S Appendix A: Block-Coordinate Frank-Wolfe (BCFW)— Practically
Faster-Convergent Variant

Algorithm 4 Block-Coordinate Frank Wolfe (improving upon Algorithm 2)

for s = 1to | F| do
1. Draw f € F uniformly at random.
2. Find a greedy direction 'U;l' satisfying (15).
3. A?’l =AU {'v}’}
4. Solve (25) with active set A;H.
5. Maintain wr ().
end for

The Block-Coordinate Frank-Wolfe (BCFW) (Algorithm 4) differs from Frank-Wolfe (Algorithm 2)
in that it updates dual variables oy of each factor sequentially, and the bases vy and active sets Ay
are maintained for each factor f separately. For each iteration of BCFW, we find a greedy direction
'vj{ in the same way (15) as AFW, but for one factor at a time. Then we add 'u}“ to an active set A

maintained for each factor. Since in BCFW we update one factor at a time, we can minimize the
following block active-set subproblem

. , Q
d.Af = argmin <Vaf£(a,)\t),d,4f> + 7f||dAfH2 (25)
aptda ealr!

where @) is an upper bound on the Hessian of variables in the active set (discussed in section
5.1). The active-set subproblem (25) can be solved via a simplex projection in time O(|.Ay|) [2].
Furthermore, by maintaining w () after solving each sub-problem (25), we can compute the
gradient

va.f(yf)/:: <wF7¢f(wf’yf)> _5f(yfv'gf)+pf Z m;r(y;) (26)
JEN(F), yi=lysls

fory; € Ay intime O(|Ay[nnz(¢;)), where py = —p, 67 = d; for f € U and py = p, 05 = 0
for f ¢ U. Note the size of active set | Ay| is bounded by the number of GDMM iterations, and in
practice |.A | converges to a constant much smaller than | )| for problems of large output domains.
Therefore, the bottleneck of the BCFW algorithm lies in the step (15), which as we show in Section
3.2, can be computed in time sublinear to |) f| via an efficient FMO.

5.1 Constant () in Problem (25)

The constant () is an upper bound on the maximum eigenvalue of the Hessian submatrix for vari-
ables in the active set Ay, that s, [| [P @F] 4, |+ ;e p s | [M] Mjf] 4, ||, where the notation [.] 4
denotes the sub-matrix formed by row and column indexes in A and ||.|| is the spectral norm of a
matrix.

For many types of factors used in practice, @)y = O(|.A¢|) and is easy to compute in the beginning.

In particular, for unigram factor, we have M;; = I and thus |[[M];M;f]4| = 1, and for higher-
order factor we have ||[MJ7}MJf]A|| = |AJ

As for the term || [<I>f<I>?]AH. In most of applications, ® is a |Vy| x (|Vs|d) block-diagonal matrix
that duplicates 1 x d feature vector ¢ ()" for [Vy| times, for which we have [|[®;®7]4] =
[+ (x )| Note in this case, the quadratic upper bound in (25) is tight for unigram factors.
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6 Appendix B: Convergence of GDMM

6.1 Proof of Theorem (1)

Recall that the Augmented Lagrangian £(c, A) is of the form
L(a,A) == G(a) + (A, Ma) + gHMaH?.

where M is ”the number of consistency constraints” by ’the number of variables” matrix and M o« =
0 encodes all constraints of the form

(81
Mjjoap — oy =[ M; —Ij}{ d } =0.

Q;
The function

1 T
Gla) =5 Y lwr(ar)? =3 8T,
FeF JEU
can be written in a compact form as

Gle) = ()| + 67

1 27)
= 5lo7al? + 67a
where @ is the “number of variables (in «)” by “number of parameters (in w)” design matrix.
Now let « be the ’primal variables” and denote
a(A) = {aja=argmin L(a,A)} (28)
with
a' = argmin|a — o,
aca(At)

and let M = {a | oy € AP Vf € F}. The dual objective of the augmented problem is
d(X) = min L(a, A
(A) = min L(e, A)

and

d* = max d(A)

is the optimal dual objective value.

