
Supplementary Material: Proofs

Supplementary Material: Causal Meet Submodular: Subset
Selection with Directed Information

Yuxun Zhou yxzhou@cs.berkeley.edu

Department of EECS, University of California, Berkeley

Berkeley,CA 94720-1776, USA

Abstract

This is the supplementary material for the paper entitled “Causal Meet Submodular: Subset
Selection with Directed Information” presented in NIPS 2016. Proofs of main theorems
and lemmas are given in details. We also provide additional numerical experiment which
does fit in the paper due to the page limit.

1. Proofs

Theorem 2 The objective I(An → Ān) as a function of A ⊆ V is submodular.

Proof Let’s first show a property of mutual information. At time t, we have

I
(
At ∪ {y}t;A ∪ {y}t|A ∪ {y}t−1

)
− I

(
At;At|At−1

)
= H(V t−1, At, yt) +H

(
A ∪ {y}t

)
−H(V t)−H

(
A ∪ {y}t−1

)
−H(V t−1, At)−H(At) +H(V t) +H(At−1)

= H(yt|V t−1, At)−H
(
yt|A ∪ {y}t

)
+H

(
yt−1|A ∪ {y}t−1

)
where we use I(X,Y |Z) = H(X,Z) + H(Y,Z) − H(X,Y, Z) − H(Z). Summing over the
last formula over t and canceling telescoping terms, we obtain the following formula by the
definition of directed information,

I
(
An ∪ {yn} → A ∪ {y}n

)
− I

(
An → An

)
=
∑
t

H(yt|V t−1, At)−H
(
yn|A ∪ {y}n

)
+H (y0)

where we assumed independent initial distribution.1 Now for any set B ⊇ A, by “informa-
tion never hurt”

H(yt|V t−1, At) ≥ H(yt|V t−1, Bt)

H
(
yn|A ∪ {y}n

)
≤ H

(
yn|B ∪ {y}n

)
Hence Definition 1 of submodularity is verified. The objective function is submodular.

Proposition 1 fX(S) = I(Sn ∪ xn → Y n)− I(Sn → Y n) = I(xn → Y n||Sn)

1. In fact, initial condition does not matter for large t, which is usually true for meaningful DI estimation
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Proof Note the following alternative expression for DI:

I(Xn → Y n) =
n∑
t=1

{
H(Yt|Y t−1)−H(Yt|Y t−1, Xt)

}
= H(Y n)−

n∑
t=1

H(Yt|Y t−1, Xt)

(1)

and the result can be obtained since H(Y n||Xn) ,
∑n

t=1H(Yt|Y t−1, Xt), and the directed
information from Xn to Y n when causally conditioned on the series Zn can be written as

I(Xn → Y n||Zn) = H(Y n||Zn)−H(Y n||Xn, Zn) =

n∑
t=1

I(Xt;Yt|Y t−1, Zt) (2)

Proposition 2 If for any two processes s1, s2 ∈ S, we have the conditional independence
that (s1t ⊥⊥ s2t | Yt), then I(Sn → Y n) is a monotonic submodular function of set S.

Proof In this case, we see that the probabilistic model reduces to “causal naive Bayesian”,
and the submodulaity follows by check Definition 1 with conditional independence and
Proposition 1.

Lemma 1 A set function f is submodular if and only if λf (L, k) ≥ 0, ∀ L ⊆ V and k.

