
A Proof of Thm. 4

A.1 Proof for Uniform Matroid Base

Proof. We consider the case where C is uniform matroid base. For any two sets X,Y 2 C, we
distribute the flow equally across all shortest paths X  Y in the transition graph. Then, for arbitrary
edge e 2 E, we bound the number of paths (and flow) through e.

Consider two arbitrary sets X,Y 2 C with symmetric difference |X � Y | = 2m  2k. Any shortest
path X  Y has length m. Moreover, there are exactly (m!)

2 such paths, since we can exchange the
elements in X \ Y in any order with the elements in Y \X in any order to reach at Y . Since the total
flow is ⇡C(X)⇡C(Y ), each path receives ⇡C(X)⇡C(Y )/(m!)

2 flow.

Next, let e = (S, T ) be any edge on some shortest path X  Y ; so S, T 2 C and T = S [ {j}\{i}
for some i, j 2 [N ]. Let 2r = |X � S| < 2m be the length of the shortest path X  S, thus there
are (r!)

2 ways to reach from X to S. Similarly, m� r � 1 elements are exchanged to reach from T

to Y and there are in total ((m� r � 1)!)

2 ways to do so. the total flow e receives from pair X,Y is

we(X,Y ) =

⇡C(X)⇡C(Y )

(m!)

2

(r!)

2

((m� 1� r)!)

2

Since in our chain,

Q(e) =

2ZC exp(�F (S)) exp(�F (T ))

k(N � k)(exp(�F (S)) + exp(�F (T )))

,

it follows that
we(X,Y )

Q(e)

=

2(r!)

2

((m� 1� r)!)

2

k(N � k) exp(�(F (X) + F (Y )))(exp(�F (S)) + exp(�F (T )))

(m!)

2

ZC exp(�(F (S) + F (T )))

 2(r!)

2

((m� 1� r)!)

2

k(N � k)

(m!)

2

ZC
exp(2�⇣F )(exp(�F (�S(X,Y ))) + exp(�F (�T (X,Y )))),

where we define �S(X,Y ) = X � Y � S. The inequality draws from the fact that

exp(�(F (X) + F (Y ) + F (S)))

exp(�(F (S) + F (T )))

= exp(�(F (X) + F (Y )� F (T ))

= exp(�(F (X) + F (Y )� F (X \ Y )� F (X [ Y )))

exp(�(F (X \ Y ) + F (X [ Y )� F (T )� F (�T (X,Y )))) exp(�F (�T (X,Y ))

 exp(2�⇣F ) exp(�F (�T (X,Y )))

and likewise for exp(�(F (X)+F (Y )+F (T )))

exp(�(F (S)+F (T )))

. Similar trick has been used in [19].

Let US = �S(X,Y ) and UT = �T (X,Y ), then for fixed US , UT , the total flow that passes e is
X

(X,Y ):�S(X,Y )=US ,
�T (X,Y )=UT

we(X,Y )

Q(e)

 2

m�1X

r=0

✓
m� 1

r

◆
2

(r!)

2

((m� 1� r)!)

2

k(N � k)

(m!)

2

Z

⇥ exp(2�⇣F )(exp(�F (US)) + exp(�F (UT )))

=

2k(N � k)

mZC
exp(2�⇣F )(exp(�F (US)) + exp(�F (UT ))).

Finally, with the definition of ⇢(f) we sum over all images of US and UT . Recall that Z =P
US

exp(�F (US)). Since |S �X � Y | = k we know that US , UT 2 C, thus Z  ZC and

⇢(f)  4k(N � k) exp(2�⇣F ).

