µi is observed; the objective is to
identify the arm associated with the highest mean with probability at least 1− δ using as few pulls
as possible (see [13] for a short survey). In the infinite armed bandit problem, the player is not
confined to K arms but an infinite reservoir of arms such that a draw from this reservoir results in
an arm with a mean µ drawn from some distribution; the objective is to identify the highest mean
possible after n total pulls for any n > 0 with probability 1 − δ (see [6]). The most biased coin
problem is an instance of this latter game with the arm reservoir distribution of means µ defined as
P(µ ≥ θ1 − ε) = α1ε≥0 + (1− α)1ε≥θ1−θ0 for all ε. Previous work has focused on an alternative
arm distribution reservoir that satisfies Eεβ ≤ P(µ ≥ µ∗ − ε) ≤ E′εβ for some µ∗ ∈ [0, 1] where
E,E′ are constants and β is known [4, 20, 5, 6]. Because neither arm distribution reservoir can be
written in terms of the other, neither work subsumes the other. Note that one can always apply an
algorithm designed for the infinite armed bandit problem to any finite K-armed bandit problem by
defining the arm reservoir as placing a uniform distribution over the K arms. This is appealing when
K is very large and one wishes to guarantee nontrivial performance when the number of pulls is
much less than K1. The most biased problem is a special case of the K-armed reservoir distribution
where one arm has mean θ1 and K − 1 arms have mean θ0 with α = 1

K .
1All algorithms for K-armed bandit problem known to these authors begins by sampling each arm once so

that until the number of pulls exceeds K, performance is no better than random selection.
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Given that [7] and [14] are provably optimal algorithms for the most biased coin problem given
knowledge of α, θ0, θ1, it is natural to consider a procedure that first estimates these unknown
parameters first and then uses these estimates in the algorithms of [7] or [14]. Indeed, in the β-
parameterized arm reservoir setting discussed above, this is exactly what Carpentier and Valko [6]
propose to do, suggesting a particular estimator for β given a lower bound β̂ ≤ β. They show that
this estimator is sufficient to obtain the same sample complexity result up to log factors as when β
was known. Sadly, through upper and lower bounds we show that for the most biased coin problem
this estimate-then-explore approach requires quadratically more flips than our proposed algorithm
that adapts to these unknown parameters. Specifically, we show that when θ1 − θ0 is sufficiently
small one cannot use a static estimation step to determine whether α = 0 or α > 0 unless a number
of samples quadratic in the optimal sample complexity are taken.

Our contributions to the most biased coin problem include a novel algorithm that never has more
than one coin outside the bag at a time, has no knowledge of the distribution parameters, supports
distributions on [0, 1] rather than just “coins,” and comes within log factors of the known information-
theoretic lower bound and Equation 1 which is achieved by an algorithm that knows the parameters.
See Table 1 for an overview of the upper and lower bounds proved in this work for this problem.
We believe that our algorithm is the first solution to the most biased coin problem that does not
require prior knowledge of the problem parameters and that the same approach can be reworked to
solve more general instances of the infinite-armed bandit problem, including the β-parameterized
and K-armed reservoir cases described of above. Finally, if an algorithm is desired for arbitrary arm
reservoir distributions, this work rules out an estimate-then-explore approach.

1.2 Problem Statement
Let θ ∈ Θ index a family of single-parameter probability density functions gθ and fix θ0, θ1 ∈ Θ,
α ∈ [0, 1/2]. For any θ ∈ Θ assume that gθ is known to the procedure. Note that in the most biased
coin problem, gθ =Bernoulli(θ), but in general it is arbitrary (e.g. N (θ, 1)). Consider a sequence of iid
Bernoulli random variables ξi ∈ {0, 1} for i = 1, 2, . . . where each P(ξi = 1) = 1−P(ξi = 0) = α.
Let Xi,j for j = 1, 2, . . . be a sequence of random variables drawn from gθ1 if ξi = 1 and gθ0
otherwise, and let {{Xi,j}Mi

j=1}Ni=1 represent the sampling history generated by a procedure for some
N ∈ N and (M1, . . . ,MN ) ∈ NN . Any valid procedure behaves accordingly:

Algorithm 1 The most biased coin problem definition. Only the last distribution drawn may be
sampled or declared heavy, enforcing the rule that only one coin may be outside the bag at a time.
Initialize an empty history (N = 1,M = (0, 0, . . . )).
Repeat until heavy distribution declared:

Choose one of
1. draw a sample from distribution N , MN ←MN + 1
2. draw a sample from the (N + 1)st distribution, MN+1 = 1, N ← N + 1
3. declare distribution N as heavy

Definition 1 We say a strategy for the most biased coin problem is δ-probably correct if for all
(α, θ0, θ1) it identifies a “heavy” gθ1 distribution with probability at least 1− δ.

Definition 2 (Strategies for the most biased coin problem) An estimate-then-explore strategy
is a strategy that, for any fixed m ∈ N, begins by sampling each successive coin exactly m times for
a number of coins that is at least the minimum necessary for any test to determine that α 6= 0 with
probability at least 1− δ, then optionally continues sampling with an arbitrary strategy that declares
a heavy coin. An adaptive strategy is any strategy that is not an estimate-then-explore strategy.

We study the estimate-then-explore strategy because there exist optimal algorithms [7, 14] for the
most biased coin problem if α, θ0, θ1 are known, so it is natural to consider estimating these quantities
then using one of these algorithms. Note that the algorithm of [6] for the β-parameterized infinite
armed bandit problem discussed above can be considered an estimate-then-explore strategy since it
first estimates β by sampling a fixed number of samples from a set of arms, and then uses this estimate
to draw a fixed number of arms and applies a UCB-style algorithm to these arms. A contribution of
this work is showing that such a strategy is infeasible for the most biased coin problem.
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For all strategies that are δ-probably correct and follow the interface of Algorithm 1, our goal is
to provide lower and upper bounds on the quantity E[T ] := E[

∑N
i=1Mi] for any (α, θ0, θ1) if N

denotes the final number of coins considered.

2 From Identifying Coins to Detecting Mixture Distributions

Addressing the most biased coin problem, [14] analyzes perhaps the most natural strategy: fix an
m ∈ N and flip each successive coin exactly m times. The relevant questions are how large does m
have to be in order to guarantee correctness with probability 1− δ, and for a given m how long must
one wait to declare a “heavy” coin? The authors partially answer these questions and we improve
upon them (see Section 3.2.1) which leads us to our study of the difficulty of detecting the presence of
a mixture distribution. As an example of the kind of lower bounds shown in this work, if we observe
a sequence of random variables X1, . . . , Xn, consider the following hypothesis test:

H0 : ∀i X1, . . . , Xn ∼ N (θ, σ2) for some θ ∈ R,
H1 : ∀i X1, . . . , Xn ∼ (1− α)N (θ0, σ

2) + α N (θ1, σ
2)

(P1)

which will henceforth be referred to as Problem P1 or just (P1). We can show that if θ0, θ1, α are
known and θ = θ0, then it is sufficient to observe just max{1/α, σ2

α2(θ1−θ0)2 log(1/δ)} samples to
determine the correct hypothesis with probability at least 1− δ. However, if θ0, θ1, α are unknown
then it is necessary to observe at least max

{
1/α,

(
σ2

α(θ1−θ0)2
)2

log(1/δ)
}

samples in expectation

whenever (θ1−θ0)2
σ2 ≤ 1 and max{1/α, σ2

α2(θ1−θ0)2 log(1/δ)} otherwise (see Appendix C).

Recognizing (θ1−θ0)2
σ2 as the KL divergence between two Gaussians of H1, we observe startling

consequences for anomaly detection when the parameters of the underlying distributions are unknown:
if the anomalous distribution is well separated from the null distribution, then detecting an anomalous
component is only about as hard as observing just one anomalous sample (i.e. 1/α) multiplied by
the inverse KL divergence between the null and anomalous distributions. However, when the two
distributions are not well separated then the necessary sample complexity explodes to this latter
quantity squared. In Section 4 we will investigate adaptive methods for dramatically decreasing this
sample complexity.

Our lower bounds are based on the detection of the presence of a mixture of two distributions of an
exponential family versus just a single distribution of the same family. There has been extensive
work in the estimation of mixture distributions [12, 10] but this literature often assumes that the
mixture coefficient α is bounded away from 0 and 1 to ensure a sufficient number of samples from
each distribution. In contrast, we highlight the regime when α is arbitrarily small, as is the case in
statistical anomaly detection [9, 19, 2]. Property testing, e.g. unimodality, [1] is relevant but can lack
interpetability or strength in favor of generality. Considering the exponential family allowing us to
make interpretable statements about the relevant problem parameters in different regimes.

Preliminaries Let P and Q be two probability distributions with densities p and q, respectively. For
simplicity, assume p and q have the same support. Define the KL Divergence between P and Q
as KL(P,Q) =

∫
log
(
p(x)
q(x)

)
dp(x). Define the χ2 Divergence between P and Q as χ2(P,Q) =∫ (p(x)

q(x) − 1
)2
dq(x) =

∫ (p(x)−q(x))2
q(x) dx. Note that by Jensen’s inequality

KL(P,Q) = Ep
[

log
(
p
q

)]
≤ log

(
Ep
[
p
q

])
= log

(
χ2(P,Q) + 1

)
≤ χ2(P,Q). (2)

Examples: If P = N (θ1, σ
2) and Q = N (θ0, σ

2) then KL(P,Q) = (θ1−θ0)2
2σ2 and χ2(P,Q) =

e
(θ1−θ0)2

σ2 − 1. If P = Bernoulli(θ1) and Q = Bernoulli(θ0) then KL(P,Q) = θ1 log( θ1θ0 ) + (1 −
θ1) log(1−θ1

1−θ0 ) ≤ (θ1−θ0)2/2
θ0(1−θ0)−[(θ1−θ0)(2θ0−1)]+ and χ2(P,Q) = (θ1−θ0)2

θ0(1−θ0) . All proofs appear in the
appendix.

3 Lower bounds

We present lower bounds on the sample complexity of δ-probably correct strategies for the most
biased coin problem that follow the interface of Algorithm 1. Lower bounds are stated for any
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adaptive strategy in Section 3.1, non-adaptive strategies that may have knowledge of the parameters
but sample each distribution the same number of times in Section 3.2.1, and estimate-then-explore
strategies that do not have prior knowledge of the parameters in Section 3.2.2. Our lower bounds,
with the exception of the adaptive strategy, are based on the difficulty of detecting the presence of a
mixture distribution, and this reduction is explained in Section 3.2.

3.1 Adaptive strategies

The following theorem, reproduced from [14], describes the sample complexity of any δ-probably
correct algorithm for the most biased coin identification problem. Note that this lower bound holds
for any procedure even if it returns to previously seen distributions to draw additional samples and
even if it knows α, θ0, θ1.