Proof Simply take k = 2, then λV,2 ≥ 0 implies definition 3 of submodularity, hence f is
submodular. For the other direction, assuming f is submodular, then for any A,S ⊆ V and
xi ∈ S by telescoping

f(A ∪ S)− f(A) =

|S|∑
i=1

f(A ∪ S(i) ∪ xi)− f(A ∪ S(i))

≤
|S|∑
i=1

[f(A ∪ xi)− f(A)]

where S(i) , S \ {x1, ..., xi} and with the definition of submodularity deviance we get
λV,k ≥ 0

Lemma 2 For any location sets L ⊆ V , cardinality k, and target process set Y , we have

λI({•}n→Y n)(L, k) ≥ min
W⊆V

|W |≤|L|+k

n∑
t=1

{
G|L|+k

(
W t, Y t−1)− G|L|+k (W t, Y t

)}
(3)

≥ − max
W⊆V

|W |≤|L|+k

I(Wn → Y n) ≥ −I(V n → Y n) (4)
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where the function Gk(W,Z) ,
∑

w∈W H(w|Z) − kH(W |Z) defined in terms of entropy is
super-modular of W .

Proof First note that for any random variable set U , we have

I(Un → Y n||An)

= H(Y n||An)−H(Y n||Un, An)

=

n∑
t=1

I(U t;Yt|At, Y t−1)

=
n∑
t=1

{
H(U t|At, Y t−1)−H(U t|At, Y t)

}
Hence by plugging in with xt, St and rearrange, we get

λY n,An(Sn) =
n∑
t=1

{∑
x∈S

H(xt|At, Y t−1)−H(St|At, Y t−1)

−

[∑
x∈S

H(xt|At, Y t)−H(St|At, Y t)

]}

=
n∑
t=1

{
GAt,Y t−1(St)− GAt,Y t(St)

}
Let’s verify several properties of G
• G is Supermodular
Remember “information never hurts” inequality, we get

Gk(W ∪ {y}, Z)− Gk(W,Z) = H(y|Z)− kH(y|W,Z)

≤ H(y|Z)− kH(y|L,Z)

for W ⊆ L. Hence by definition Gk(W,Z) is supermodular.

Gk(W,Z1)− Gk(W,Z2)

=
∑
w∈W

[H(w|Z1)−H(w|Z2)]− k [H(W |Z1)−H(W |Z2)]

is decreasing in k as H(W |Z1) ≥ H(W |Z2) for Z1 ⊆ Z2

• G is Posimodular Recall that a set function is posimodular iif

f(S) + f(T ) ≥ f(S \ T ) + f(T \ S)
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Let’s check

G1(S,Z) + G1(T,Z)− G1(S \ T,Z)− G1(T \ S,Z)

=
∑
x∈S

H(x|Z) +
∑
x∈T

H(x|Z)−H(S|Z)−H(T |Z)

−
∑
x∈S\T

H(x|Z)−
∑
x∈T\S

H(x|Z)

−H(S \ T |Z)−H(T \ S|Z)

= 2
∑

x∈S∩T
H(x|Z)−H(S ∩ T |S \ T,Z)−H(S ∩ T |T \ S,Z)

≥ 2
∑

x∈S∩T
H(x|Z)− 2H(S ∩ T |Z) ≥ 0

The last inequality is due to submodularity of H(•|Z) Now let’s proof the lemma. Since
H(x|A, Y ) = H(x|Y )−H(A|Y ) +H(A|x, Y ), and for any x ∈ A, H(x|A, Y ) = 0, we have

G1
(
St, {At, Y t−1}

)
=
∑
x∈S

H(xt|At, Y t−1)−H(St|At, Y t−1)

=
∑

x∈S∪A
H(xt|At, Y t−1)−H(St|At, Y t−1)

=
∑

x∈S∪A

{
H(xt|Y t−1)−H(At|Y t−1) +H(At|xt, Y t−1)

}
−H(St ∪At|Y t−1) +H(At|Y t−1)

=
∑

x∈S∪A
H(xt|Y t−1)−H(St ∪At|Y t−1)︸ ︷︷ ︸

G1(St∪At,{Y t−1})

−
∑

x∈S∪A
H(At|Y t−1) +

∑
x∈S∪A

H(At|xt, Y t−1) +H(At|Y t−1)

Similar equality could be derived for G1
(
St, {At, Y t}

)
, then their difference

G1
(
St, {At, Y t−1}

)
− G1

(
St, {At, Y t}

)
= G1

(
St ∪At, {Y t−1}

)
− G1

(
St ∪At, {Y t}

)
+H(At|Y t−1)−H(At|Y t)