Hence
⌧X0(")  4k(N � k) exp(2�⇣F )(log ⇡C(X0

)

�1

+ log "

�1

).
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A.2 Proof on Partition Matroid Base

Proof. Consider two arbitrary sets X,Y 2 C with symmetric difference |X � Y | = 2m  2k, i.e.,
m elements need to be exchanged to reach from X to Y . However, these m steps are a valid path in
the transition graph only if every set S along the way is in C. The exchange property of matroids
implies that this is indeed true, so any shortest path X  Y has length m. Moreover, there are
exactly m! such paths, since we can exchange the elements in X \ Y in any order to reach at Y . Note
that once we choose s 2 X \ Y to swap out, there is only one choice t 2 Y \X to swap in, where t

lies in the same part as s in the partition matroid, otherwise the constraint will be violated. Since the
total flow is ⇡C(X)⇡C(Y ), each path receives ⇡C(X)⇡C(Y )/m! flow.

Next, let e = (S, T ) be any edge on some shortest path X  Y ; so S, T 2 C and T = S [ {j}\{i}
for some i, j 2 V . Let 2r = |X�S| < 2m be the length of the shortest path X  S, i.e., r elements
need to be exchanged to reach from X to S. Similarly, m� r � 1 elements are exchanged to reach
from T to Y . Since there is a path for every permutation of those elements, the total flow edge e

receives from pair X,Y is

we(X,Y ) =

⇡C(X)⇡C(Y )

m!

r!(m� 1� r)!.

Since, in our chain, (using L = maxi |Pi|� 1)

Q(e) � ⇡C(S)
2kL

⇡C(T )
⇡C(S) + ⇡C(T )

=

exp(�F (S)) exp(�F (T ))

2kLZC(exp(�F (S)) + exp(�F (T )))

,

it follows that
we(X,Y )

Q(e)

 2r!(m� 1� r)!kL exp(�(F (X) + F (Y )))(exp(�F (S)) + exp(�F (T )))

m!ZC exp(�(F (S) + F (T )))

 2r!(m� 1� r)!kL

m!ZC
exp(2�⇣F )(exp(�F (�S(X,Y ))) + exp(�F (�T (X,Y )))), (A.1)

where we define �S(X,Y ) = X � Y � S = (X \ Y \ S) [ (X \ (Y [ S)) [ (Y \ (X [ S)). To
bound the total flow, we must count the pairs X,Y such that e is on their shortest path(s), and bound
the flow they send. We do this in two steps, first summing over all X,Y that share the upper bound
(A.1) since they have the same difference sets US = �S(X,Y ) and UT = �T (X,Y ), and then we
sum over all possible US and UT . For fixed US , UT , there are

�m�1

r

�
pairs that share those difference

sets, since the only freedom we have is to assign r of the m� 1 elements in S \ (X \ Y \ S) to Y ,
and the rest to X . Hence, for fixed US , UT :

X

(X,Y ):�S(X,Y )=US ,
�T (X,Y )=UT

we(X,Y )

Q(e)

 2

m�1X

r=0

✓
m� 1

r

◆
r!(m� 1� r)!kL

m!ZC

⇥ exp(2�⇣F )(exp(�F (US)) + exp(�F (UT )))

=

2kL

ZC
exp(2�⇣F )(exp(�F (US)) + exp(�F (UT ))). (A.2)

Finally, we sum over all valid US (UT is determined by US), where by “valid” we mean there exists
X,Y 2 C and S 2 C on one path from X to Y such that, US = �S(X,Y ). Any such US can be
constructed by picking k�m elements from S (including i), and by replacing the remaining elements
u 2 S by another member of their partition: i.e., if u 2 P`, then it is replaced by some other v 2 P`,
since both X and Y must be in C. Hence, any US satisfies the partition constraint, i.e., US 2 C and
therefore

P
US

exp(�F (US))  ZC , and likewise for UT . Hence, summing the bound (A.2) over all
possible US yields

⇢(f)  4kL exp(2�⇣F )max

p
len(p)  4k

2

L exp(2�⇣F ),

where we upper bound the length of any shortest path by k, since m  k. Hence

⌧X0(")  4k

2

L exp(2�⇣F )(log ⇡C(X0

)

�1

+ log "

�1

).
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A.3 Proof for General Matroid Base

In the case where no structural assumption is made on C, the proof needs to be more carefully handled.
Because in this case, we know neither the number of legal paths between any two states, nor the
number of �S(X,Y ) falls out of C.