Theorem 1 [14, Theorem 2] Fix δ ∈ (0, 1). Let T be the total number of samples taken of any
procedure that is δ-probably correct in identifying a heavy distribution. Then

E[T ] ≥ c1 max

{
1− δ
α

,
(1− δ)

αKL(gθ0 |gθ1)

}
whenever α ≤ c2δ where c1, c2 ∈ (0, 1) are absolute constants.

The above theorem is directly applicable to the special case where gθ is a Bernoulli distribution,
implying a lower bound of max

{
1−δ
α , 2min{θ0(1−θ0),θ1(1−θ1)}

α(θ1−θ0)2
}

for the most biased coin problem.
The upper bounds of our proposed procedures for the most biased coin problem presented later will
be compared to this benchmark.

3.2 The detection of a mixture distribution and the most biased coin problem

First observe that identifying a specific distribution i ≤ N as heavy (i.e. ξi = 1) or determining that α
is strictly greater than 0, is at least as hard as detecting that any of the distributions up to distributionN
is heavy. Thus, a lower bound on the total expected number of samples of all considered distributions
for this strictly easier detection problem is also a lower bound for the estimate-then-explore strategy
for the most biased coin identification problem.

The estimate-then-explore strategy fixes an m ∈ N prior to starting the game and then samples each
distribution exactly m times, i.e. Mi = m for all i ≤ N for some N . To simplify notation let fθ
denote the distribution of the sufficient statistics of these m samples. In general fθ is a product
distribution, but when gθ is a Bernoulli distribution, as in the biased coin problem, we can take fθ to
be a Binomial distribution with parameters (m, θ). Now our problem is more succinctly described as:

H0 : ∀i Xi ∼ fθ for some θ ∈ Θ̃ ⊆ Θ,

H1 : ∀i ξi ∼ Bernoulli(α), ∀i Xi ∼
{
fθ0 if ξi = 0

fθ1 if ξi = 1

(P2)

If θ0 and θ1 are close to each other, or if α is very small, it can be very difficult to decide between H0

and H1 even if α, θ0, θ1 are known a priori. Note that when the parameters are known, one can take
Θ̃ = {θ0}. However, when the parameters are unknown, one takes Θ̃ = Θ to prove a lower bound on
the sample complexity of the estimate-then-explore algorithm, which is tasked with deciding whether
or not samples are coming from a mixture of distributions or just a single distribution within the
family. That is, lower bounds on the sample complexity when the parameters are known and unknown
follow by analyzing a simple binary and composite hypothesis test, respectively. In what follows, for
any event A, let Pi(A) and Ei[A] denote probability and expectation of A under hypothesis Hi for
i ∈ {0, 1} (the specific value of θ in H0 will be clear from context). The next claim is instrumental
in our ability to prove lower bounds on the difficulty of the hypothesis tests.

Claim 1 Any procedure that is δ-probably correct also satisfies P0(N <∞) ≤ δ whenever α = 0.

3.2.1 Sample complexity when parameters are known

Theorem 2 Fix δ ∈ (0, 1). Consider the hypothesis test of Problem P2 for any fixed θ ∈ Θ̃ ⊆
Θ. Let N be the random number of distributions considered before stopping and declaring a
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hypothesis. If a procedure satisfies P0(N < ∞) ≤ δ and P1(∪Ni=1{ξi = 1}) ≥ 1 − δ, then

E1[N ] ≥ max
{

1−δ
α , log(1/δ)

KL(P1|P0)

}
≥ max

{
1−δ
α , log(1/δ)

χ2(P1|P0)

}
. In particular, if Θ̃ = {θ0} then

E1[N ] ≥ max
{1− δ

α
,

log(1/δ)

α2χ2(fθ1 |fθ0)

}
.

The next corollary relates Theorem 2 to the most biased coin problem and is related to Malloy et al.
[14, Theorem 4] that considers the limit as α→ 0 and assumes m is sufficiently large (specifically,
large enough for the Chernoff-Stein lemma to apply). In contrast, our result holds for all finite δ, α,m.

Corollary 1 Fix δ ∈ (0, 1). For any m ∈ N consider a δ-probably correct strategy that flips each
coin exactly m times. If Nm is the number of coins considered before declaring a coin as heavy then

min
m∈N

E[mNm] ≥
(1− δ) log

(
log(1/δ)

α

)
α

θ0(1− θ0)

(θ1 − θ0)2
.

One can show the existence of such a strategy with a nearly matching upperbound when α, θ0, θ1 are
known (see Appendix B.1). Note that this is at least log(1/α) larger than the sample complexity of
(1) that can be achieved by an adaptive algorithm when the parameters are known.

3.2.2 Sample complexity when parameters are unknown
If α, θ0, and θ1 are unknown, we cannot test fθ0 against the mixture (1− α)fθ0 + αfθ1 . Instead, we
have the general composite test of any individual distribution against any mixture, which is at least as
hard as the hypothesis test of Problem P2 with Θ̃ = {θ} for some particular worst-case setting of θ.
Without any specific form of fθ, it is difficult to pick a worst case θ that will produce a tight bound.
Consequently, in this section we consider single parameter exponential families (defined formally
below) to provide us with a class of distributions in which we can reason about different possible
values for θ. Since exponential families include Bernoulli, Gaussian, exponential, and many other
distributions, the following theorem is general enough to be useful in a wide variety of settings. The
constant C referred to in the next theorem is an absolute constant under certain conditions that we
outline in the following remark and corollary, its explicit form is given in the proof.

Theorem 3 Suppose fθ for θ ∈ Θ ⊂ R is a single parameter exponential family so that fθ(x) =

h(x) exp(η(θ)x− b(η(θ))) for some scalar functions h, b, η where η is strictly increasing. If Θ̃ =
{θ∗} where θ∗ = η−1

(
(1 − α)η(θ0) + αη(θ1)

)
and N is the stopping time of any procedure that

satisfies P0(N <∞) ≤ δ and P1(∪Ni=1{ξi = 1}) ≥ 1− δ, then

E1[N ] ≥ max
{

1−δ
α ,

log(
1
δ )

C( 1
2α(1−α)(η(θ1)−η(θ0))2)

2

}
.

where C is a constant that may depend on α, θ0, θ1.

The following remark and corollary apply Theorem 3 to the special cases of Gaussian mixture model
detection and the most biased coin problem, respectively.

Remark 1 When α, θ0, θ1 are unknown, any procedure has no knowledge of Θ̃ in Problem P2 and
consequently it cannot rule out θ = θ∗ for H0 where θ∗ is defined in Theorem 3. If fθ = N (θ, σ2)

for known σ, then whenever (θ1−θ0)2
σ2 ≤ 1 the constant C in Theorem 3 is an absolute constant and

consequently, E1[N ] = Ω
((

σ2

α(θ1−θ0)2
)2

log(1/δ)
)
. Conversely, when α, θ0, θ1 are known, then we

simply need to determine whether samples came fromN (θ0, σ
2) or (1−α)N (θ0, σ

2) +αN (θ1, σ
2),

and we show that it is sufficient to take just O
(

σ2

α2(θ1−θ0)2 log(1/δ)
)

samples (see Appendix C).

Corollary 2 Fix δ ∈ [0, 1] and assume θ0, θ1 are bounded sufficiently far from {0, 1} such that
2(θ1 − θ0) ≤ min{θ0(1− θ0), θ1(1− θ1)}. For any m let Nm be the number of coins a δ-probably
correct estimate-then-explore strategy that flips each coin m times in the exploration step. Then

mE[Nm] ≥
c′min{ 1

m , θ∗(1− θ∗)}(
α(1− α) (θ1−θ0)2

θ∗(1−θ∗)

)2 log( 1
δ ) whenever m ≤ θ∗(1− θ∗)

(θ1 − θ0)2
.

where c′ is an absolute constant and θ∗ = η−1 ((1− α)η(θ0) + αη(θ1)) ∈ [θ0, θ1].
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Remark 2 If α, θ0, θ1 are unknown, any estimate-then-explore strategy (or the strategy described in
Corollary 1) would be unable to choose an m that depended on these parameters, so we can treat it as
a constant. Thus, for the case when θ0 and θ1 are bounded away from {0, 1} (e.g. θ0, θ1 ∈ [1/8, 7/8]),
the above corollary states that for any fixed m, whenever θ1 − θ0 is sufficiently small the number
of samples necessary for these strategies to identify a heavy coin scales like

(
1

α(θ1−θ0)2
)2

log(1/δ).
This is striking example of the difference when parameters are known versus when they are not and
effectively rules out an estimate-then-explore strategy for practical purposes.

Setting Upper Bound Lower Bound

Fixed, known α, θ0, θ1
log(1/(δα))

αε2 , Thm. 7 log(log(1/δ)/α)
αε2 Cor. 1

Adaptive, known α, θ0, θ1 1
ε2

(
1
α + log( 1

δ )
)

[7, 14], Thm. 4 1
αε2 [14]

Est+Expl, unknown α, θ0, θ1 Unconsidered†
(

1
αε2

)2
log( 1

δ ) Cor. 2

Adaptive, unknown α, θ0, θ1 c log( 1
αε2

) log(log( 1
αε2

)/δ)
αε2 Thm. 5

1
αε2 [14]

Table 1: Upper and lower bounds on the expected sample complexity of different δ-probably correct
strategies. Fixed refers to the strategy of Corollary 1. For this table, we assume min{θ0(1 −
θ0), θ1(1 − θ1)} is lower bounded by a constant (e.g. θ0, θ1 ∈ [1/8, 7/8]) and ε = θ1 − θ0 is
sufficiently small. Also note that the upperbounds apply to distributions supported on [0, 1], not
just coins. All results without bracketed citations were unknown prior to this work. † Due to our
discouraging lower bound for any estimate-then-explore strategy, it is inadvisable to propose an algorithm.

4 Near optimal adaptive algorithm

In this section we propose an algorithm that has no prior knowledge of the parameters α, θ0, θ1 yet
yields an upper bound that matches the lower bound of Theorem 1 up to logarithmic factors. We
assume that samples from heavy or light distributions are supported on [0, 1], and that drawn samples
are independent and unbiased estimators of the mean, i.e., E[Xi,j ] = µi for µi ∈ {θ0, θ1}. All
results can be easily extended to sub-Gaussian distributions. Consider Algorithm 2, an SPRT-like
procedure [17] for finding a heavy distribution given δ and lower bounds on α and ε = θ1 − θ0. It
improves upon prior work by supporting arbitrary distributions on [0, 1] and requires only bounds
α, ε.