+
∑

x∈S∪A

[
H(At|xt, Y t−1)−H(At|xt, Y t)

]
−
∑

x∈S∪A

[
H(At|Y t−1)−H(At|Y t)

] (5)

Now note thatH(At|Y t−1)−H(At|Y t) = I(At;Yt|Y t−1) andH(At|xt, Y t−1)−H(At|xtY t) =
I(At;Yt|xt, Y t−1) are both positive and increasing in A. We get

−
∑

x∈S∪A

[
H(At|Y t−1)−H(At|Y t)

]
≥ −

∑
x∈S∪A

[
H(At ∪ xt|Y t−1)−H(At ∪ xt|Y t)

]
= −

∑
x∈S∪A

[
H(At|xt, Y t−1)−H(At|xt, Y t)

]
−
∑

x∈S∪A

[
H(xt|Y t−1)−H(xt|Y t)

]
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Plug into (5) and cancel terms, we get

G1
(
St, {At, Y t−1}

)
− G1

(
St, {At, Y t}

)
≥ −

[
H(At ∪ St|Y t−1)−H(At ∪ St|Y t)

]
= −I(At ∪ St;Yt|Y t−1)

On the other hand, if we relax the third term in (5) and use the increasing property of
I(At;Yt|Y t−1)

G1
(
St, {At, Y t−1}

)
− G1

(
St, {At, Y t}

)
≥ G1

(
St ∪At, {Y t−1}

)
− G1

(
St ∪At, {Y t}

)
− (|S ∪A| − 1)

[
H(At ∪ St|Y t−1)−H(At ∪ St|Y t)

]
= G|S∪A|

(
St ∪At, {Y t−1}

)
− G|S∪A|

(
St ∪At, {Y t}

)
≥ G|L|+k

(
St ∪At, {Y t−1}

)
− G|L|+k

(
St ∪At, {Y t}

)
as |L| + k ≥ |S ∪ A| and the second properties of function G. Now the inequalities follows
from the definition of directed information and the fact that for any S,A ⊆ V that satisfies
A ⊆ L, S∩A = ∅, |S| ≤ k, they are also feasible solutions for W = S∪A : |S∪A| ≤ |L|+k.

Lemma 3 Given a set function f : V → R, the corresponding SmI λf (L, k), and also let set
B = A∪{y1, ..., yM} and x ∈ B. For an ordering {j1, ..., jM}, define Bm = A∪{yj1 , ..., yjm},
B0 = A, BM = B, we have

fx(A)− fx(B) ≥ max
{j1,...,jM}

M−1∑
m=0

λf (Bm, 2) ≥Mλf (B, 2) (6)

Proof Let k = 1, S = {x1, x2} and by our definition of SmI∑
x∈S

f(A ∪ x)− f(A)− [f(A ∪ S)− f(A)] ≥ λA,2

Rearranging gives

f(A ∪ x1)− f(A)− [f(A ∪ x1 ∪ x2)− f(A ∪ x2)] ≥ λA,2

or with the notation of derivative

fx1(A)− fx1(A ∪ x2) ≥ λA,2 (7)

This is somewhat a “trimming” property. Now consider A ⊆ B ⊆ V . Let’s write explicitly
Bj = A ∪ {y1, ..., yj}, B0 = A, Bm = B with m = |B| − |A|, then

fx(Bj) ≤ fx(Bj−1)− λBj−1,2
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for j = 1, ...,m. Adding the m equations we get

f(A)− f(B) ≥
|B|−|A|∑
j=1

λBj ,2 (8)

Also note that the order of y1, ..., ym does not matter. Hence the proposition.

