Supplementary information: Automated scalable
segmentation of neurons from multispectral images

Supplementary Text

Parameter choices and feature representations

Similar results are obtained around a neighborhood of these suggested values. Unless otherwise
noted, the same parameter values were used for all three reported experiments: two real hippocampal
datasets acquired by different labs and under different conditions, and a set of simulated retinal
datasets with different parameters. The subsection of the main text that refers to these parameters are
indicated in square brackets.

Color features: For every color triplet, we obtain the L-u-v representation (Schanda, |2007), and
calculate the top C' principal components of the concatenated L-u-v representations, where C' is the
number of color channels. If the data has more than 3 channels, for affinity calculations between
neighboring supervoxels, we normalize the colors before the L-u-v transformation. [Dimensionality
reduction]

Supervoxel reliability: ¢, = 50, t; = 0.5 (before L-u-v transformation) [Clustering the supervoxel
set]

Edge set parameters: ¢, = /3 (26-neighborhood for isotropic data), ¢, = 20 x /C/4 (by inspect-
ing typical color radius within individual neurons and manual adjustment), ki, = 5. [Clustering the
supervoxel set]

Edge strength decay: oo = 2 x 1073 (by inspecting typical color radius and manual adjustment)
[Clustering the supervoxel set]

Flooding parameter for watershed: f = 0.01 with 26-neighborhood. (This affects computation
time more than quality because subdividing via the maximum color perimeter can catch inhomoge-
neous supervoxels.) [Dimensionality reduction]

Maximum color perimeter for supervoxel homogeneity: (Supp. Algo. 1) p = 0.5 for each channel
when the intensity is in [0, 1] (by inspecting data — see Fig. 1). [Dimensionality reduction]

Image thresholding for warping: 6 = 0.1 x y/C'/4 before L-u-v transformation (for the expansion
microscopy data, 8 = 0.2) [Dimensionality reduction]

Noise standard deviation for denoising: o = 1/8 when the intensity is in [0, 1] for individual
channels. [Denoising the image stack]

Cluster (neuron) counts: For the dataset in Fig. 5, the mixture model (Kurihara et al., [2007)
suggested 52 clusters based on the colors of the supervoxels. The same routine returned 29 clusters
when run on % of the supervoxels. We chose K = 34 for a compact presentation. For the dataset in

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Supp. Fig. 8, we used K = 19, which is what the mixture model suggested based on the colors of the
supervoxels. [Clustering the supervoxel set]

Spatial distance calculation

The spatial distance between two supervoxels is calculated as min,ev, uev, D(v, u), where V; and
V5 are the voxel sets of the two supervoxels and D(v, u) is the Euclidean distance between voxels v
and u. Only the boundary voxels need to be considered, and extremal values in each coordinate are
used to identify many supervoxel pairs farther than €5 without exact calculation over the voxels. Only
the spatial distances between nearby supervoxels need to be computed.

Color-based subdivision of supervoxels

Let the n x C matrix V; denote the colors of all n voxels of the supervoxel s;. Supp. Algo. 1 divides
the supervoxels into smaller supervoxels until the desired homogeneity is achieved.

Supplementary Algorithm 1 Subdivide supervoxels

Require: S = {s;}; (set of supervoxels), {V; }i, pmax (threshold)
1: Shew = {}
2: for s; € Sdo

3: p = maxcec max(Vi(:, ¢)) — min(Vi(:, ¢))

4: if p < pmax then

5: Add s; t0 Shew

6: else

7: Divide the voxels into 2 sets 7% and 7% based on color (e.g., using k-means, hierarchical clustering,

etc.)

8: Add the connected components of 77 and 73 to .S

9: end if
10: Remove s; from S

11: end for

12: return Speyw

Simulation data

RGC arbors stratify in the retina, distributing their dendritic length within a slab. To achieve denser
simulations, we did not shift the neurons much in z (The density numbers calculated in Fig. 4 are
obtained by considering the [35um, 50um] region in Supp. Fig. 3.) We obtain simulated stacks by
varying the expression density (|S| € {5, 9, 13}), the channel count (C' € {3, 4, 5}), the neuron color
consistency (o7 € {0.01,0.02,0.03,0.04,0.1}), and the background noise (o5 € {0.05,0.1}).