Algorithm 2 Adaptive strategy for heavy distribution identification with inputs α0, ε0, δ

Given δ ∈ (0, 1/4), α0 ∈ (0, 1/2), ε0 ∈ (0, 1).
Initialize n = d2 log(9)/α0e,m = d64ε−20 log(14n/δ)e, A = −8ε−10 log(21),

B = 8ε−10 log(14n/δ), k1 = 5, k2 = d8ε−20 log(2k1/min{δ/8,m−1ε−20 })e.
Draw k1 distributions and sample them each k2 times.
Estimate θ̂0 = mini=1,...,k1 µ̂i,k2 , γ̂ = θ̂0 + ε0/2.
Repeat for i = 1, . . . , n:

Draw distribution i.
Repeat for j = 1, . . . ,m:

Sample distribution i and observe Xi,j .
If
∑j
k=1(Xi,k − γ̂) > B:

Declare distribution i to be heavy and Output distribution i.
Else if

∑j
k=1(Xi,k − γ̂) < A:

break.
Output null.

Theorem 4 If Algorithm 2 is run with δ ∈ (0, 1/4), α0 ∈ (0, 1/2), ε0 ∈ (0, 1), then the expected
number of total samples taken by the algorithm is no more than

c′α log(1/α0) + c′′ log
(
1
δ

)
α0ε20

(3)
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for some absolute constants c′,c′′, and all of the following hold: 1) with probability at least 1− δ,
a light distribution is not returned, 2) if ε0 ≤ θ1 − θ0 and α0 ≤ α, then with probability 4

5 a heavy
distribution is returned, and 3) the procedure takes no more than c log(1/(α0δ))

α0ε20
total samples.

The second claim of the theorem holds only with constant probability (versus with probability 1− δ)
since the probability of observing a heavy distribution among the n = d2 log(4)/α0e distributions
only occurs with constant probability. One can show that if the outer loop of algorithm is allowed
to run indefinitely (with m and n defined as is), ε0 = θ1 − θ0, α0 = α, and θ̂0 = θ0, then a heavy
coin is returned with probability at least 1− δ and the expected number of samples is bounded by
(3). If a tight lower bound is known on either ε = θ1 − θ0 or α, there is only one parameter that is
unknown and the “doubling trick”, along with Theorem 4, can be used to identify a heavy coin with
just log(log(ε−2)/δ)

αε2 and log(log(α−1)/δ)
αε2 samples, respectively (see Appendix B.3).

Now consider Algorithm 3 that assumes no prior knowledge of α, θ0, θ1, the first result for this setting
that we are aware of. We remark that while the placing of “landmarks” (αk, εk) throughout the search
space as is done in Algorithm 3 appears elementary in hindsight, it is surprising that so few can cover
this two dimensional space since one has to balance the exploration of α and ε. We believe similar a
similar approach may be generalized for more generic infinite armed bandit problems.

Algorithm 3 Adaptive strategy for heavy distribution identification with unknown parameters
Given δ > 0.
Initialize ` = 1, heavy distribution h = null.
Repeat until h is not null:

Set γ` = 2`, δ` = δ/(2`3)
Repeat for k = 0, . . . , `:

Set αk = 2k

γ`
, εk =

√
1

2αkγ`

Run Algorithm 2 with α0 = αk, ε0 = εk, δ = δ` and Set h to its output.
If h is not null break

Set ` = `+ 1
Output h

Theorem 5 (Unknown α, θ0, θ1) Fix δ ∈ (0, 1). If Algorithm 3 is run with δ then with probability
at least 1 − δ a heavy distribution is returned and the expected number of total samples taken is
bounded by

c
log2( 1

αε2 )

αε2
(α log2( 1

ε2 ) + log(log2( 1
αε2 )) + log(1/δ))

for an absolute constant c.

5 Conclusion

While all prior works have required at least partial knowledge of α, θ0, θ1 to solve the most biased
coin problem, our algorithm requires no knowledge of these parameters yet obtain the near-optimal
sample complexity. In addition, we have proved lower bounds on the sample complexity of detecting
the presence of a mixture distribution when the parameters are known or unknown, with consequences
for any estimate-then-explore strategy, an approach previously proposed for an infinite armed bandit
problem. Extending our adaptive algorithm to arbitrary arm reservoir distributions is of significant
interest. We believe a successful algorithm in this vein could have a significant impact on how
researchers think about sequential decision processes in both finite and uncountable action spaces.
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A Proofs of Lower Bounds

A.1 Proof of Claim 1

Proof Suppose there exists a δ-probably correct procedure with P(N < ∞) > δ on a problem instance
(α, θ0, θ1) when α = 0. Then there exists a finite n̂ ∈ N such that P(N ≤ n̂) > δ. For some ε ∈ (0, 1) to be

defined later, define α̂ =
log(

1
1−ε )

2n̂
and note that for this α̂, P(

⋂n̂
i=1{ξi = 0}) = (1− α̂)n̂ ≥ e−2n̂α̂ ≥ 1− ε.

Thus, the probability that the procedure terminates with a light distribution under α = α̂ is at least

Pα=α̂(N ≤ n̂,∩n̂i=1{ξi = 0}) = Pα=α̂(N ≤ n̂| ∩n̂i=1 {ξi = 0})Pα=α̂(∩n̂i=1{ξi = 0})

= Pα=0(N ≤ n̂)Pα=α̂(∩n̂i=1{ξi = 0}) > δ(1− ε).
Because we can make ε arbitrarily small, the above display implies that the procedure makes a mistake with
probability at least δ, but this is a contradiction as the procedure is δ-probably correct.

A.2 Proof of Theorem 2

Proof First, let N be the number of distributions considered at the stopping time T . Note that T ≥ N . By
assumption the procedure satisfies P1(N ≥ n| ∩n−1

i=1 {ξi = 0}) ≥ 1− δ for all n ∈ N. And

P1(N ≥ n) ≥ P1(N ≥ n,∩n−1
i=1 {ξi = 0}) = P1(N ≥ n| ∩n−1

i=1 {ξi = 0})P1(∩n−1
i=1 {ξi = 0})

≥ (1− δ)(1− α)n−1

Thus, E1[N ] =
∑∞
n=1 P1(N ≥ n) ≥ (1− δ)

∑∞
n=1(1− α)n−1 = 1−δ

α
which results in the first argument of

the max.

Applying Theorem 2.38 of [17] we have

E1[N ]χ2 (P1|P0)
Eqn. (2)
≥ E1[N ]KL (P1|P0)

Thm. 2.38
≥ log( 1

P0(N<∞)
)

assumption
≥ log( 1

δ
),

which results in the second argument of the max.

If Θ̃ = {θ0} then χ2(P1|P0) = χ2((1− α)fθ0 + αfθ1 |fθ0) and

χ2((1− α)fθ0 + αfθ1 |fθ0) =

∫
((1− α)fθ0(x) + αfθ1(x)− fθ0(x))2

fθ0(x)
dx = α2χ2(fθ1 |fθ0)

Thus, E1[N ] ≥ log(
1
δ

)

α2χ2(fθ1 |fθ0 )
which results in the second part of the theorem.

A.3 Proof of Corollary 1

Proof For k = 0, 1 let gθk be a Bernoulli distribution with parameter θk and let fθk = gθk ⊗ · · · ⊗ gθk be a
product distribution composed of m gθk distributions. Then

χ2(gθ1 |gθ0) =
(θ1 − θ0)2

θ0(1− θ0)
≤ e

(θ1−θ0)2

θ0(1−θ0) − 1

and

χ2(fθ1 |fθ0) =
(
1 + χ2(gθ1 |gθ0)

)m − 1 ≤ em
(θ1−θ0)2

θ0(1−θ0) − 1.

Moreover, em
(θ1−θ0)2

θ0(1−θ0) − 1 ≤ m (θ1−θ0)2

θ0(1−θ0)
whenever m ≤ θ0(1−θ0)

2(θ1−θ0)2
since ex/2 − 1 ≤ x for all x ∈ [0, 1].

Applying Theorem 2 obtains

E[Nm] ≥ max

1− δ
α

,
log( 1

δ
)

α2(e
m

(θ1−θ0)2

θ0(1−θ0) − 1)

 ≥ θ0(1− θ0) log( 1
δ
)

mα2(θ1 − θ0)2
1
m≤ θ0(1−θ0)

2(θ1−θ0)2
.

The claimed result follows from loosening the integer constraint on m and minimizing the lower
bound on E[Nm] multiplied by m. To perform the minimization, we note that the function

max{ 1−δ
α
, 2 log( 1

δ
)/[α2(e

m
(θ1−θ0)2

θ0(1−θ0) − 1)]} reaches its minimum at the intersection of the two argu-
ments and solve for m at that point.
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A.4 Proof of Theorem 3
We begin by restating the theorem with the problem dependent parameters explicitly defined.

Theorem 6 Suppose fθ for θ ∈ Θ ⊂ R is a single parameter exponential family so that fθ(x) =
h(x) exp(η(θ)x − b(η(θ))) for some scalar functions h, b, η where η is strictly increasing. If Eθ[X] =∫
xfθ(x)dx then let Mk(θ) =

∫
(x− Eθ[X])kfθ(x)dx denote the kth centered moment under distribution fθ .

Define

θ∗ = η−1((1− α)η(θ0) + αη(θ1)
)

θ− = η−1(η(θ0)− α(η(θ1)− η(θ0))
)

θ+ = η−1(η(θ1) + (1− α)(η(θ1)− η(θ0))
)

and assume there exist finite κ, γ such that

sup
y∈[θ0,θ1]

b(2η(y)− η(θ∗))− [2b(η(y))− b(η(θ∗))] ≤ κ, and sup
x∈[ḃ(η(θ−)),ḃ(η(θ+))]

φx(ḃ−1(x)) ≤ γ,

where φx(η(θ)) = fθ(x). Then

χ2((1− α)fθ0(x) + αfθ1(x)|fθ∗(x)) ≤ c
(

1

2
α(1− α)(η(θ1)− η(θ0))2

)2

where if ∆ = ḃ(η(θ+))− ḃ(η(θ−))

c = eκ
(

sup
θ∈[θ0,θ1]

M2(θ)2 (2 + γ∆) + 8M4(θ−) + 8M4(θ+) + 16∆4 + 2
5
γ∆5

)
.

Thus, if Θ̃ = {θ∗} and N is the stopping time of any procedure that satisfies P0(N < ∞) ≤ δ and
P1(∪Ni=1{ξi = 1}) ≥ 1− δ, then

E1[N ] ≥ max

{
1− δ
α

,
log( 1

δ
)

c
(

1
2
α(1− α)(η(θ1)− η(θ0))2

)2
}
.

Proof Define φx(η) = h(x) exp(ηx− b(η)). By the properties of scalar exponential families, note that b′(η)
and b′′(η) ≥ 0 represent the mean and variance of the distribution. We deduce that b′ is monotonically increasing.
Define η0 = η(θ0), η1 = η(θ1), and µ = (1− α)η0 + αη1. Noting that

χ2((1− α)φx(η0) + αφx(η1)|φx(µ)) =

∫
φx(µ)

(
(1− α)φx(η0) + αφx(η1)− φx(µ)

φx(µ)

)2

dx

we will use a technique that was used in [16] to approximate the divergence between a single Gaussian distribution
and a mixture of them. Essentially, we will take the Taylor series of each φx(·) centered at µ and bound. We
have

φx(η) = h(x) exp(ηx− b(η))

φ′x(η) = (x− b′(η))φx(η)

φ′′x(η) = (−b′′(η) + (x− b′(η))2)φx(η)

so that

φx(y) = φx(µ)
[
1 + (x− b′(µ))(y − µ) + 1

2
(−b′′(µ) + (x− b′(µ))2)(y − µ)2 . . .

