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Abstract

We present a new boosting algorithm for the key scenario of binary classification
with abstention where the algorithm can abstain from predicting the label of a point,
at the price of a fixed cost. At each round, our algorithm selects a pair of functions,
a base predictor and a base abstention function. We define convex upper bounds
for the natural loss function associated to this problem, which we prove to be
calibrated with respect to the Bayes solution. Our algorithm benefits from general
margin-based learning guarantees which we derive for ensembles of pairs of base
predictor and abstention functions, in terms of the Rademacher complexities of the
corresponding function classes. We give convergence guarantees for our algorithm
along with a linear-time weak-learning algorithm for abstention stumps. We also
report the results of several experiments suggesting that our algorithm provides a
significant improvement in practice over two confidence-based algorithms.

1 Introduction

Classification with abstention is a key learning scenario where the algorithm can abstain from making
a prediction, at the price of incurring a fixed cost. This is the natural scenario in a variety of common
and important applications. An example is spoken-dialog applications where the system can redirect
a call to an operator to avoid the cost of incorrectly assigning a category to a spoken utterance and
misguiding the dialog manager. This requires the availability of an operator, which incurs a fixed and
predefined price. Other examples arise in the design of a search engine or an information extraction
system, where, rather than taking the risk of displaying an irrelevant document, the system can resort
to the help of a more sophisticated, but more time-consuming classifier. More generally, this learning
scenario arises in a wide range of applications including health, bioinformatics, astronomical event
detection, active learning, and many others, where abstention is an acceptable option with some cost.
Classification with abstention is thus a highly relevant problem.

The standard approach for tackling this problem is via confidence-based abstention: a real-valued
function h is learned for the classification problem and the points x for which its magnitude |h(x)] is
smaller than some threshold  are rejected. Bartlett and Wegkamp [1] gave a theoretical analysis of
this approach based on consistency. They introduced a discontinuous loss function taking into account
the cost for rejection, upper-bounded that loss by a convex and continuous Double Hinge Loss (DHL)
surrogate, and derived an algorithm based on that convex surrogate loss. Their work inspired a series
of follow-up papers that developed both the theory and practice behind confidence-based abstention
[32, 15, 31]. Further related works can be found in Appendix A.

In this paper, we present a solution to the problem of classification with abstention that radically
departs from the confidence-based approach. We introduce a general model where a pair (h, )
for a classifier h and rejection function r are learned simultaneously. Under this novel framework,
we present a Boosting-style algorithm with Abstention, BA, that learns accurately the classifier
and abstention functions. Note that the terminology of “boosting with abstention” was used by
Schapire and Singer [26] to refer to a scenario where a base classifier is allowed to abstain, but
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Figure 1: The best predictor h is defined by the threshold §: h(z) = —z + 6. For ¢ < 3, the
region defined by X < 7 should be rejected. But the corresponding abstention function r defined by

r(x) = x — n cannot be defined as |h(x)| < 7 for any vy > 0.

where the boosting algorithm itself has to commit to a prediction. This is therefore distinct from the
scenario of classification with abstention studied here. Nevertheless, we will introduce and examine
a confidence-based Two-Step Boosting algorithm, the TSB algorithm, that consists of first training
Adaboost and next searching for the best confidence-based abstention threshold.

The paper is organized as follows. Section 2 describes our general abstention model which consists
of learning a pair (h, ) simultaneously and compares it with confidence-based models. Section 3.2
presents a series of theoretical results for the problem of learning convex ensembles for classification
with abstention, including the introduction of calibrated convex surrogate losses and general data-
dependent learning guarantees. In Section 4, we use these learning bounds to design a regularized
boosting algorithm. We further prove the convergence of the algorithm and present a linear-time
weak-learning algorithm for a natural family of abstention stumps. Finally, in Section 5, we report
several experimental results comparing the BA algorithm with the DHL and the TSB algorithms.

2 Preliminaries

In this section, we first introduce a general model for learning with abstention [7] and then compare
it with confidence-based models.

2.1 General abstention model

We assume as in standard supervised learning that the training and test points are drawn i.i.d. according
to some fixed but unknown distribution D over X x {—1, +1}. We consider the learning scenario of
binary classification with abstention. Given an instance x € X, the learner has the option of abstaining
from making a prediction for z at the price of incurring a non-negative loss ¢(x), or otherwise making
a prediction h(x) using a predictor i and incurring the standard zero-one loss 1,,(;)<o Where the
true label is y. Since a random guess achieves an expected cost of at most %, rejection only makes

sense for c(z) < 1.