Lemma 4 Let the set function f : V → R be quasi submodular with λf (L, k) ≤ 0. Also let
S(p) a random subset of S, with each element appears in S(p) with probability at most p,
then

E [f(S(p))] ≥ (1− p1)f(∅) + γS,p

with γS,p ,
∑|S|

i=1(i− 1)pλf (Si, 2)

Proof W.l.o.g. assume elements in S are ordered by its probability to be in S(p), i.e.
S = {u1, u2, ..., u|S|} and pi = P(ui ∈ S(p)) ≥ P (uj ∈ S(p)) = pj for any 1 ≤ i ≤ j ≤ |S|.
Define Si = {u1, u2, ..., ui}, S0 = ∅. Then

E [f(S(p))] = E

f(∅) +

|S|∑
i=1

I{ui∈S(p)}fui(Si−1 ∩ S(p))


≥ E

f(∅) +

|S|∑
i=1

I{ui∈S(p)}
[
fui(Si−1) + (i− 1)λSi−1,2

]
= f(∅) +

|S|∑
i=1

[
pifui(Si−1) + (i− 1)piλSi−1,2

]
= (1− p1)f(∅) +

|S|∑
i=1

(pi−1 − pi)f(Si) + p|S|f(S) +

|S|∑
i=1

(i− 1)piλSi,2

≥ (1− p1)f(∅) +

|S|∑
i=1

(i− 1)piλSi,2

= (1− p1)f(∅) + γS,p

where the first inequality is due to last proposition, and second inequality is a direct result of
the assumption that pi’s are in decreasing order. Now if f is strongly submodular, then by
the definition of λS,k, we see that γS,p ≥ 0, otherwise if f is only approximately submodular
with λS,k ≤ 0, we have

γS,p ≥
|S|∑
i=1

(i− 1)p1λS,2 ≥
|S|(|S| − 1)

2
λS,2 , βS
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Theorem 3 For a general (non-monotonic, non-submodular) functions f , let the optimal
solution of the cardinality constrained maximization be denoted as S∗, and the solution of
random greedy algorithm be Sg then

E [f(Sg)] ≥

(
1

e
+

ξfSg ,k

E[f (Sg)]

)
f(S∗)

where ξfSg ,k = λf (Sg, k) + k(k−1)
2 min{λf (Sg, 2), 0}

Proof Let Ci be the event of random choices up to iteration i according to the algorithm.
Then by tower property

E
[
fxi+1(Si)

]
= E

[
E
[
fxi+1(Si)|Ci

]]
Denote S∗ the true optimal. The inside expectation is just

E
[
fxi+1(Si)|Ci

]
=

1

k

∑
x∈Mi+1

fx(Si) ≥
1

k

∑
x∈S∗\Si

fx(Si)

≥ 1

k

[
λSi,|S∗\Si| + f(S∗ ∪ Si)− f(Si)

] (9)

in which the first inequality is because Mi+1 is the maximal, and second inequality is due
to the definition of SmI. Now the expectation reads

E
[
fxi+1(Si)

]
≥ 1

k

{
λSi,|S∗\Si| + E [f(S∗ ∪ Si)]− E [f(Si)]

}
If f is monotonic, we can further lower bound f(S∗∪Si) by f(S∗) and proceed to induction
for performance bound, however in the non-monotonic case, this lower bound does not
stands any more. In this step the random choice of the algorithm becomes crucial: with
lemma lemma:proba, we can show that on average, f(S∗ ∪ Si) still has a variant lower
bound.

The trick is to notice that with the random greedy algorithm, in each iteration, any
element y ∈ V \Si will be selected into Si+1 with probability at most 1/k, hence at iteration
i, y stays outside of Si with probability at least (1− 1/k)i, or in other words,

P{y ∈ Si} ≤ 1− (1− 1/k)i = p

Define function g(S) = f(S ∪S∗), then it is easy to see that g is approximately submodular
with λU,n(g) = λU∪S∗,n(f). Now let’s apply the lemma to get