]
.

Noting that (η0−µ) = −α(η1− η0), (η1−µ) = (1−α)(η1− η0), and (1−α)α2 +α(1−α)2 = α(1−α),
we have∣∣∣∣ (1− α)φx(η0) + αφx(η1)− φx(µ)

φx(µ)

∣∣∣∣
=

∣∣∣∣φ′x(µ)

φx(µ)
[(1− α)(η0 − µ) + α(η1 − µ)] +

1

2

φ′′x(µ)

φx(µ)
[(1− α)(η0 − µ)2 + α(η1 − µ)2] + . . .

∣∣∣∣
=

∣∣∣∣12 φ′′x(µ)

φx(µ)
α(1− α)(η1 − η0)2 + . . .

∣∣∣∣
≤ sup
z∈[η0,η1]

|φ′′x(z)|
φx(µ)

1

2
α(1− α)(η1 − η0)2.
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Thus,

χ2((1− α)φx(η0) + αφx(η1)|φx(µ)) =

∫
φx(µ)

(
(1− α)φx(η0) + αφx(η1)− φx(µ)

φx(µ)

)2

dx

≤
(

1

2
α(1− α)(η1 − η0)2

)2 ∫
sup

z∈[η0,η1]

|φ′′x(z)|2

φx(µ)2
φx(µ)dx.

By distributing the square and noting that b′′(η) ≥ 0, we have∫
sup

z∈[η0,η1]

|φ′′x(z)|2

φx(µ)2
φx(µ)dx =

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

(−b′′(z) + (x− b′(z))2)2 φx(µ)dx

≤
∫

sup
z∈[η0,η1]

(
φx(z)

φx(µ)

)2

b′′(z)2 φx(µ)dx+

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

(x− b′(z))4 φx(µ)dx

≤ sup
y∈[η0,η1]

b′′(y)2

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

φx(µ)dx+

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

(x− b′(z))4 φx(µ)dx.

The remainder of the proof bounds the integrals. Define η− = 2η0 − µ = η(θ−) and η− = 2η1 − µ = η(θ+).
Observe that

sup
z∈[η0,η1]

(
φx(z)

φx(µ)

)2

φx(µ)

= sup
z∈[η0,η1]

h(x) exp
(
(2z − µ)x− (2b(z)− b(µ))

)
= sup
z∈[η0,η1]

h(x) exp
(
(2z − µ)x− b(2z − µ)

)
exp

(
b(2z − µ)− (2b(z)− b(µ))

)
≤ eκ sup

z∈[η0,η1]

h(x) exp
(
(2z − µ)x− b(2z − µ)

)
= eκ sup

z∈[2η0−µ,2η1−µ]

h(x) exp
(
zx− b(z)

)
= eκ sup

z∈[η−,η+]

h(x) exp
(
zx− b(z)

)
≤ eκ

(
φx(η−) + φx(η+) + φx(ḃ−1(x))1x∈[ḃ(η−),ḃ(η+)]

)
≤ eκ

(
φx(η−) + φx(η+) + γ1x∈[ḃ(η−),ḃ(η+)]

)
where the second inequality follows by observing that the maximum of the function φx(z) will occur either at
an endpoint of the interval z ∈ [η(θ−), η(θ+)] or at the point where ∂

∂z
g(z) = 0 (if that point occurs inside the

interval), and loosely bounding the maximum by simply adding the function values at all three points.

Consequently,

sup
y∈[η0,η1]

b′′(y)2

∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

φx(µ)dx ≤ sup
θ∈[θ0,θ1]

M2(θ)2eκ
(

2 + γ(ḃ(η+)− ḃ(η−))
)
.

By Jensen’s inequality, (a+ b)4 = 16( 1
2
a+ 1

2
b)4 ≤ 8(a4 + b4), so∫

sup
z∈[η0,η1]

φx(η−)(x− ḃ(z))4dx =

∫
sup

z∈[η0,η1]

φx(η−)(x− ḃ(η−) + ḃ(η−)− ḃ(z))4dx

≤
∫

8φx(η−)[(x− ḃ(η−))4 + sup
z∈[η0,η1]

(ḃ(η−)− ḃ(z))4]dx

≤
∫

8φx(η−)[(x− ḃ(η−))4 + (ḃ(η−)− ḃ(η1))4]dx

= 8[M4(θ−)− (ḃ(η−)− ḃ(η1))4].

Repeating an analogous series of steps for η+, we have∫
sup

z∈[η0,η1]

(
φx(z)

φx(µ)

)2

(x− b′(z))4 φx(µ)dx

≤ eκ
∫ (

φx(η−) + φx(η+) + γ1x∈[ḃ(η−),ḃ(η+)]

)
sup

z∈[η0,η1]

(x− ḃ(z))4dx

≤ eκ
(

8M4(θ−) + 8(ḃ(η1)− ḃ(η−))4 + 8M4(θ+) + 8(ḃ(η+)− ḃ(η0))4 + 2
5
γ(ḃ(η+)− ḃ(η−))5

)
≤ eκ

(
8M4(θ−) + 8M4(θ+) + 16(ḃ(η+)− ḃ(η−))4 + 2

5
γ(ḃ(η+)− ḃ(η−))5

)
.
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The final result holds by Theorem 2.

A.5 Proof of Corollary 2

Proof A binomial distribution for fixed m is an exponential family fθ(x) = h(x) exp(η(θ)x− b(η(θ))) with
h(x) =

(
m
x

)
, η(θ) = log( θ

1−θ ), and b(τ) = m log(1 + eτ ). Note that η is monotonically increasing, b is
m-Lipschitz, and ḃ(τ) = m(1 + e−τ )−1 so that ḃ(η(θ)) = mθ.

Step 1: Relating θ+, θ− to θ1, θ0

We will make repeated use of the fact that if f is convex then f(y) ≥ f(x) + f ′(x)T (y − x). Since x
1−x and

1−x
x

are both convex, we have

y

1− y ≥
x

1− x +
y − x

(1− x)2
and

1− y
y
≥ 1− x

x
− y − x

x2

for all x, y ∈ [0, 1].

To begin, note η−1(ν) = (1 + e−ν)−1 so that for any θ we have θ(1 − θ) = η−1(η(θ))(1 − η−1(η(θ))) =
e−η(θ)

(1+e−η(θ))2
. Observe that

1

4
e−|η(θ)| ≤ e−η(θ)

(1 + e−η(θ))2
≤ e−|η(θ)|

and recalling that θ∗ = η−1((1− α)θ0 + αθ1) ∈ [θ0, θ1] we have

θ+(1− θ+) ≥ 1

4
e−|η(θ+)| =

1

4
e−|2η(θ1)−η(θ∗)|

= 1
4
1θ+≤1/2

(
θ1

1− θ1

)2(
1− θ∗
θ∗

)
+ 1

4
1θ+>1/2

(
1− θ1

θ1

)2(
θ∗

1− θ∗

)
≥ 1

4
1θ+≤1/2

(
θ1

1− θ1

)2(
1− θ1

θ1

)
+ 1

4
1θ+>1/2

(
1− θ1

θ1

)2(
θ0

1− θ0

)
≥ 1

4
1θ+≤1/2

(
θ1

1− θ1

)
+ 1

4
1θ+>1/2

(
1− θ1

θ1

)2(
θ1

1− θ1
− θ1 − θ0

(1− θ1)2

)
≥ 1

4
1θ+≤1/2

(
θ1

1− θ1

)
+ 1

8
1θ+>1/2

(
1− θ1

θ1

)
≥ 1

8
θ1(1− θ1)

where the last line follows from the assumption that θ1(1− θ1) ≥ 2(θ1 − θ0). Analogously,

θ−(1− θ−) ≥ 1

4
e−|η(θ−)| =

1

4
e−|2η(θ0)−η(θ∗)|

= 1
4
1θ−≤1/2

(
θ0

1− θ0

)2(
1− θ∗
θ∗

)
+ 1

4
1θ−>1/2

(
1− θ0

θ0

)2(
θ∗

1− θ∗

)
≥ 1

4
1θ−≤1/2

(
θ0

1− θ0

)2(
1− θ1

θ1

)
+ 1

4
1θ−>1/2

(
1− θ0

θ0

)2(
θ0

1− θ0

)
≥ 1

4
1θ−≤1/2

(
θ0

1− θ0

)2(
1− θ0

θ0
− θ1 − θ0

θ2
0

)
+ 1

4
1θ−>1/2

(
1− θ0

θ0

)
≥ 1

8
1θ−≤1/2

(
θ0

1− θ0

)
+ 1

4
1θ−>1/2

(
1− θ0

θ0

)
≥ 1

8
θ0(1− θ0)

where the last line follows from the assumption that θ0(1− θ0) ≥ 2(θ1 − θ0). We conclude that

inf
θ∈[θ−,θ+]

θ(1− θ) ≥ 1

8
inf

θ∈[θ0,θ1]
θ(1− θ). (4)

Conversely,

sup
θ∈[θ−,θ+]

θ(1− θ) ≤ 11/2∈[θ−,θ+]
1

4
+ θ+(1− θ+)1θ+≤1/2 + θ−(1− θ−)1θ−>1/2.
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We consider these three cases in turn. If θ+ ≤ 1/2:

θ+(1− θ+) ≤ e−|η(θ+)| = e−|2η(θ1)−η(θ∗)|

=

(
θ1

1− θ1

)2(
1− θ∗
θ∗

)
≤
(

θ1

1− θ1

)2(
1− θ0

θ0

)
≤
(

θ1

1− θ1

)2(
1− θ1

θ1
+
θ1 − θ0

θ2
0

)
=

(
θ1

1− θ1

)(
1 +

θ1(θ1 − θ0)

(1− θ1)θ2
0

)
≤
(

θ1

1− θ1

)(
1 +

θ1(1− θ0)

2(1− θ1)θ0

)
=

(
θ1

1− θ1

)(
1 +

θ0(1− θ0) + (θ1 − θ0)(1− θ0)

2(1− θ1)θ0

)
≤
(

θ1

1− θ1

)(
1 +

θ0(1− θ0) + θ0(1− θ0)2/2

2(1− θ1)θ0

)
≤ 5

2

(
θ1

1− θ1

)
≤ 10θ1(1− θ1)

using the convexity of 1−x
x

, the assumption that 2(θ1 − θ0) ≤ θ0(1 − θ0), that θ1 ≤ θ+ ≤ 1/2, and that
1− θ0 ≤ 1. If θ− > 1/2:

θ−(1− θ−) ≤ e−|η(θ−)| = e−|2η(θ0)−η(θ∗)|

=

(
1− θ0

θ0

)2(
θ∗

1− θ∗

)
≤
(

1− θ0

θ0

)2(
θ1

1− θ1

)
≤
(

1− θ0

θ0

)2(
θ0

1− θ0
+

θ1 − θ0

(1− θ1)2

)
≤
(

1− θ0

θ0

)(
1 +

(1− θ0)(θ1 − θ0)

θ0(1− θ1)2

)
≤
(

1− θ0

θ0

)(
1 +

(1− θ0)θ1/2

θ0(1− θ1)

)
=

(
1− θ0

θ0

)(
1 +

(1− θ1)θ1 + (θ1 − θ0)θ1

2θ0(1− θ1)

)
≤
(

1− θ0

θ0

)(
1 +

(1− θ1)θ1 + (1− θ1)θ2
1/2

2θ0(1− θ1)

)
≤ 5

2

(
1− θ0

θ0

)
≤ 10θ0(1− θ0)

using the same methods as above. From these two cases, we can conclude that if 1/2 /∈ [θ−, θ+],
sup

θ∈[θ−,θ+]

θ(1− θ) ≤ 10 sup
θ∈[θ0,θ1]

θ(1− θ). (5)

The remaining case, when 1/2 ∈ [θ−, θ+], also satisfies (5), which we now demonstrate. When θ+ = 1/2 we
have 1/4 = θ+(1− θ+) ≤ 10θ1(1− θ1) so that θ1(1− θ1) ≥ 1/40. Because θ1 is monotonically increasing in
θ+ and supθ∈[θ−,θ+] θ(1−θ) ≤ 1/4 we conclude that (5) holds whenever θ1 ≤ 1/2. A similar argument follows
for all θ0 ≥ 1/2. Finally, if 1/2 ∈ [θ0, θ1], it must be true that supθ∈[θ−,θ+] θ(1− θ) ≤ supθ∈[θ0,θ1] θ(1− θ)
because θ− ≤ θ0 ≤ 1

2
≤ θ1 ≤ θ+ and the function θ(1 − θ) is concave taking its maximum at 1

2
. Thus, (5)

holds for all θ−, θ+.

We now turn our attention to bounding θ+ − θ−. Let g(y) = η−1(y) then g(y) = (1 + e−y)−1 and
ġ(y) = e−y(1 + e−y)−2. Observing that ġ(η(θ)) = θ(1− θ) we have by Taylor’s remainder theorem

θ+ − θ− = η−1(η(θ+))− η−1(η(θ−)) ≤ (η(θ+)− η(θ−)) sup
y∈[η(θ−),η(θ+)]

e−y(1 + e−y)−2

= (η(θ+)− η(θ−)) sup
θ∈[θ−,θ+]

θ(1− θ) = 2 (η(θ1)− η(θ0)) sup
θ∈[θ−,θ+]

θ(1− θ)

≤ 20 (η(θ1)− η(θ0)) sup
θ∈[θ0,θ1]

θ(1− θ).

Since η(θ) = log( θ
1−θ ) and η′(θ) = 1

θ
+ 1

1−θ = 1
θ(1−θ) , we have

θ+ − θ− ≤ 20 (η(θ1)− η(θ0)) sup
θ∈[θ0,θ1]

θ(1− θ) ≤ 20 (θ1 − θ0)
supθ∈[θ0,θ1] θ(1− θ)
infθ∈[θ0,θ1] θ(1− θ)

.

If θ1(1− θ1) ≥ θ0(1− θ0):
θ1(1− θ1)

θ0(1− θ0)
=
θ0(1− θ1) + (θ1 − θ0)(1− θ1)

θ0(1− θ0)

≤ θ0(1− θ1) + θ0(1− θ0)(1− θ1)/2

θ0(1− θ0)
≤ 1 + (1− θ1)/2 ≤ 3/2,

else if θ0(1− θ0) ≥ θ1(1− θ1)

θ0(1− θ0)

θ1(1− θ1)
=
θ0(1− θ1) + θ0(θ1 − θ0)

θ1(1− θ1)

≤ θ0(1− θ1) + θ0θ1(1− θ1)/2

θ1(1− θ1)
≤ 1 + θ0/2 ≤ 3/2.
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Finally, if 1/2 ∈ [θ0, θ1] then supθ∈[θ0,θ1] θ(1− θ) = 1/4 taking its maximum at 1/4. To maximize the ratio
of the sup to the inf , it suffices to just consider the case when θ0 = 1/2 or θ1 = 1/2. Thus, the above two
bounds suffice for this case and we observe that

supθ∈[θ0,θ1] θ(1− θ)
infθ∈[θ0,θ1] θ(1− θ)

≤ 3/2. (6)

Thus, putting the pieces together, we conclude that
θ+ − θ− ≤ 30(θ1 − θ0). (7)

Step 2: Bounding γ, κ, c
In what follows, define θh = arg supθ∈[θ0,θ1] θ(1− θ) and θl = arg infθ∈[θ0,θ1] θ(1− θ). We now continue
to bound the terms of the theorem. Note

sup
x∈[ḃ(η(θ−)),ḃ(η(θ+))]

φx(ḃ−1(x)) = sup
x∈[mθ−,mθ+]

φx(η(x/m))

≤ sup
x∈[mθ−,mθ+]

sup
y∈[0,1]

φx(η(y))

= sup
x∈[mθ−,mθ+]

sup
y∈[0,1]

Γ(m+ 1)

Γ(m− x+ 1)Γ(x+ 1)
yx(1− y)m−x

= sup
θ∈[θ−,θ+]

sup
y∈[0,1]

Γ(m+ 1)

Γ(m(1− θ) + 1)Γ(mθ + 1)
ymθ(1− y)m(1−θ)

≤ sup
θ∈[θ−,θ+]

sup
y∈[0,1]

e/2π√
mθ(1− θ)

ymθ(1− y)m(1−θ)

θmθ(1− θ)m(1−θ)

= sup
θ∈[θ−,θ+]

e/2π√
mθ(1− θ)

≤ 2√
mθl(1− θl)

=: γ

by Stirling’s approximation:
√

2π ≤ Γ(s+1)

e−sss+1/2 ≤ e [18] and (4). And for any y ∈ [θ0, θ1]

b(2η(y)− η(θ∗))− (2b(η(y))− b(η(θ∗)))

= m log(1 + e2η(y)−η(θ∗))− 2m log(1 + eη(y)) +m log(1 + eη(θ∗))

= m log

(
(1 + e2η(y)−η(θ∗))(1 + eη(θ∗))

(1 + eη(y))2

)
= m log

((
1 +

(
y

1− y

)2
1− θ∗
θ∗

)(
1

1− θ∗

)
(1− y)2

)

= m log

(
(1− y)2 1

1− θ∗
+ y2 1

θ∗

)
= m log

(
(1− 2y + y2)

θ∗
θ∗(1− θ∗)

+ y2 1− θ∗
θ∗(1− θ∗)

)
= m log

(
(1− 2y)

θ∗
θ∗(1− θ∗)

+ y2 1

θ∗(1− θ∗)

)
= m log

(
1 +

(y − θ∗)2

θ∗(1− θ∗)

)
so

sup
y∈[θ0,θ1]

b(2η(y)− η(θ∗))− (2b(η(y))− b(η(θ∗)))

≤ sup
y∈[θ0,θ1]

m log

(
1 +

(y − θ∗)2

θ∗(1− θ∗)

)
≤ m

(
(θ1 − θ0)2

θ∗(1− θ∗)

)
=: κ.

Noting that M2(θ) = mθ(1− θ),

sup
y∈[θ0,θ1]

M2(y)2(2 + γ(ḃ(η(θ+))− ḃ(η(θ−)))) ≤ m2 (θh(1− θh))2 (2 + γm(θ+ − θ−))

≤ m2 (θh(1− θh))2

(
2 +

2m√
mθl(1− θl)

30(θ1 − θ0)

)

≤ m2 (θh(1− θh))2

(
2 + 60

√
m

(θ1 − θ0)2

θl(1− θl)

)
.
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Since for any θ ∈ [0, 1]

M4(θ) = mθ(1− θ) (3θ(1− θ)(m− 2) + 1) < 3m2 (θ(1− θ))2 +mθ(1− θ),
we have

8M4(θ−) + 8M4(θ+) + 16
(
ḃ(η(θ+))− ḃ(η(θ−))

)4

+ 2
5
γ
(
ḃ(η(θ+))− ḃ(η(θ−))

)5

≤24m2 (θ−(1− θ−))2 + 8mθ−(1− θ−) + 24m2 (θ+(1− θ+))2 + 8mθ+(1− θ+)

+ 16m4(θ+ − θ−)4 +
4/5√

mθl(1− θl)
m5(θ+ − θ−)5

≤4800m2 (θh(1− θh))2 + 160mθh(1− θh)

+ 3240000m4(θ1 − θ0)4 + 19440000

√
m

(θ1 − θ0)2

θl(1− θl)
m4(θ1 − θ0)4

where we have applied (5) and (7). Finally, recall from above that

η(θ1)− η(θ0) ≤ θ1 − θ0

θl(1− θl)
≤ 3

2

θ1 − θ0

θ∗(1− θ∗)
.

Step 3: Putting the pieces together
Noting that θl(1 − θl) ≤ θ∗(1 − θ∗) ≤ θh(1 − θh) and θh(1−θh)

θl(1−θl)
≤ 3/2 by (6), we can use θ∗(1 − θ∗)

throughout at the cost of a constant. Putting it altogether, if m (θ1−θ0)2

θ∗(1−θ∗) ≤ 1 then κ ≤ 1 and

c ≤ c′
(
m2 (θ∗(1− θ∗))2 +mθ∗(1− θ∗) +m4(θ1 − θ0)4)

≤ c′
(
m2 (θ∗(1− θ∗))2 +mθ∗(1− θ∗)

)
for some absolute constant c′. Thus,

c
(

1
2
α(1− α) (η(θ1)− η(θ0))2)2
≤ c′

(
m2 (θ∗(1− θ∗))2 +mθ∗(1− θ∗)

)(9

8
α(1− α)

(θ1 − θ0)2

(θ∗(1− θ∗))2

)2

≤ c′
(
m2 +

m

θ∗(1− θ∗)

)(
9

8
α(1− α)

(θ1 − θ0)2

θ∗(1− θ∗)

)2

≤ 2c′m

(
min{ 1

m
, θ∗(1− θ∗)}

)−1(
9

8
α(1− α)

(θ1 − θ0)2

θ∗(1− θ∗)

)2

.