Then we measure the sub-optimality of iterates {(ca, A*)}7_; given by GDMM in terms of dual
function difference
Al =d* —d(X)
and the primal function difference for a given dual iterate A':
t_ t+1 y¢ t
A, =L AY) —d(X)
yielded by a!*! obtained from one pass of FC-BCFW algorithm on . Then we have following
lemma.
Lemma 1 (Dual Progress). Each iteration of GDMM (Algorithm 1) has

Al — AT < —p(MaHT (Mah). (29)
Proof.
Al — ATt =t —d(AY) —dF = d(AT)
=L@ AT - L@, A
< L(a', A7) - L@, X)

(AL Mat)
= —n(Ma', Mat)

where the first inequality follows the optimality of &'~ for the function £(c, )\tfl) defined by
A""!, and the last equality follows the dual update in GDMM (13). O

11



On the other hand, the following lemma gives an expression on the primal progress that is indepen-
dent of the algorithm used for minimizing Augmented Lagrangian

Lemma 2 (Primal Progress). Each iteration of GDMM (Algorithm 1) has
t t—1 t+1 3t t oyt
A=A <L@ A = L(a', X
+ylMat|? —n(Ma', Ma")

Proof.
—1
A, =4,
=L@ X)) — L{a", X1 — (d(X') —d(A"T)
L@ AN = L@ X)) + Llaf, A = L@, AT 4+ (dATH = d(X))
<L(a™1, M) - L(al, A + gl Mad | — n(Ma', Mat)
where the last inequality uses Lemma 1 on d(A"™") — d(A") = AL — Al O

By combining results of Lemma 1 and 2, we can obtain a joint progress of the form
—1 -1
AL — AT+ A; — A;

(30)
< Lo A = L@ X)) + | Mo — Ma'||* —n| Ma'|®

Note the only positive term in (30) is the second one. To guarantee the descent of joint progress, we
upper bound the three terms in (30) with the following lemmas.

Lemma 3.
2
IMa! — Ma'|* < =(L(a!, X') — L(a', A")) 3D
p
Proof. Let
Lie, X) = h(e) + £ Ma?,
where

ha) = Gla) + (A, Ma) + Ipenm.

s Toert = 0if @ € M and Tnepq = oo otherwise. Note we have £(&f, ') = L(af, A") and
L(at, A" = L(a?, ") due to feasible iterates. Due to the optimality of &*, we have

0=0+M'Ma! € 0,L(at,N)
for some o € Oh(&'). And by the convexity of h(-) and the strong convexity of £|| - [|%, we have
h(a') — h(a') > (o, o — a')

and
Llarat|? = Lpal|? = (MTM&! of —&f) + £l Ma’ - Ma|?

Then the above two together imply
Lla!, ) = L& X) > FM(a) - M(a)?
which leads to our conclusion. O

Lemma 4 (Hong and Luo 2012). There is a constant T > 0 such that
Aa(N) < 7[Ma(N)]*. (32)
Sor any X and any minimizer () satisfying (28).

12



Proof. This is a lemma adapted from [5]. Since our objective (12) satisfies the assumptions
A(a)—A(e) and A(g) in [5]. Then Lemma 3.1 of [5] guarantees that, as long as ||[Vd(\)|| is bounded,
there is a constant 7 > 0 s.t.

Ag(A) < 7I[VAN[* = [[Ma(N)]*
for all A. Note our problem satisfies the condition of bounded gradient magnitude since

VA = IMaN] < [[MaM]: < [M]flaé]: < (max |V ])|F|
where the last inequality is because @& () lies in a simplex domain. [

The remaining thing is to show that one pass of AFW (Algorithm 2) or BGCD (Algorithm 3) suffices
to give a descent amount £(a !+, AY) — £(at, A") lower bounded by some constant multiple of the
primal sub-optimality £(a?, X*) — £(a!, A"). If it is true, then by selecting a small enough GDMM
step size 7, the RHS of (30) would be negative. For AFW (Algorithm 2), this can be achieved by
leveraging recent results from [8], which shows linear convergence of AFW, even for non-strongly
convex function of the form (34). We thus have the following lemma.