E [f(S∗ ∪ Si)] = E [g(Si \ S∗)] ≥
(

1− 1

k

)i
g(∅) + βSi\S∗∪S∗

≥
(

1− 1

k

)i
f(S∗) + βSg

7
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The last inequality is because Si \S∗ ∪S∗ = Si ⊆ Sg, and βS is decreasing in S (as a linear
combination of λS,2). Continuing with this lower bound on E [f(S∗ ∪ Si)] , we get

E
[
fxi+1(Si)

]
≥ 1

k

{
λSg ,k + βSg +

(
1− 1

k

)i
f(S∗)− E [f(Si)]

}

Define λSg ,k + βSg = −ξSg a constant with given k, then rearranging yields

E [f(Si+1)]− E [f(Si)]

≥ 1

k

{(
1− 1

k

)i
f(S∗)− E [f(Si)]− ξSg

}
(10)

E [f(Si+1)]

≥
(

1− 1

k

)
E [f(Si)] +

1

k

(
1− 1

k

)i
f(S∗)−

ξSg

k

(11)

The last inequality implies that the expected increments made by random greedy algorithm
has guarantees, but is deteriorated by the lack of strong submodularity, whose negative effect
is incorporated by ξSg . Next, we will make use of this inequality with a induction framework
and show the overall performance guarantee of the algorithm. Specifically, assume

E [f(Si)] ≥
i

k

(
1− 1

k

)i−1
f(S∗)−

ξSg

k

i−1∑
j=0

(
1− 1

k

)j
(12)

when i = 1, we have

kE [f(S1)] ≥
∑
x∈S∗

E [f(x)] ≥ E [f(S∗)] + λ∅,k

≥ E [f(S∗)] + λSg ,k ≥ E [f(S∗)]− ξSg

where the first inequality follows because the first step choice S1 is always maximum, the
second and third inequalities are from the SMD definition and its decreasing property, and
the last inequality is due to our worst case assumption that f is not submodular and βSg ≤ 0.
Now assume (12) is true for any i′ = 1, 2, ...i, then at i+ 1 step, plugging into (11) gives

E [f(Si+1)]

≥ i

k

(
1− 1

k

)i
f(S∗) +

1

k

(
1− 1

k

)i
f(S∗)−

ξSg

k

i∑
j=0

(
1− 1

k

)j

=
i+ 1

k

(
1− 1

k

)i
f(S∗)−

ξSg

k

i∑
j=0

(
1− 1

k

)j

8
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which completes the induction. Let i = k − 1, we get

E [f(Sg)] ≥
(

1− 1

k

)k−1
f(S∗)− ξSg

(
1−

(
1− 1

k

)k)

≥ 1

e
f(S∗)− ξSg ≥

(
1

e
−

ξSg

E [f(Sg)]

)
f(S∗)

Proof Corollary 1
This is an easier case, we can start from last line of (9) and get

E
[
fxi+1(Si)

]
≥ 1

k

{
λSi,|S∗\Si| + E [f(S∗ ∪ Si)]− E [f(Si)]

}
≥ 1

k

{
λSi,|S∗\Si| + E [f(S∗)]− E [f(Si)]

}
since f is monotonic, f(S∗ ∪ Si) ≥ f(S∗). Rearranging yields

E [f(Si+1)] ≥
(

1− 1

k

)
E [f(Si)] +

1

k
f(S∗) +

λSi,|S∗\Si|

k

≥
(

1− 1

k

)
E [f(Si)] +

1

k
f(S∗) +

λSg ,k

k

(13)

Let’s again use induction technique for clarity. Assume

E [f(Si)] ≥

[
1−

(
1− 1

k

)i]
f(S∗) +

λSg ,k

k

i−1∑
j=0

(
1− 1

k

)j
Then one can easily check that this assumption stands for i = 1 with the definition and
monotonicity of λU,m, and from i to i+1 one can just plug the assumption into (13). Hence
we have