B Proofs of Upper Bounds

B.1 Fixed sample size strategy

Consider a fixed sample strategy that knows α, θ0, θ1 and flips each coin exactly m times until it declares a coin
as heavy (the algorithm can use the parameters to choose m). Note the result below is within a log(1/δ) factor
of the lower bound proved in Corollary 1 in general and is tight when α ≤ δ.

Theorem 7 (Fixed sample size, known α, θ0, θ1) Fix δ ∈ (0, 1/4) and set n̂ =
⌈

1
α

log( 2
δ
)
⌉

and m =⌈
2 log(4n̂/δ)

(θ1−θ0)2

⌉
. There exists a fixed sample size strategy with stopping time Nm ≤ n̂ that is δ-probably correct

and satisfies

E[mNm] ≤ 3 log(1/α)+log(12 log(6/δ)/δ)

α(θ1−θ0)2
≤ 12

log(
2
δα

)

α(θ1−θ0)2
.

Proof Let µ̂i be the empirical mean of the ith distribution sampled m times with mean µi ∈ {θ0, θ1}. Let N
be the minimum of n̂ and the first i ∈ N such that µ̂i ≥ θ0+θ1

2
. Declare distribution N to be heavy. The total

number of flips this procedure makes equals mN .

Define the events

ξ1 =

n̂⋃
i=1

{µi = θ1}, and ξ2 =

n̂⋂
i=1

{|µ̂i − µi| < θ1−θ0
2
}.
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Note that P(ξc1) = P(µ1 = θ0)n̂ = (1 − α)n̂ ≤ exp(−αn̂) ≤ δ/2. And, by a union bound and Chernoff’s
inequality P (ξc2) ≤ 2n̂e−m(θ1−θ0)2/2 ≤ δ/2. Thus, the probability that ξ1 or ξ2 fail to occur is less than δ, so
in what follows assume they succeed.

Under ξ1 at least one of the n̂ distributions is heavy. Under ξ2, for any i ∈ [n̂] with µi = θ0 we have
µ̂i < µi + θ1−θ0

2
= θ0+θ1

2
which implies that the procedure will never exit with a light distribution unless

N = n̂. On the other hand, for the first i ∈ [n̂] with µi = θ1 we have µ̂i > µi − θ1−θ0
2

= θ0+θ1
2

which means
the algorithm will output distribution i at time N = i. Thus, N is equal to the first distribution that is heavy and

E[N ] =

n̂∑
n=1

P(N ≥ n) =

n̂∑
n=1

P(N ≥ n, max
i=1,...,n−1

µi 6= θ1) + P(N ≥ n, max
i=1,...,n−1

µi = θ1)

≤
n̂∑
n=1

P( max
i=1,...,n−1

µi 6= θ1) + P(∪n−1
i=1 {|µ̂i − µi| > θ1−θ0

2
}| max
i=1,...,n−1

µi = θ1)P( max
i=1,...,n−1

µi = θ1)

≤
n̂∑
n=1

P( max
i=1,...,n−1

µi 6= θ1) + P(∪n−1
i=1 {|µ̂i − µi| > θ1−θ0

2
})

≤
n̂∑
n=1

(1− α)n−1 + n−1
n̂

δ

2
≤ 1

α
+ n̂δ/4 =

1

α
(1 + δ log(2e/δ)

4
) ≤ 3/2

α
.

Multiplying E[N ] by m yields the result.

B.2 Proof of Theorem 4

First, we prove several technical lemmas necessary to analyze our algorithm.

Lemma 1 For i ∈ N, let Xi ∈ [ai, bi] for |bi − ai| ≤ 1 be a random variable with E[Xi] = 0. Then

P

(
∞⋃
n=1

{
n∑
i=1

Xi ≥ αn+ β

})
≤ 7 exp(−αβ/2)

whenever αβ ≥ 1.

Proof First we will break the bound into two pieces:

P

(
∞⋃
n=1

{
n∑
i=1

Xi ≥ αn+ β

})
≤ min

n0

P

(
n0⋃
n=1

{
n∑
i=1

Xi ≥ β

})
+ P

(
∞⋃

n=n0+1

{
n∑
i=1

Xi ≥ αn

})

where P
(⋃n0

n=1

{∑n
i=1 Xi ≥ β

})
≤ exp(−2β2/n0) by Doob-Hoeffding’s maximal inequality. For any fixed

k ∈ N:

P

 2k∑
i=1

Xi ≥ α2k/2

 ≤ exp(−α22k/2)

and

P

 2k+1⋃
n=2k+1


n∑

i=2k+1

Xi ≥ αn/2


 ≤ P

 2k+1⋃
n=2k+1


n∑

i=2k+1

Xi ≥ α2k/2




= P

 2k⋃
`=1

{∑̀
i=1

Xi ≥ α2k/2

} ≤ exp(−α22k/2)
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by Hoeffding’s and Doob-Hoeffding’s maximal inequality, respectively. Thus

P

(
∞⋃

n=n0

{
n∑
i=1

Xi ≥ αn

})
= P

 ∞⋃
n=n0


2dlog2(n)e∑

i=1

Xi +

n∑
i=2dlog2(n)e+1

Xi ≥ αn




= P

 ∞⋃
k=log2(n0)

2k+1⋃
n=2k+1


2k∑
i=1

Xi +

n∑
i=2k+1

Xi ≥ αn




≤
∞∑

k=log2(n0)

P

 2k∑
i=1

Xi ≥ α2k/2

+ P

 2k+1⋃
n=2k+1


n∑

i=2k+1

Xi ≥ αn/2




≤
∞∑

k=log2(n0)

2 exp(−α22k/2) ≤ 2

∫ ∞
log2(n0)

exp(−(α/2)22x)dx

=
2

log(2)

∫ ∞
n0

u−1 exp(−(α/2)2u)du ≤ 8 exp(−(α/2)2n0)

n0α2 log(2)
.

Putting the pieces together we have

P

(
∞⋃
n=1

{
n∑
i=1

Xi ≥ αn+ β

})
≤ min

n0

exp(−2β2/n0) +
8 exp(−(α/2)2n0)

n0α2 log(2)

≤ exp(−βα) +
4 exp(−βα/2)

βα log(2)
≤ 7 exp(−βα/2)

where the last inequality holds with βα ≥ 1.

Lemma 2 Given θ1 − γ̂ ≥ 2B
m

,

P

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B
∣∣µi = θ1

)
≥ 1− exp

(
−m(θ1 − γ̂)2/2

)
.

Similarly, given γ̂ − θ0 ≥ 2|A|
m

,

P

(
min

j=1,...,m

j∑
s=1

(Xi,s − γ̂) < A
∣∣µi = θ0

)
≥ 1− exp

(
−m(γ̂ − θ0)2/2

)
.

Proof We analyze the left hand side of the lemma:

P

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B

∣∣∣∣µi = θ1

)

= P

(
m⋃
j=1

{
j∑
s=1

(Xi,s − γ̂) > B

∣∣∣∣µi = θ1

})

≥ P

(
m∑
s=1

(Xi,s − γ̂) > B

∣∣∣∣µi = θ1

)

= 1− P

(
1

m

m∑
s=1

(Xi,s − µi) ≤
B

m
− (µi − γ̂)

∣∣∣∣µi = θ1

)

= 1− P

(
1

m

m∑
s=1

(µi −Xi,s) ≥ (µi − γ̂)− B

m

∣∣∣∣µi = θ1

)

≥ 1− exp

(
−2m

[
(θ1 − γ̂)− B

m

]2
)

≥ 1− exp

(
−m(θ1 − γ̂)2

2

)
Where the second to last statement holds by Hoeffding’s inequality, and the last uses the bound on B/m given
in the lemma. A nearly identical argument yields the second half of the lemma.
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Lemma 3 If θ1 − γ̂ ≥ 2B
m

then

P

(
n⋃
i=1

{
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

})
≥ 1− exp [−αn(1− exp (−B(θ1 − γ̂))− 7 exp(−|A|(γ̂ − θ0)/2))]

Proof Consider iid events Ωi for i = 1, . . . , n. Then P(
⋃n
i=1 Ωi) = 1 − P(

⋂n
i=1 Ωci ) = 1 − P(Ωc1)n =

1− (1− P(Ωi))
n ≥ 1− exp(−nP(Ωi)). We follow the same line of reasoning:

P

(
n⋃
i=1

{
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

})

= 1−

(
1− P

(
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

))n

= 1−

(
1− αP

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A
∣∣∣µi = θ1

))n

= 1−

(
1− α

(
1− P

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) < B
∣∣∣µi = θ1

)
− P

(
min

j=1,...,m

j∑
s=1

(Xi,s − γ̂) < A
∣∣∣µi = θ1

)))n
≥ 1−

(
1− α

(
1− exp

(
−m(θ1 − γ̂)2/2

)
− 7 exp(−|A|(γ̂ − θ0)/2)

))n
≥ 1− exp

[
−αn(1− exp

(
−m(θ1 − γ̂)2/2

)
− 7 exp(−|A|(γ̂ − θ0)/2))

]
≥ 1− exp [−αn(1− exp (−B(θ1 − γ̂))− 7 exp(−|A|(γ̂ − θ0)/2))]

Where the third-to-last inequality applies Lemmas 1 and 2.

Now, we are ready to prove Theorem 4.

Proof First, we consider the estimation of θ̂0 of Algorithm 2, then consider the sample complexity of the
algorithm, and then prove correctness.

Let ξ0 = {θ̂0 − θ0 ≥ − ε04 } and ξ1 = {θ̂0 − θ0 ≤ ε0
4
} be the events that we accurately estimate the parameter

θ0. We will show that P(ξ0) ≥ 1 − δ′ and P(ξ1) ≥ 3/4 where δ′ = min{δ/8, 1
mε20
}. Let k1 = 5 and

k2 = 8ε−2
0 log( 2k1

δ′ ). First note that

P

(
k1⋃
i=1

{
|µ̂i,k2 − µi| ≥

ε0
4

})
≤ 2k1 exp(−2k2(ε0/4)2) ≤ δ′

so that with probability at least 1−δ′ we have θ̂0 = mini=1,...,k1 µ̂i,k2 ≥ mini=1,...,k1 µi− ε0/4 ≥ θ0− ε0/4,
and in particular, P(ξ0) ≥ 1− δ′. Let E = {

⋃k1
i=1{µi = θ0}} be the event that at least one of the distributions

is light. Then

P (E) = 1− αk1 ≥ 1− 2−k1 ≥ 31/32,

so that under E ∩ ξ0, we have θ̂0 = mini=1,...,k1 µ̂i,k2 ≤ mini=1,...,k1 µi + ε0/4 = θ0 + ε0/4 which
means P(ξc1) ≤ P(ξc0 ∪ Ec) ≤ δ/8 + 1/32 ≤ 1/16. Moreover, the total number of samples is bounded by
k1k2 = cε−2

0 log(1/δ′) ≤ cε−2
0 log(max{ 1

δ
, log( 1

α0δ
)}) which is clearly dominated by log(1/δ)

α0ε
2
0

.