Lemma 5. The descent amount of Augmented Lagrangian function produced by one pass of AFW
(Algorithm 2) (and FMO parameter v) has

E[L(a™,A")] = L(a', X") < —me%(ﬁ(at, A =L@, Ah) (33)

where pipq is the generalized geometric strong convexity constant for function L(a) in domain M,
Q is the Lipschitz-continuous constant of V o L(ct) and m = | F|.

Proof. Note the Augmented Lagrangian is of the form
H(a) := L(a, \") = g(Ba) + (b, ) (34)

where

Bi= | 2|, bims4+MTN
=7 | b=

and function g({ w ) = L|wl|* + £||v||*> + const. is strongly convex with parameter p =

v

min(1, p). Without loss of generality, assume p < 1 and thus p = p. Since we are minimizing
the function subject to a convex, polyhedral domain M, by Theorem 10 of [8], we have the gener-
alized geometrical strong convexity constant pi 4 of the form

pia = p(PWidth(M))? (35)

where PWidth(M) > 0 is the pyramidal width of the simplex domain M and p is the general-
ized strong convexity constant of function (34) (defined by Lemma 9 of [8]). By definition of the
geometric strong convexity constant, we have

H(a') — H* < 9t (36)

from (23) in [8], where g; := (—V H(at), v¥ — v4), and v is the Frank-Wolfe direction
F . ¢
= H
v arg IQ%(V (a'),v),

v4 is the away direction
A

v? = arg max(VH(a'),v)
vEA?
Then let m = |F| be the number of factors. The FMO returns v}' = 'uff with probability at
least L, and suppose we set v}' to s whenever <VafH,v;f —a}) £ 0. We have (VH,dp) <
L(VH,v" — a') and thus

1 1
(L+ —)(VH, d')y < —(VH,v" —a') + —(VH, al —v?)

Nl
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and (VH,d') < —15g:. Therefore, for any Vv € [0, 1],

2mQ
ElH (oY — H(al) < —~-dt Q tHl_ )12 < _n Tt 2
[H (@) = Hia') < =978 + F ! — o) < -2 + Ty

(37)

where () is an upper bound on the spectral norm of Hessian ||V2H ()| and 2m is the square of the
radius of domain M. Now we need to consider two cases. When the greedy direction dr in (17) is

chosen, we have v* = min(m(gS , 1), which gives us
max

t+1 t 9i
E[H(a")] — H(ex )S—m- (38)

While in case d 4 in (17) is chosen, we have v* = min(ﬁ, Cy-). When v* = ¢,-, a basis

v~ is removed from the active set and this is called a drop step [8] and it is hard to show sufficient
descent in this case. Nevertheless, we can ignore those drop steps since the number of them is at
most half of the iterates. For a non-drop step ¢, with the error bound (36), we have

t+1 ¢ pm(H (') — H*)
BlH (")) - H(a') < === —

(39)
O

The above Lemma shows a significant progress made by the AFW algorithm. In the following,
we provide a similar Lemma for minimizing AL subproblem with the Block-Greedy Coordinate
Descent (BGCD) (Algorithm 3). Note that for problem of the form (34), the optimal solution is
profiled by a polyhedral set S := {a | Ba = t*, b’ a = s*, a € M}. Therefore, let & :=
IIs(cx). We can bound the distance of any feasible point & € M to its projection IIs(a) on S
using the Hoffman’s inequality [4]

n

0= las —al2)? <6 (IBa—t |2+ b a—s7|2)  @0)

i=1 feF;

e —af

where 6, is a constant depending on the set S. Then we can establish the following Lemma using
the error bound (40).

Lemma 6. The descent amount of Augmented Lagrangian function given by one pass of BGCD
(Algorithm 3) with FMO multiplicative-approximation parameter v has

1 t t _1 t — t
E[L(a! AN — L(at, A < m(ﬁ(at, A —£(at, Ah) 1)

where
1

max{166; AL, 20, (1 +4L2)}

p1 =

is the generalized strong convexity constant for function L(cx) with feasible domain M, AL° is
a bound on L(a’) — L(a"), L, is the local Lipschitz-continuous constant of g(.) and Qmax =

maxser Q.