The random walk on a connected component assigns a color to a voxel by (i) calculating the mean
color of the neighboring voxels that were previously visited, and (ii) adding the random noise step to
this mean value.

Adjusted Rand index

We quantify the segmentation quality of the voxels of the simulated dataset using the adjusted Rand
index. The Rand index is a measure of the element pairs on which two partitions P and P of the same
set with NV elements agree: R(P,P) =1 — (];) > icj |0y ly) — 6(li,)|, where ; (I;) denotes
the label of element 7 according to P (P), and ¢ is the indicator function. (6(l;,1;) = 1if l; =1},
d(1;,1;) = 0 otherwise.) The adjusted Rand index corrects for chance, has a more sensitive dynamic

range, and is defined as A = (R — E)/(M — E), where E is the expected value of the index and
M 1is the maximum value of the index, based on the number of elements in individual segments. Its
maximum value is 1 (perfect agreement), and the expected value of the index is 0 for random clusters.

For the foreground based calculation, only the voxels that are assigned to the foreground after the
watershed transform and warping are considered. For the image based calculation, all voxels are
considered and the background is treated as a separate object.

Merging supervoxels

We apply local heuristics and spatio-color constraints iteratively to further reduce the data size and
demix overlapping neurons in voxel space (Fig. 2): (i) supervoxels occupied by more than one neuron
are detected and demixed by monitoring the improvement in non-negative least squares fit quality.
(Supp. Algo 2.) (ii) neighboring supervoxels with similar colors and orientations, supervoxels with
single spatial neighbors, and supervoxels all of whose neighbors have similar colors are merged. (iii)
supervoxels that are spatial neighbors and that are assigned to the same cluster by an overclustering
color k-means routine are merged. We implement (iii) to run in parallel over subgraphs of the full
graph for scalability. A rough estimate of the number of neurons required by the oversegmentation
routine is obtained by a Dirichlet process mixture model (Kurihara et al., [2007). The k-means
algorithm uses a multiple of this rough estimate. Note that only a rough estimate (Miller and Harrison,
2013)) is needed because of oversegmentation (Supp Algo. 3). This algorithm can be implemented to
run in parallel over subgraphs of the full dataset.

Supplementary Algorithm 2 Demixing of supervoxels

Require: S = {s;};, V (matrix of normalized supervoxel colors), A (spatial affinity matrix), M (maximum
size), A (maximum color distance), f (improvement factor)

1: for s; € S do
2 if s; has less than M voxels then
3 Retain the neighbors that have neighbors with color distance less than A
4 if s; has more than one spatial neighbors then
S: if the minimum color distance between s; and its neighbors is larger than A then
6 Initialize 7 = ||V (4, :)||3, P = (0, 0)
7 for each neighbor pair (i1, i2) do
8 t = ming ||V ([i1, 2],)z — V (4, :)||3 subject to > 0
9: if t < r then
10: T:t,P: (il,iz)
11: end if
12: end for
13: ifr < (A/f)? then
14: Assign the voxels of s; to both of sp(1) and sp(2)
15: Update the spatial affinities of sp(1) and sp(2) in A accordingly
16: Remove s; from S, V, and A
17: end if
18: end if
19: end if
20: end if
21: end for

22: return S, V, A

Supplementary Algorithm 3 Spatio-color merging of supervoxels

Require: S = {s;}, (set of supervoxels) K (rough estimate of the number of clusters), k (oversegmentation
factor)

¢ Snew = {}

: Divide S into kK clusters based on the colors of the supervoxels, using k-means

s fork; €{1,...,kK} do

Find the connected components within the cluster «1

Merge the supervoxels within the connected components of that cluster, and add to Shew

: end for

: return Spew

Supplementary Figure 1: Top: Maximum intensity projection of a raw Brainbow image. Bottom left: Fore-
ground after watershed transform. Arrows point to six different thin dendritic pieces (“bridges”) that were
missed. Bottom right: Foreground after warping correction. Scale bar, 30um

Supplementary Figure 2: The z (top left), = (top right), and y (bottom left) maximum intensity projections
of the raw simulation image shown in Fig. 3. Adjusted Rand index of the segmentation is 0.80.