We now turn our attention to the sample complexity. By Wald’s identitity [17, Proposition 2.18],

E[T ] = E

[
N∑
i=1

Mi

]
= E[N ]E[M1] = E[N ]((1− α)E[M1|µ1 = θ0] + αE[M1|µ1 = θ1]).

Trivially, E[N ] ≤ n and E[M1|µ1 = θ1] ≤ m, so we only need to bound E[M1|µ1 = θ0]. Clearly we have that

E[M1|µ1 = θ0] = E[M1|ξ0, µ1 = θ0]P(ξ0) + E[M1|ξc0, µ1 = θ0]P(ξc0) ≤ E[M1|ξ0, µ1 = θ0] + δ′m
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so

E[M1|ξ0, µ1 = θ0] ≤
∞∑
t=1

P

(
arg min

j

{
j∑
s=1

(X1,s − γ̂) < A
∣∣∣ξ0, µ1 = θ0

}
≥ t

)

=

∞∑
t=1

1− P

(
min

j=1,...,t−1

j∑
s=1

(X1,s − γ̂) < A
∣∣∣ξ0, µ1 = θ0

)

=

∞∑
t=0

1− P

(
min

j=1,...,t

j∑
s=1

(X1,s − γ̂) < A
∣∣∣ξ0, µ1 = θ0

)

≤
∞∑
t=0

1− 1
γ̂−θ0≥

2|A|
t

(1− exp
(
−t(γ̂ − θ0)2/2

)
≤ 2|A|
γ̂ − θ0

+ 2e1/2(γ̂ − θ0)−2 exp (−|A|(γ̂ − θ0)) ≤ 3|A|
γ̂ − θ0

≤ 293

ε20
.

where the second inequality follows by applying Lemma 2 and the last inequality holds by ξ0 and the value of
|A| since if ξ0 holds, γ̂ − θ0 = θ̂0 − θ0 + ε0

2
≥ ε0

4
. Thus

E[M1] ≤ (1− α)

[(
293

ε20

)
+ δ′m

]
+ αm ≤ δ′m+

1

ε20

(
293 + 64α log

(
14n
δ

))
≤
cα log

(
1
α0δ

)
ε20

for some c where we use the fact that δ′m ≤ ε−2
0 . So we have

E[T ] ≤ nE[M1] ≤
c′α log(1/α0) + c′′ log

(
1
δ

)
α0ε20

.

Now, we analyze the correctness claims. Under ξ0, γ̂ − θ0 ≥ ε0
4

. Note that this event fails to occur with
probability less than δ/2, and if it is used in conjunction with some other event that fails to occur with probability
δ/2, we may conclude that either of these events fail with probability less than δ.

To justify Claim 1, we apply Lemma 1 to observe that the probability that we output a light distribution is no
greater than

P(ξc0) + P

(
n⋃
i=1

{
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B,µi = θ0

}∣∣∣ξ0)P(ξ0)

≤ P(ξc0) + n(1− α)P

(
max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B
∣∣µi = θ0, ξ0

)
≤ δ/2 + 7n exp(−B(γ̂ − θ0)/2) ≤ δ

where we have used γ̂ − θ0 ≥ ε0
4

and plugged in the values of B and n.

To justify Claim 2, assume α0 ≤ α and ε0 ≤ θ1 − θ0. We apply Lemma 3 to observe that the probability that
we return a heavy distribution is at least

P

(
ξ0 ∩ ξ1 ∩

n⋃
i=1

{
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

})

= P(ξ0 ∩ ξ1)P

(
n⋃
i=1

{
µi = θ1, max

j=1,...,m

j∑
s=1

(Xi,s − γ̂) > B, min
j=1,...,m

j∑
s=1

(Xi,s − γ̂) > A

}∣∣∣∣ξ0, ξ1
)

≥ P(ξ0 ∩ E)(1− exp [−αn(1− exp (−B(ε0/4))− 7 exp(−|A|(ε0/4)/2))])

≥ (15/16)(1− exp
[
−αn(1− ( δ

14n
)2 − 1/3)

]
) ≥ (15/16)(8/9) ≥ 4/5

where we have used P(ξ0 ∩ E) ≥ 1− P(ξc0)− P(Ec) ≥ 15/16, ( δ
14n

)2 ≤ 1/6, αn ≥ 2 log(9) and plugged in
the values for A and B.

To justify Claim 3, we simply observe that the algorithm always terminates after n×m steps.
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B.3 Either α or ε is unknown, but not both

Algorithm 4 Algorithm for unknown θ1 − θ0.
Given δ ∈ (0, 1), α ∈ (0, 1/2).
Initialize k = 1
While Algorithm 2 run with inputs δ/(2k2),
α0 = α, ε0 = 2−k returns null:

Set k = k + 1.
Output distribution k.

Algorithm 5 Algorithm for unknown α.
Given δ ∈ (0, 1), ε ∈ (0, 1].
Initialize k = 1
While Algorithm 2 run with inputs δ/(2k2),
α0 = 2−k, ε0 = ε returns null:

Set k = k + 1.
Output distribution k.

First we consider the case when α is known but a lower bound on θ1 − θ0 is not, and then opposite.

Theorem 8 (Known α, unknown θ0, θ1) Fix δ ∈ (0, 1). If Algorithm 4 is run with δ, α then with probability
at least 1− δ a heavy distribution is returned and the expected number of total samples taken is no more than

c log
(

log
(

1
(θ1−θ0)2

)
/δ
)

α(θ1 − θ0)2
.

for an absolute constant c.

Proof On each stage k, Algorithm 2 is called with δ/(2k2). By the guarantees of Theorem 4, the probability
that Algorithm 4 ever outputs a light distribution is less than

∑∞
k=1 δ/(2k

2) ≤ δ. Thus, if a distribution is
output, it is heavy with probability at least 1 − δ. We now show that the expected number of samples taken
before outputting a distribution is bounded.

Let K be the random stage in which Algorithm 4 outputs a distribution and let k∗ be the smallest k ∈ N
that satisfies 2−k ≤ θ1 − θ0. By the guarantees of Theorem 4 and the independence of the stages k, P(K ≥
k∗ + i) ≤

∑∞
`=i(

1
5
)` = ( 5

4
)( 1

5
)i. Moreover, if Mk is the number of measurements taken at stage k, then by

Wald’s identity the expected number of measurements is bounded by

E

[
K∑
k=1

Mk

]
=

∞∑
k=1

E[Nk]P(K ≥ k) ≤
∞∑
k=1

c′α log(1/α) + c′′ log
(

2k2

δ

)
α2−2k

max{1, ( 5
4
)( 1

5
)k−k∗}

≤
k∗∑
k=1

c′′′ log
(

2k2∗
δ

)
α

4k + 5k∗ c
′′′

α

∞∑
k=k∗+1

(
2 log(k) + log( 2

δ
)
)

( 4
5
)k

≤
c′′′ log

(
2k2∗
δ

)
α

4k∗+1 + 5k∗ c
′′′

α

∞∑
k=k∗+1

(
2 log(k) + log( 2

δ
)
)

( 4
5
)k ≤

c′′′′ log
(
k∗
δ

)
α

(2k∗)2

since supα α log(1/α) ≤ e−1 and

∞∑
k=k∗

log(k)( 4
5
)k =

2k∗−1∑
k=k∗

log(k)( 4
5
)k +

∞∑
k=2k∗

log(k)( 4
5
)k/2( 4

5
)k/2

≤ log(2k∗)

2k∗−1∑
k=k∗

( 4
5
)k +

∞∑
k=2k∗

( 4
5
)k/2 ≤ (log(2k∗) + 2)

∞∑
k=k∗

( 4
5
)k = 5 log(2e2k∗)(

4
5
)k∗

since supk log(k)( 4
5
)k/2 ≤ 1. Noting that k∗ ≤ log2( 1

θ1−θ0
) + 1 completes the proof.

Theorem 9 (Unknown α, known θ0, θ1) Fix δ ∈ (0, 1). If Algorithm 5 is run with δ, θ1 − θ0 then with
probability at least 1− δ a heavy distribution is returned and the the expected number of total samples taken is
no more than

c log
(
log
(

1
α

)
/δ
)

α(θ1 − θ0)2

for an absolute constant c.
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Proof The proof of this result is nearly identical to that of Theorem 8 except the following changes. Let K
be the random stage in which Algorithm 5 outputs a distribution and let k∗ be the smallest k ∈ N that satisfies
2−k ≤ α. Moreover, if Mk is the number of measurements taken at stage k, then by Wald’s identity expected
number of measurements is bounded by

E

[
K∑
k=1

Mk

]
=

∞∑
k=1

E[Nk]P(K ≥ k) ≤
∞∑
k=1

c′α log(2k) + c′′ log
(

2k2

δ

)
2−kε2

max{1, ( 5
4
)( 1

5
)k−k∗}

≤
k∗∑
k=1

c′′′ log
(

2k2∗
δ

)
ε2

2k + 5k∗ c
′′′

ε2

∞∑
k=k∗+1

(
αk log(2) + 2 log(k) + log( 2

δ
)
)

( 2
5
)k

≤
c′′′′

(
αk∗ + log

(
k∗
δ

))
ε2

2k∗ ≤ c′′′′′ log (log(1/α)/δ)

αε2

by the same series of steps as the proof of Theorem 8 and the fact that
∑∞
k=n ka

k ≤ nan

(1−a)2
for any a ∈ (0, 1).

The final inequality follows from k∗ ≤ log2(1/α) + 1 and that αk∗ = α log2(2/α) ≤ 2.

B.4 Proof of Theorem 5

Proof The proof is broken up into a few steps, summarized as follows. For any given α0, ε0, Theorem 4
takes just O

(
α log(1/α0)+log(1/δ)

α0ε
2
0

)
samples in expectation and the procedure makes an error (i.e. returns a light

distribution) with probability less than δ. Define ε = θ1−θ0. In addition, ifε = θ1−θ0, α ≥ α0, and ε ≥ ε0 then
with probability at least 4/5 a heavy distribution is returned after the same expected number of samples. We will
leverage this result to show that if we are given an upper bound γ0 such that 1

αε2
≤ γ0 then it is possible to identify

a heavy distribution with probability at least 4/5 using just O (log2(γ0)γ0 [α log2(γ0) + log(log2(γ0)/δ)])
samples in expectation. Finally, we apply the “doubling trick” to γ so that even though the tightest γ is not
known a priori, we can adapt to it using only twice the number of samples as if we had known it. Because each
of the stages is independent of one another, the probability that the procedure requires more than `∗ + i stages is
less than (1/5)i, which yields our expected sample complexity.