We again consider arbitrary sets X,Y 2 C where |X � Y | = 2m  2k. The total number of shortest
paths is at least (m!) due to exchange property of matroids. Since the amount of flow from X to Y is
⇡C(X)⇡C(Y ), each path receives at most ⇡C(x)⇡C(y)/m! .

Next, let e = (S, T ) be any edge on some shortest path X  Y ; so S, T 2 C and T = S [ {j}\{i}
for some i, j 2 V . Let 2r = |X � S| < 2m be the length of the shortest path X  S, thus there are
at most (r!)2 ways to reach from X to S. Likewise there are at most ((m� r � 1)!)

2 paths to reach
from T to Y . The total flow edge e receives from pair X,Y is then upper-bounded as

we(X,Y )  ⇡C(X)⇡C(Y )

m!

(r!)

2

((m� 1� r)!)

2

.

It follows that
we(X,Y )

Q(e)

 2(r!)

2

((m� 1� r)!)

2

k(N � k)

m!ZC
exp(2�⇣F )(exp(�F (US)) + exp(�F (UT ))).

The total pairs of (X,Y ) that passes e with the same set of images is upper-bounded by
�m�1

r

�
2

, thus
the flow that passes e with the same set of images is bounded as

X

(X,Y ):�S(X,Y )=US ,
�T (X,Y )=UT

we(X,Y )

Q(e)

 2

m�1X

r=0

✓
m� 1

r

◆
2

(r!)

2

((m� 1� r)!)

2

k(N � k)

m!Z

⇥ exp(2�⇣F )(exp(�F (US)) + exp(�F (UT )))

=

2(m� 1)!k(N � k)

ZC
exp(2�⇣F )(exp(�F (US)) + exp(�F (UT ))).

Thus if we sum over all US , UT , the result is upper-bounded as

⇢(f)  4k!Z

ZC
k(N � k) exp(2�⇣F ).

Note that here we upper-bounded m with k and Z could be larger than ZC because it may happen
that US /2 C. It follows that

⌧X0(") 
4k!Z

ZC
k(N � k) exp(2�⇣F )(log ⇡C(X0

)

�1

+ log "

�1

).

B Proof of Thm. 6

Assume we have a chain (Xt) on state space V with transition matrix P , a coupling is a new chain
(Xt, Yt) on V ⇥V such that both (Xt) and (Yt), if considered marginally, are Markov chains with the
same transition matrices P . The key point of coupling is to construct such a new chain to encourage
Xt and Yt to coalesce quickly. If, in the new chain, Pr(Xt 6= Yt)  " for some fixed t regardless
of the starting state (X

0

, Y

0

), then ⌧(")  t [1]. To make the coupling construction easier, Path
coupling [8] is then introduced so as to reduce the coupling to adjacent states in an appropriately
constructed state graph. The coupling of arbitrary states follows by aggregation over a path between
the two. Path coupling is formalized in the following lemma.
Lemma 7. [8, 12] Let � be an integer-valued metric on V ⇥ V where �(·, ·)  D. Let E be a subset
of V ⇥ V such that for all (Xt, Yt) 2 V ⇥ V there exists a path Xt = Z

0

, . . . , Z

r
= Yt between Xt

and Yt where (Z

i
, Z

i+1

) 2 E for i 2 [r � 1] and
P

i �(Z
i
, Z

i+1

) = �(Xt, Yt). Suppose a coupling
(S, T ) ! (S

0
, T

0
) of the Markov chain is defined on all pairs in E such that there exists an ↵ < 1

such that E[�(S0
, T

0
)]  ↵�(S, T ) for all (S, T ) 2 E, then we have ⌧(")  log(D"�1

)

(1�↵) .
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We now are ready to state our proof.

Proof. We define �(X,Y ) =

1

2

(|X � Y | + ||X| � |Y ||). It is clear that �(X,Y ) � 1 for X 6= Y .
Let E = {(X,Y ) : �(X,Y ) = 1} be the set of adjacent states (neighbors), and it follows that �(·, ·)
is a metric satisfying conditions in Lemma 7. Also we have �(X,Y )  k.