Proof. For each iteration s of Algorithm 3, let ¢ be the chosen sample and suppose that out of v
partitions the one containing greedy factor satisfying (18) is chosen. We have

,C(Oéerl) o ,C(Oés) S min <vaf* £7df*> + Qmax
o, td e enlVr] 2

g1

2 (42)

. Qmax
=  min  + Z (Va,L,df) + Z gl

s |y 2
aj+di €A e oE feF;

where the second equality follows from the optimality of f* w.r.t. (18). Then consider i being
uniformly sampled from [n], and consider the probability that the partition containing greedy factor
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f* is chosen, the expected descent amount is

BlL(a™ )] = L(e)

1 Qmax - 2
<D i St - @S5 )
o\ ejrdseal fox 2 S\E
1 Q n 2
< — min _ L(a® +d) — L(of) + <2 ( |d ||)
W\ agt+dgenls 2 ; fEZJ-'i ! “43)
<1 Lla® + B(a® — a®)) — L(a®) + Qumax I i( > e — o ||>2
— nv \ gelo,1] 2 i=1 \feF; d d

<L < min A(£(a") - £lac)) + Do ge asnal)

ny \peo,1] 2

where &® = IIs(a®) is the projection of &° to the optimal solution set S. The second and last in-
equality is due to convexity, and the third inequality is due to a confinement of optimization domain.
Then we discuss two cases in the following.

Case 1: 42| Bo® — t*|2 < (b" o® — s%)2.
In this case, by the hoffman inequality (40), we have

lo® — a3, < (| Ba® — | + (b"a® — 57)?)

1 T 2
< - s _ *
< (g + D" =) (a4
< 260, (b — 5%)2,
since ;1> < 1. Then
g

b7 a® — 5| > 2Ly|| Ba® — || > 2|g(Ba®) — g(t")]

by the definition of Lipschitz constant L,. Note that bl — s*is non-negative since otherwise we
have contradiction £(a®) — £L* = g(Ba®) — g(t*) + (b" a® — s*) < |g(Ba®) — g(t*)| — |bT a® —
s < f%|bTa5 — s*| < 0. Therefore, we have
L(a®) = L* = g(Ba®) — g(t") + (b" o’ — 57)
> —|g(Ba®) — g(t")| + (b"a® — 57) (45)
1
> g(bTas —5%).
Combining (43), (44) and (45), we have
E[L(o"™)] - L(e?)
1 . ﬁ T 291@111&)(52 T 2
< —Z(b S ok o wmaxl” (p S ok
_ny<5len[%)r,11] 2( « )+ 2 (b e s")
[ —1/(1601Quaxnr) , 1/(401Qumax (b’ a® — s*)) < 1
- —ﬁ(bTas —-s*) , ow.
Furthermore, we have

_ 1 < _ 1
16Qmax91n7/ - 16Qmax91nu(£0 — ﬁ*)

where £° = £(a’), and

(L(a®) = L7) (46)

1 1 X "
—m(bTaS — ") < —677/(/5(0‘5) - L) 47
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since L(a®) — L* < [g(Ba®) — g(t*)| + b a® — s* < 3(b" a® — s*). Since the bound (46) is
much smaller than (47). For Case 1, we obtain

ElL(a*t)] — 25 < —— L (£(a®) — £ 48
[L(a®)] S O (L(a®) ) (48)
where
1
S — 49
M= 160020 — ) )
Case 2: 42| Bo® — t*|2 > (b" o® — s¥)2.
In this case, we have
la® —a®||5, <61 (144L)) [|Ba® — t*|?, (50)

and by strong convexity of g(.),
L(a®) =L > b (a® —a*) + Vgt B(a® —a®) + g”Bas —t*||%

Now let h(cx) be a function that takes value O when « is feasible and takes value co otherwise.
Adding inequality 0 = h(a®) — h(a®) > (o, a® — &®) to the above gives

La®) —L* >

NI

|Ba® — t*|]? (51)

because o* + b+ Vg(t*)'B = 0* + VL(a®) = 0 for some o* € Oh(a®). Combining (43), (50),
and (51), we obtain

E[L(a*™)] — L(a®)
1 . . oo 011+ 4L2)Qmax B . .
P (ﬂrgl[g){ll] —B(L(e”) = L") + ) (L(a®) - L )> (52)

p s *
= (1 +4L2)Qmax (L(a”) = £7)