E [f(Sg)] ≥

[
1−

(
1− 1

k

)k]
f(S∗) + λSg ,k

[
1−

(
1− 1

k

)k]
Now if the function is submodular, we have λSg ,k ≥ 0, then

E [f(Sg)] ≥
(

1− 1

e

)
f(S∗) +

(
1− 1

e

)
λSg ,k

≥

[
1− 1

e
+

(
1− 1

e

)2 λSg ,k

E [f(Sg)]

]
f(S∗)

where we have used E [f(Sg)] ≥
(
1− 1

e

)
f(S∗) in the second inequality. On the other hand,

if λSg ,k ≤ 0, we get

E [f(Sg)] ≥
(

1− 1

e

)
f(S∗) + λSg ,k

≥
(

1− 1

e
+

λSg ,k

E [f(Sg)]

)
f(S∗)

9
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Proof Corollary 2
Simply note that in this case Lemma lemma:proba becomes E [f(S(p))] ≥ (1−p1)f(∅), and
we just follow the lines of proof of Theorem 3 with ξSg replaced by λSg ,k.

2. Causal Structure Learning

In this section, we connect the newly developed subset selection results to the problem
of causal structure learning for networks of processes: It is shown that, assume bounded
indegrees for each node, the structure learning problem can be reduced to solving OPT2 for
every process in the network. Hence the near optimal random greedy heuristic is applied
to establish an efficient algorithm for structure learning. Furthermore, we discuss directed
information estimation from streaming data, and propose a decomposition technique to
compute I(Sn → S̄n).

2.1 Causal Structure Learning and its relation with Causal Subset Selection

A rich body of research exists in literature on the structure learning of graphical models for
i.i.d samples, however the problem becomes much more involved when we deal with non-
i.i.d dynamic networks of processes. Previously, the structure learning of dynamic networks
is usually addressed with multivariate regressive models. For example, in Materassi and
Innocenti (2010), the author proposed an algorithm to identify topology of network of
linear systems. In Bolstad et al. (2011), an alternative is proposed based on Group Lasso.
In this work, we adopt the result of a recently work Quinn et al. (2015), which defined the
notion of directed information graph, and proved its equivalence to minimum generative
models. First of all, the definition directed information graph is stated as follows,

Definition 1 Quinn et al. (2015) A Causal Graph with Directed Information as causality
metric, is a directed graph on V with each nodes representing a process, and there is a
directed edge from node i ∈ V to j ∈ V , if and only if

I(Xi → Xj ||V \ {Xi, Xj}) > 0 (14)

Compared to causal graph based on linear models, directed information graph is advanta-
geous in that (1) non-linear causality can be captured and Gaussian assumption is not re-
quired; (2) the graphical model is equivalent to generative models such as dynamic Bayesian
network Quinn et al. (2015); (3) confounders can be naturally eliminated due to the causally
conditioning in (14).

From the above definition, a näıve way of structure learning from data is to check
I(Xi → Xj ||V \ {Xi, Xj}) > 0 for every pairs of processes in the network. This O(|V |2)
algorithm seems viable in terms of computational cost, however, to estimate the causally
conditioned directed information, i.e., I(Xi → Xj ||V \ {Xi, Xj}), the joint distribution
of all the processes in the network has to be estimated at first place. This requirement

10
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Algorithm 1 Structure Learning

G← zeros(N,N)
for i ∈ V do

(a, πi)← maxj∈V I(Xn
j → Xn

i )
d← a, m← 1
while d ≥ ε & m ≤ k do

(a′, j∗)← maxj∈V I(Xn
πi∪j → Xn

i )
d← a′ − a, a← a′, πi ← πi ∪ j∗
G(j∗, i) = 1, m← m+ 1

end while
end for

produces serious problems because high dimensional joint distribution is usually hard, if
not impossible, to estimate without extra assumptions Negahban et al. (2009).