We consider constructing a path coupling between any two states S and T with �(S, T ) = 1, S0 and
T

0 be the two states after transition. We sample cS , cT 2 {0, 1}, if cS is 0 then S

0
= S and the same

with cT . iS , iT 2 V are drawn uniformly randomly. We consider two possible settings for S and T :

1. If S or T is a subset of the other, we assume without of generality that S = T [ {t}. In this
setting we always let iS = iT = i. Then

(a) If i = t, we let cS = 1� cT ;
i. If cS = 1 then �(S

0
, T

0
) = 0 with probability p

�
(S, t);

ii. If cS = 0 then �(S

0
, T

0
) = 0 with probability p

+

(T, t);
(b) If i 2 T , we set cS = cT ;

i. If cS = 1 then �(S

0
, T

0
) = 2 with probability (p

�
(T, i)� p

�
(S, i))

+

;
(c) If i 2 V \S, we set cS = cT ;

i. If cS = 1 and |S| < k then �(S

0
, T

0
) = 2 with probability (p

+

(S, i)� p

+

(T, i))

+

.

2. If S and T are of the same sizes, let S = R [ {s} and T = R [ {t}. In this setting we
always let cS = cT = c. We consider the case of c = 1:

(a) If iS = s, let iT = t. Then �(S

0
, T

0
) = 0 with probability min{p�(S, s), p�(T, t)};

(b) If iS = t, let iT = s. If |S| < k, Then �(S

0
, T

0
) = 0 with probability

min{p+(S, t), p+(T, s)};
(c) If iS 2 R, let iT = iS . Then �(S

0
, T

0
) = 2 with probability |p�(S, iS)� p

�
(T, iT )|;

(d) If iS 2 V \(S [ T ), let iT = iS . If |S| < k, Then �(S

0
, T

0
) = 2 with probability

|p+(S, iS)� p

+

(T, iT )|.

In all cases where we didn’t specify �(S

0
, T

0
), it will be �(S0

, T

0
) = 1. In the first case of S = T [{t}

we have
E[�(S0

, T

0
)]

E[�(S, T )]  1

2N

((1� p

�
(S, t)) + (1� p

+

(T, t)) + (2|T |+
X

i2T

(p

�
(T, i)� p

�
(S, i))

+

)+

(2(N � |S|) + J|S| < kK
X

i2[N ]\S
(p

+

(S, i)� p

+

(T, i))

+

))

= 1� 1

2N

(1�
X

i2T

(p

�
(T, i)� p

�
(S, i))

+

� J|S| < kK
X

i2[N ]\S
(p

+

(S, i)� p

+

(T, i))

+

) = 1� ↵

1

2N

,

while in the second case of |S| = R [ {s} and T = R [ {t} we have
E[�(S0

, T

0
)]

E[�(S, T )]  1

2N

((1�min{p�(S, s), p�(T, t)}) + (1� J|S| < kKmin{p+(S, t), p+(T, s)})+

(2|R|+
X

i2R

|p�(S, i)� p

�
(T, i)|)+

(2(N � |S|� 1) + J|S| < kK
X

i2[N ]\(S[T )

|p+(S, i)� p

+

(T, i)|))

= 1� 1

2N

(min{p�(S, s), p�(T, t)}�
X

i2R

|p�(S, i)� p

�
(T, i)|+

J|S| < kK(min{p+(S, t), p+(T, s)}�
X

i2[N ]\(S[T )

|p+(S, i)� p

+

(T, i)|)) = 1� ↵

2

2N

.