For all ` ∈ N define δ` = δ
2`3

and γ` = 2`. Fix some ` and consider the set {(α, ε) : 1
αε2

= γ`}. Clearly, in

this set, α ∈ [1/γ`, 1/2]. For all k ∈ {0, . . . , `− 1}, define αk = 2k

γ`
and εk =

√
1

2αkγ`
. The key observation

is that

{(α, ε) :
1

αε2
≤ γ`} ⊆

log2 γ`−1⋃
k=0

{(α, ε) : α ≥ αk, ε ≥ εk}. (8)

To see this, fix any (α′, ε′) such that 1
α′ε′2 ≤ γ`. Let k∗ be the integer that satisfies αk∗ ≤ α′ < 2αk∗ . Such

a k∗ must exist since α`−1 = 1
2
≥ α′ ≥ 1

γ`ε
′2 ≥ 1

γ`
= α0. Then γ` ≥ 1

α′ε′2 ≥
1

2αk∗ ε
′2 which means

ε′ ≥
√

1
2αk∗γ`

= εk∗ which proves the claim of (8). Consequently, even if no information about α or ε

individually is known but 1
αε2
≤ γ`, one can cover the entire range of valid (α, ε) with just log2(γ`) = `

landmarks (αk, εk).

For any ` ∈ N and k ∈ {0, . . . , ` − 1}, if Algorithm 2 is used with α0 = αk, ε0 = εk and δ = δ`
then the probability that a light distribution is returned, declared heavy is less than δ`. And the probability
that a light distribution is returned, declared heavy for any ` ∈ N and k ∈ {0, . . . , ` − 1} is less than∑∞
`=1 `δ` = δ

∑∞
`=1 `/(2`

3) ≤ δ. Thus, given that Algorithm 3 terminates with a non-null distribution h, h is
heavy with probability at least 1− δ. This proves correctness. We next bound the expected number of samples
taken before the procedure terminates.

With the inputs given in the last paragraph for any k, `, Algorithm 2 takes an expected number samples
bounded by cγ`(α log(1/αk) + log(1/δ`)). Let L ∈ N be the random stage at which Algorithm 3 terminates
with a non-null distribution h. Let `∗ be the first integer such that there exists a k ∈ {0, . . . , `∗ − 1} with
α ≥ αk and ε ≥ εk (recall that in this case 1

αkε
2
k
≤ γ`∗ ). Then by the end of stage ` ≥ `∗, at most

c`γ`(α log(γ`) + log(1/δ`)) samples in expectation were taken on stage ` and with probability at least 4/5
the procedure terminated with a heavy coin. By the independence of samples between rounds, observe that
P(L ≥ `∗ + i) =

∑∞
j=i P(L = `∗ + j) ≤ ( 5

4
)( 1

5
)i. Thus, if M` is the number of samples taken at stage ` then
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by Wald’s identify, the total expected number of samples taken before termination is bounded by

E

[
L∑
`=1

c`γ`(α log(γ`) + log(1/δ`))

]
=

∞∑
`=1

E[M`]P(L ≥ `) ≤
∞∑
`=1

c`γ`(α log(γ`) + log(1/δ`))P(L ≥ `)

≤
`∗∑
`=1

c`γ`(α log(γ`) + log(1/δ`)) +

∞∑
`=`∗+1

c`γ`(α log(γ`) + log(1/δ`))(
5
4
)( 1

5
)`−`∗

≤
`∗∑
`=1

c`2`(α`+ log(2`3/δ)) +

∞∑
`=`∗+1

c`2`(α`+ log(2`3/δ))( 5
4
)( 1

5
)`−`∗

≤ c`∗(α`∗ + log(2`3∗/δ))

`∗∑
`=1

2` + c( 5
4
)5`∗

∞∑
`=`∗+1

(
α`2( 2

5
)` + 3` log(`)( 2

5
)` + log(2/δ)`( 2

5
)`
)

≤ 2c`∗2
`∗(α`∗ + log(2`3∗/δ))

+ c( 5
4
)5`∗

(
2α(`∗ + 1)2( 2

5
)`∗ + 12 log(2e2`∗)(`∗ + 1)( 2

5
)`∗ + 4 log(2/δ)(`∗ + 1)( 2

5
)`∗
)

≤ c′`∗2`∗(α`∗ + log(`∗) + log(1/δ))

for some absolute constant c′ since
∑∞
k=n ka

k ≤ nan

(1−a)2
,
∑∞
k=n k

2ak ≤ n2an

(1−a)3
, and

∞∑
`=`∗+1

` log(`)( 2
5
)` ≤ log(2`∗)

2`∗∑
`∗+1

`( 2
5
)` +

∞∑
2`∗+1

`( 2
5
)`/2

(
log(`)( 2

5
)`/2

)
≤ log(2e2`∗)

∞∑
`∗+1

`( 2
5
)` ≤ 4 log(2e2`∗)(`∗ + 1)( 2

5
)`∗

since maxx≥1 log(x)( 2
5
)x/2 ≤ 1. Noting that `∗ ≤ log2( 1

αε2
) + 1, we have that the total number of samples,

in expectation, is bounded by

c′`∗2
`∗(α`∗ + log(`∗) + log(1/δ)) ≤ c′′

log2( 1
αε2

)

αε2
(α log2( 1

αε2
) + log(log2( 1

αε2
)) + log(1/δ))

≤ c′′′
log2( 1

αε2
)

αε2
(α log2( 1

ε2
) + log(log2( 1

αε2
)) + log(1/δ))

where we’ve used the fact that supα∈[0,1] α log(1/α) ≤ e−1.

C Gaussians

C.1 On the detection of a mixture of Gaussians

For known σ2, consider the hypothesis test of Problem P1 . In what follows, let χ2(θ1, θ0) and KL(θ1, θ0) be
the chi-squared and KL divergences of the two distributions of H1. Note that for (θ1−θ0)2

σ
≤ 1, we have that

χ2(θ1, θ0) = e
(θ1−θ0)2

σ2 − 1 ≤ 2 (θ1−θ0)2

σ2 = 4KL(θ1, θ0)

Theorem 2 says that for (θ1−θ0)2

σ2 ≤ 1, a procedure that has maximum probability of error less than δ requires at

least max
{

1−δ
α
, log(1/δ)

4α2KL(θ1,θ0)

}
samples to decide the above hypohesis test, even if α, θ0, θ1 are known. The

next subsection shows that if α, θ0, θ1 are unknown then one requires at least log(1/δ)

2[αKL(θ1,θ0)]2
samples to decide

the above hypothesis test correctly with probability at least 1− δ. This is likely achievable using the method of
moments [12].

C.2 Lower bounds

Theorem 10 For known σ2, consider the hypothesis test of Problem P1. If θ∗ = (1 − α)θ0 + αθ1 and
θ1−θ0
σ
≤ 1 then

χ2((1− α)fθ0(x) + αfθ1(x)|fθ∗(x)) ≤ c′
(
α(1− α)

(θ1 − θ0)2

σ2

)2

for some absolute constant c′.
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Proof If fθ = N (θ, σ2) then fθ(x) = h(x) exp(η(θ)x− b(θ)) where h(x) = 1√
2πσ2

e
− x2

2σ2 , η(θ) = θ
σ2 , and

b(η(θ)) = η(θ)2σ2

2
= θ2

2σ2 . Thus,

θ∗ = η−1((1− α)η(θ0) + αη(θ1)
)

= (1− α)θ0 + αθ1

and

sup
y∈[θ0,θ1]

b(2η(y)− η(θ∗))− (2b(η(y))− b(η(θ∗))) = sup
y∈[θ0,θ1]

(y − θ∗)2

σ2
≤ (θ1 − θ0)2

σ2
=: κ

and

sup
x∈[ḃ(η(θ−)),ḃ(η(θ+))]

fḃ−1(x)(x) = sup
x∈[θ−,θ+]

sup
θ∈R

1√
2πσ2

e
− (x−θ)2

2σ2 ≤ 1√
2πσ2

=: γ.

Note that for any θ < θ′ we have ḃ(η(θ′)) − ḃ(η(θ)) = θ′ − θ, M2(θ) = σ2, and M4(θ) = 3σ4. Plugging
these values into the theorem we have

c = eκ
(

sup
θ∈[θ0,θ1]

M2(θ)2
(

2 + γ
(
ḃ(η(θ+))− ḃ(η(θ−))

))
+ 8M4(θ−) + 8M4(θ+) + 16

(
ḃ(η(θ+))− ḃ(η(θ−))

)4

+ 2
5
γ
(
ḃ(η(θ+))− ḃ(η(θ−))

)5
)

=e
(θ1−θ0)2

σ2

(
σ4

(
2 +

2(θ1 − θ0)√
2πσ

)
+ 48σ4 + 256 (θ1 − θ0)4 + 64

5
√

2π

(θ1 − θ0)5

σ

)
noting that θ+ − θ− = 2(θ1 − θ0). If θ1−θ0

σ
≤ 1 then c = c′σ4 for some absolute constant c′ and

(η(θ1)− η(θ0))2 = (θ1−θ0)2

σ4 which yields the final result.

C.3 Gaussian Upper bound for known α, θ0, θ1

For known σ2, consider the hypothesis test of Problem P1 with θ = θ0. We observe a sample X1, . . . , Xn and
are trying to establish whether it came from H0 or H1.

Consider the test

1

n

n∑
i=1

1Xi>θ1
H1

≷
H0

P1(X1 > θ1) + P0(X1 > θ1)

2
=: γ.

If ε = P1(X1 > θ1)− P0(X1 > θ1) then

P1

(
1

n

n∑
i=1

1Xi>θ1 ≤ γ

)
= P1

(
1

n

n∑
i=1

1Xi>θ1 ≤ P1(X1 > θ1)− ε/2

)
≤ e−nε

2/2

and

P0

(
1

n

n∑
i=1

1Xi>θ1 ≥ γ

)
= P0

(
1

n

n∑
i=1

1Xi>θ1 ≥ P0(X1 > θ1) + ε/2

)
≤ e−nε

2/2

by sub-Gaussian tail bounds. If Q(x) =
∫∞
x

1√
2π
e−z

2/2dz and ∆ = θ1−θ0
σ

then

P0(X1 > θ1) = Q (∆)

P1(X1 > θ1) = (1− α)Q (∆) + α
1

2
so

ε = α

(
1

2
−Q (∆)

)
= α

∫ ∆

0

1√
2π
e−x

2/2dx ≥ min{ α∆

4
√

2π
,

1

4
α}.

Thus, the test fails with probability at most

exp

[
−nα2 min

{
(θ1 − θ0)2

64πσ2
,

1

32

}]
.

We conclude that if ∆ = θ1−θ0
σ
≤ 1 and n ≥ (θ1−θ0)2 log(1/δ)

64πα2σ2 =
KL(Pθ1 ,Pθ0 ) log(1/δ)

64πα2 the correct hypothesis
is selected. The 1/α sufficiency result holds for large enough ∆ since one merely needs to observe just one
sample since the probability of it coming from θ0 is negligible.
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