The remedy is to realize the following property

Lemma 6 In a directed information causal graph G = (V, E), let π(i) ∈ V be the set of all
parents of node i ∈ V , then for any other set W ∈ V , we have

I (Xπi → Xi) ≥ I (XW → Xi) (15)

which essentially indicates that the complete parents set always has maximal causal influ-
ence on its child node (process). Thus, the structure learning problem can be reduces to
solving

argmax
S⊆V,|S|≤k

I(Sn → Xn
i ) (16)

for each node i ∈ V , assuming maximal indegree is k for all nodes. According to Corollary
1, a near optimal approximate solution can be obtained with either random or deterministic
greedy search. A deterministic version is summarized in Algorithm 1. Compared to pairwise
edge detection, this algorithm only requires estimating joint distribution of dimension at
most k+1, which is significantly smaller than |V |, the dimension of the full joint distribution.

2.2 OPT1 Decomposition and DI estimation

Let us take another look at OPT1, which involves solving the problem argmaxS⊆V,|S|≤k I(Sn →
Sn). Although we showed that the objective is submodular and near optimal solution can
be obtained with greedy algorithm, it turns out we still need to estimate directed infor-
mation from a subset S ∈ V to its compliments. Again, direct estimation requires joint
distribution of all processes in V , which is problematic when |V | is large. Here the remedy
is to realize that directed information graph G actually provides a sparse representation of
the joint distribution. With some algebra, we can find the following decomposition

11
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Lemma 7 OPT 1 Decomposition

I(Sn → Sn) = I
(
CS (Sn−1)→ CS(Sn)

)
+
∑
t

I
(
CS(St); CS(S t) | CS(St−1), CS(S t−1)

)
where CA(B) , {Xi | Xi ∈ B, ∃Xj ∈ A,G(i, j) = 1} denotes the set of adjacent nodes
from A to B. Hence by utilizing the learned structure, the directed information estimation
in OPT1 is reduced to the estimation of local jointly probabilities, which often times have
much smaller dimensionality.

For directed information estimation, in this work we use an estimator recently proposed
in Jiao et al. (2013), in as much as its fast convergence and mild assumptions on the process.
Interested readers are referred to Quinn et al. (2011)Quinn et al. (2015) and the reference
therein for other possibilities. The procedure consists of (1) estimate a universal probability
assignment, say Q, for the processes under consideration. This is done through the well-
known context tree weighting (CTW) algorithm. (2) estimate directed information from
process X to Y with

Î(Xn → Y n) , Ĥ(Y n)− Ĥ(Y n||Xn) (17)

where the causal entropy is estimated with

Ĥ(Y n||Xn) , − 1

n
logQ(Y n||Xn)

Q(Y n||Xn) =
n∏
t=1

Q(Yt|Xt, Y t−1)

Ĥ(Y n) , Ĥ(Y n||∅)

(18)

Under some technical conditions, it can be shown Jiao et al. (2013) that the above method
converges to the true DI with O(n−1/2 log n) sample complexity, when L1 norm is used as
the distance metric.

3. More Results

As a more interesting case study, we applied the proposed structure learning method to
the PM data set, which contains hourly record of fine particulate matter (PM2.5) for 36
measured locations in north California. The geographic distribution of these locations is
shown in the left subfigure of Figure 1. And the constructed causal graph is shown in
the right subfigure. In this context, the subset selection problem corresponds to selecting
“pollution sources”. We solve OPT1 using greedy algorithm, together with the directed
information decomposition technique. Interestingly, we find out that the detected pollution
sources are mainly commercial, industrial or transportation centers, such as node 25 (San
Francisco) and 7 (Richmond in east bay). Moreover, most of the constructed causal edges
are consistent with climatic and geographical implications, such as the edge 29 → 24 in
the Monetary bay valley. These results show that the proposed causal structure learning
method constitutes a promising tool for data driven sensor placement and source detection.
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(a) 36 measured locations in north
California

Causal Graph for California Air Polution (PM2.5)
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(b) Constructed causal graph and selected pollution sources
(in red)

Figure 1: Case study: North California air pollution
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