Let ↵ = max

(S,T )2E{↵1

,↵

2

}. If ↵ < 1, with Lemma 7 we have

⌧(")  2N log(k/")

1� ↵

.
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C Proof of Thm. 2

We recall key aspects of strongly Rayleigh distributions, on which our proof of fast mixing depends5.
Let ⇡ be a probability distribution on {0, 1}N , its generating polynomial is defined as

f⇡(z) =

X

S2[N ]

⇡(S)z

S
,

where z = (z

1

, . . . , zN ) and z

S
=

Q
i2S zi. One of useful properties of such polynomial is their

stability. A polynomial f 2 C[z
1

, . . . , zN ] is called stable if f(z) 6= 0 whenever IM(zj) > 0 for
j 2 [N ]. A stable polynomial with all real coefficients is called real stable.

Strongly Rayleigh distribution is defined upon properties of its generating polynomial: A distribution
⇡ is called strongly Rayleigh if its generating polynomial f⇡ is (real) stable.

One of common manipulations on distributions over {0, 1}N is symmetric homogenization, where
one construct distributions on {0, 1}2N such that their marginal distribution on [N ] is the same as the
original ones on {0, 1}N .
Definition 8 (Symmetric Homogenization). Given ⇡ on {0, 1}N , define a new distribution ⇡sh on
{0, 1}2N called the symmetric homogenization of ⇡ by

⇡sh(S) =

(
⇡(S \ [N ])

� N
S\[N ]

��1

if |S| = N ;

0 otherwise.

The class of strongly Rayleigh distribution has been proved to be closed under symmetric homoge-
nization:
Theorem 9 (Closure under Symmetric Homogenization [4]). If ⇡ is strongly Rayleigh then so its
symmetric homogenization ⇡sh.

Strongly Rayleigh distribution includes many distributions such as DPP as special cases. Only recently,
the Markov chain constructed for sampling from homogeneous strongly Rayleigh distribution has
been proved to be rapidly mixing.
Theorem 10 (Rapid Mixing for Homogeneous Strongly Rayleigh [3]). For any strongly Rayleigh
k-homogeneous probability distribution ⇡ : {0, 1}N ! R

+

, we have

⌧X0(")  2k(2N � k)(log ⇡(X

0

)

�1

+ log "

�1

).

where 2N is the size of the ground set.

Now we are ready to prove our statement in Thm. 2.

Proof of Thm. 2 Given a strongly Rayleigh distribution ⇡C , we construct its symmetric homoge-
nization ⇡sh as in Def. 8. By Thm. 9 we know that ⇡sh is homogeneous strongly Rayleigh. Then it
follows from Thm. 10 that the base exchange Markov chain has its mixing time bounded as

(⌧sh)Y0(")  2N

2

(log(⇡sh(Y0

))

�1

+ log "

�1

)

= 2N

2

✓
log

✓
N

|X
0

|

◆
+ log(⇡C(X0

))

�1

+ log "

�1

◆
,

where Y

0

✓ [2N ], |Y
0

| = N and X

0

= Y

0

\ V .

We construct a base exchange Markov chain on 2N variables where we maintain a set |R| = N . In
each iteration and with probability 0.5 we choose uniformly s 2 R and t 2 [2N ]\R and switch them
with certain transition probabilities. Let S = R \ V , T = V \R, there are in total four possibilities
for locations of s and t:

1. With probability |S|(N�|S|)
2N2 , s 2 S and t 2 T , and we switch assignment of s and t

with probability min{1, ⇡sh(R[{t}\{s})
⇡sh(R)

} = min{1, ⇡C(S[{t}\{s})
⇡C(S)

}. This is equivalent to
switching elements between S and T ;

5Part of the material is drawn from [4], we include it for self-containness.
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2. With probability |S|(N�|S|)
2N2 , s /2 S and t /2 T , and switch with probability

min{1, ⇡C(S[{t})
⇡C(S)

⇥ |S|+1

N�|S|}. This is equivalent to doing nothing to S;

3. With probability |S|2
2N2 , s 2 S and t /2 T , and we switch with probability min{1, ⇡C(S\{s})

⇡C(S)

⇥
|S|

N�|S|+1

}. This is equivalent to deleting elements from S;

4. With probability (N�|S|)2
2N2 , s /2 S and t 2 T , and switch with probability

min{1, ⇡C(S[{t})
⇡C(S)

⇥ |S|+1

N�|S|}. This is equivalent to adding elements to S.