IN

Combining results of Case 1 (48) and Case 2 (52), and taking expectation on both sides w.r.t. the
history, we have

E[L(a*th)] - L(a®) < -~ (L(a®) - L7). (53)

T Qmaxnv

where

w1 := min{ L p }.
160(ALY)" 61(1 +4L2)

Taking summation of (53) over iterates s = 1...n, we have

n

ElL(@*)] - L(a)) <~ (3" L(a®) — £7)

T Qmaxnr (54)
H1 t+1 *
< - L —L").
Rearranging terms gives the conclusion. O

Now we provide proof of Theorem 1 as follows.

Proof. Let k = 4(1 + v)mQ/pam. By lemma 3, 5, 4 and (30), we have

Ay — AT+ E[A) - AT
(53

_ 2n _ Ui
toyzty t oyt 41 toyty toytyy At
o (Bl X = £(@ N9) + ZH(E(l X) — £(al X)) — AL
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Then by choosing 7 <
By choosing n <

T Jm), we have guaranteed descent on A, + A, for each GDMM iteration.

we have

(AG+ EIAYD) = (AgH + A7

4(1+n)

—1 B n
< toyty t ) — TAt
_72(1+n) (E(a,)\) E(a,/\)) —Ad
1
< —min | — At Al
< — min (2(1 T ) ) ( + )
which then leads to the conclusion. O

The proof for Theorem 2 follows the same line of above reasoning with step (55) replaced by appli-
cation of Lemma 6 instead of Lemma 5.

7 Appendix C: Implementation details of FMO

7.1 C-1: Indicator Factor

Here we assume 6(y;, §;) is constant for Vy; # g; as in the case of Hamming error. Then we find
maximizers of the 4 cases as following

(i) Visit y; in descending order of v(.) to find the first y ;:m;(y;) = 0, m;z(y;) = 0.
(i) Yy;:m,r(y;) # 0, visit y; in descending order of v(.) to find the first y;:m; ¢ (y;) =
(iil) Vy;:map(y;) # 0, visit y; in descending order of v(.) to find the first y;:m;(y;) =
(iv) Evaluate (26) for V(y;, y;):mir(yi) # 0, m;z(y,) # 0.

Then y7 is returned as label (9 f) of maximum gradient (26) among the 4 cases. One can verify
the above procedure considers all labels that have potential to be y* 7 The complexities for (i1)-
(iv) are bounded by O(nnz(m;s)nnz(m;y)), where nnz(m;s) < \A§| When BCFW adopts
sampling without replacement, we have |fl}\ < t. In practice, as ¢ keeps increasing, |/Al’}| converges
to a constant that depends on the optimal nnz(a}). Note nnz(a}) is equivalent to the number of
labels y  that attains the maximum of hinge loss (8), which is small in general as long as there are
few labels with larger responses than the others.

Define Yyz = {ys|mis(yi) # 0 V mys(y;) # 0} as the set of labels with messages from one

of the variables involved, and V;,. = {yf\yf € Vnz A v(yf,acf) > v(y’f,acf),Vy} ¢ Vnz}
as the subset being inconsistently ranked at the top in the multimap. The complexity of step (i) is
O(|Yrnel), where

|Vine| < max(|Vi||AL, [25]]Al]), (56)
which is sublinear to the size of factor domain || = |);]|Y;|. Although the bound (56) is already
sublinear to |Jif |, it is a very loose bound. In our experiments, we observed the average number of
elements being visited at stage (i) is no more than 5 for problems of |Y¢| up to 107, presumably
because the inconsistency between factors is small in real applications.

7.2 C-2: Binary-Variable Interaction Factor

Similar to Appendix C-1, we’re trying to find active factors with largest gradient. Here is the proce-
dure.

(i) Visit y; in descending order of v(.) to find the first y ;:i ¢ A, j & A.
(ii) Vj:j € A, visit ¢ in descending order of v(.) to find the first i:¢i & A.
(iii) Vi:i ¢ A, visit j in descending order of v(.) to find the first j:j & A.
(iv) Compute gradient for V(i, j):i € A, j € A.

A similar reasoning as C-1 applies here for complexity analysis.
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