0.35¢

0.25f

0.15¢

0.1r

ratio of occupied voxels

0.05¢

0 10 20 30 40 50
distance from the top of the stack (i m)

Supplementary Figure 3: The z-profile of the ground truth simulation image with 13 neurons, showing
that a region is preferentially occupied. The range [0um, 50m] corresponds to slices 1 to 100 so that
most of the neuronal arbors are between slices 70 and 100.

-
-
m . _ _
Supplementary Figure 4: A 60 x 60 patch from a single slice (slice 90) of the simulation image shown in
Fig. 3. Top: raw. Bottom: denoised. Physical size: 15um x 15um

Supplementary Figure 5: Aggressive merging generates supervoxels with inconsistent colors. Top: Cluster 4
in the bottom part of Fig. 3 of the main text. Bottom: Cluster 9 in the bottom part of Fig. 3 of the main text.
Close inspection reveals that some of the multi-colored regions comprise single supervoxels.

Supplementary Figure 6: Segmentation of a simulated Brainbow image stack. Adjusted Rand index of
the foreground is 0.87. Pseudo-color representation of 5-channel data with more conservative supervoxel
merging compared to Fig. 3 of the main text. Maximum intensity projection of the segmentation. The top-left
corner shows the whole image stack. All other panels show the maximum intensity projections of the supervoxels
assigned to a single cluster (inferred neuron).

075 0.8 0.74
0.74 /// 0.78) —3en. 0735
073 076 ——4ch) 073
é ——5ch,|
072 0.74 0.725
2o 072 072
o
© 07 0.7 0.715
3
§ 0.69 0.68| 0.71
0.68 ——3ch) 0.66 0.705
067 ——4ch 0.64 07
——5ch.
%06 008 01 o012 014 016 018°°% 0.02 0.04 0.06 0,08 01 0695 .
expression density (ratio of occupied voxels) step size (o) =~ range per channel: [0, 1] channel count

Supplementary Figure 7: Segmentation accuracy of simulated data a, Expression density (ratio of voxels
occupied by at least one neuron) vs. ARI b, o1 vs. ARI. ¢, Channel count vs. ARI for a 9-neuron simulation,
where K € [6,12]. AR is calculated for all voxels.

Supplementary Figure 8: Segmentation of a 4x linearly expanded Brainbow stack — best viewed digitally.
The physical size of the stack is 90u x 76 x 5u. The top-left corner shows the maximum intensity projection
of the whole image stack, all other panels show the maximum intensity projections of the supervoxels assigned
to a single cluster (inferred neuron).

Parallelization and complexity

The denoising step (collaborative filtering) parallelizes over substacks (voxels) because the extra
dimension is formed by local patches.

The watershed algorithm can also be parallelized over substacks. Moreover, it has a linear run-time
with respect to the input size (Main Text).

Similarly, warping (shrinking) can be applied on those substacks. Querying the boundary voxels for
flipping at each stage, and ordering them by brightness result in a fast implementation. It has a linear
run-time with respect to the input size. (Simple voxel query can be performed over 3 x 3 x 3 patches
— See references in main text.)

10

Supervoxel merging can be performed in parallel on individual substacks. Merging subroutines use
local rules to make local merges except for the spatio-color merging step, which uses the k-means
algorithm.

Similarity calculations require extracting spatial and color neighborhoods of the supervoxels. Spatial
distance calculation is discussed above. These value are precalculated. As mentioned in the main
text, k-d tree structures are used to retrieve the color neighborhoods efficiently.

Finally, clustering is performed by the normalized cuts algorithm. We use an implicitly restarted
block Lanczos method for computing the first few eigenvectors (Baglama et al., 2003)).

References

Baglama, J., Calvetti, D., and Reichel, L. (2003). Algorithm 827: irbleigs: A matlab program for computing a
few eigenpairs of a large sparse hermitian matrix. ACM Transactions on Mathematical Software (TOMS),
29(3):337-348.

Kurihara, K., Welling, M., and Teh, Y. W. (2007). Collapsed variational dirichlet process mixture models. In
IJCAI, volume 7, pages 2796-2801.

Miller, J. W. and Harrison, M. T. (2013). A simple example of dirichlet process mixture inconsistency for the
number of components. In Advances in neural information processing systems, pages 199-206.

Schanda, J. (2007). Colorimetry: understanding the CIE system. John Wiley & Sons.

11