Constructing the chain in the same manner but only maintaining S = R \ [N ] will result in Algo. 1,
while the mixing time stays unchanged.

D Supplementary Experiments

D.1 Varying �

We run 20-variable chain-structured Ising model on partition matroid base of rank 5 with varying �’s.
The results are shown in Fig. 4 and Fig. 5. We observe that the approximate mixing time grows with
�.
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Figure 4: Convergence of marginal (Marg) and conditional (Cond-1 and Cond-2, conditioned on
1 and 2 other variables) probabilities of a single variable in a 20-variable Ising model. We fix � = 3

and vary � as (a) � = 0.2, (b) � = 0.5 and (c) � = 0.8. Full lines show the means and dotted lines the
standard deviations of estimations.
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Figure 5: PSRF of each set of chains in Fig. 4 with � = 3 and (a) � = 0.2; (b) � = 0.5 and (c)
� = 0.8.
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Figure 6: Comparisons of PSRF’s for marginal estimations with different �’s. (a) PSRF’s with
different �’s and (b) the approximate mixing time estimated by thresholding PSRF at 1.05.

D.2 Varying �

We run 20-variable chain-structured Ising model on partition matroid base of rank 5 with varying �’s.
The results are shown in Fig. 7 and Fig. 8. We observe that the approximate mixing time grows with
�.
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Figure 7: Convergence of marginal (Marg) and conditional (Cond-1 and Cond-2, conditioned on
1 and 2 other variables) probabilities of a single variable in a 20-variable Ising model. We fix � = 1

and vary � as (a) � = 0.5; (b) � = 2 and (c) � = 3. Full lines show the means and dotted lines the
standard deviations of estimations.
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Figure 8: PSRF of each set of chains in Fig. 7 with � = 1 and (a) � = 0.5; (b) � = 2 and (c) � = 3.

D.3 Varying Data Sizes

We run (k-)DPP that is constrained to sample subsets from 1) partition matroid base and 2) uniform
matroid with different data sizes N .
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Figure 9: Comparisons of PSRF’s for marginal estimations with different �’s. (a) PSRF’s with
different �’s and (b) the approximate mixing time estimated by thresholding of 1.05 on PSRF’s.

D.3.1 Partition Matroid Constraint

The estimations for marginal and conditional distributions are shown in Fig. 10 and corresponding
PSRF’s are shown in Fig. 11. We observe that the estimation becomes stable faster when N is small.
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Figure 10: Convergence of marginal (Marg) and conditional (Cond-1 and Cond-2, conditioned
on 1 and 2 other variables) probabilities of a single variable in a k-DPP on partition matroid base of
rank 5, with (a) N = 20; (b) N = 50 and (c) N = 100. Full lines show the means and dotted lines
the standard deviations of estimations.
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Figure 11: PSRF of marginal (Marg) and conditional (Cond-1 and Cond-2, conditioned on 5 and
10 other variables) probabilities of a single variable in a k-DPP on partition matroid base of rank 5,
with (a) N = 20; (b) N = 50 and (c) N = 100.
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D.3.2 Uniform Matroid Constraint

The estimations for marginal and conditional distributions are shown in Fig. 12 and corresponding
PSRF’s are shown in Fig. 13. We observe the same thing as mentioned before, that the estimation
becomes stable faster when N is small.
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Figure 12: Convergence of marginal (Marg) and conditional (Cond-5 and Cond-10, conditioned
on 5 and 10 other variables) probabilities of a single variable in a DPP on uniform matroid of rank
30, with (a) N = 50; (b) N = 100 and (c) N = 200. Full lines show the means and dotted lines the
standard deviations of estimations.
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Figure 13: PSRF of marginal (Marg) and conditional (Cond-5 and Cond-10, conditioned on 5

and 10 other variables) probabilities of a single variable in a DPP on uniform matroid of rank 30,
with (a) N = 50; (b) N = 100 and (c) N = 200.
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