We will model the learner by a pair (h,r) where the function 7: X — R determines the points
x € X to be rejected according to r(x) < 0 and where the hypothesis h: X — R predicts labels for
non-rejected points via its sign. Extending the loss function considered in Bartlett and Wegkamp [1],
the abstention loss for a pair (h, ) is defined as as follows for any (z,y) € X x {—1,+1}:

L(h,r,2,y) = Lyn@)<olr@)>0 + (@) 1r@)<o- )

The abstention cost ¢(z) is assumed known to the learner. In the following, we assume that c is a
constant function, but part of our analysis is applicable to the more general case.

We denote by H and R two families of functions mapping X to R and we assume the labeled sample

S = ((z1,y1)s- - (Tm, Ym)) is drawn i.i.d. from D™. The learning problem consists of determining
a pair (h,r) € H x R that admits a small expected abstention loss R(h, ), defined as follows:
R(ha T) = (x ;:jEND [lyh(w)golr(x)>0 + Clr(z)ﬁO] . (2

Similarly, we define the empirical loss of a pair (h,r) € H x R over the sample .S by: ﬁg(h, r)=
E(z,p)~s [1yh(z)<0lr(z)>0 + Cly(z)<0], Where (z,y) ~ S indicates that (x,y) is drawn according
to the empirical distribution defined by .S.

2.2 Confidence-based abstention model

Confidence-based models are a special case of the general model for learning with rejection presented
in Section 2.1 corresponding to the pair (h(z),r(z)) = (h(z),|h(x)| — ), where ~ is a parameter



that changes the threshold of rejection. This specific choice was based on consistency results
shown in [1]. In particular, the Bayes solution (h*,r*) of the learning problem, that is where the
distribution D is known, is given by 2*(z) = n(z) — 3 and 7*(z) = |h*(z)| — (3 — ¢) where
n(x) =P[Y = +1|z] for any x € X, but note that this is not a unique solution. The form of ~*(z)
follows by a similar reasoning as for the standard binary classification problem. It is straightforward
to see that the optimal rejection function 7* is non-positive, meaning a point is rejected, if and only if
min{n(z),1 — n(z)} > c. Equivalently, the following holds: max{n(z) — 3,1 —n(z)} < 1 —cif
and only if [n(z) — 2| < 1 — ¢ and using the definition of i*, we recover the optimal r*. In light
of the Bayes solution, the specific choice of the abstention function r is natural; however, requiring
the abstention function r to be defined as r(z) = |h(z)| — ~, for some h € K, is in general too
restrictive when predictors are selected out of a limited subset J{ of all measurable functions over X.
Consider the example shown in Figure 1 where J{ is a family of linear functions. For this simple case,
the optimal abstention region cannot be attained as a function of the best predictor ~ while it can
be achieved by allowing to learn a pair (h,r). Thus, the general model for learning with abstention
analyzed in Section 2.1 is both more flexible and more general.

3 Theoretical analysis

This section presents a theoretical analysis of the problem of learning convex ensembles for classifica-
tion with abstention. We first introduce general convex surrogate functions for the abstention loss and
prove a necessary and sufficient condition based on their parameters for them to be calibrated. Next
we define the ensemble family we consider and prove general data-dependent learning guarantees for
it based on the Rademacher complexities of the base predictor and base rejector sets.

3.1 Convex surrogates

We introduce two types of convex surrogate functions for the abstention loss.  Ob-
serve that the abstention loss L(h,r,x,y) can be equivalently expressed as L(h,r,z,y) =
max (1,5 (2)<0l—r(2)<0, € lr(z)<0). In view of that, since for any f,¢g € R, max(f,g) =

Trotlo=fl > 14 the following inequalities hold for a > 0 and b > 0:

L(h7 ra, y) = mnax (1yh(x)<0]-—r(a;)<0a c 17'(x)<0)
< max (1max (yh(z),—r(z))<0,C 1 (z)<0)

S max (1 yh(T) r(x) <0’ Cc 1T($)<O)

= max (1q [yh(z)— 7(¢)]<0701b,(1)<0)

< max (1 (a [r(2) — yh(2)]), c s — br(x)) ),

where u — ®1(—u) and u — Po(—u) are two non-increasing convex functions upper-bounding
u — 1,<o over R. Let Ly be the convex surrogate defined by the last inequality above:

Lyi(h,r,z,y) = max <<I>1 (alr(z) — yh(z)]), c P2 (—bT(CU))) ) 3)

Since Ly is not differentiable everywhere, we upper-bound the convex surrogate Ly as follows:

max (1, [yh(z)—r(2))<0s € Lor(z)<o) < P1(a[r(z) —yh(z)]) + cP2(—br(x)). Similarly, we let
Lgp denote this convex surrogate:

Lsg(h,r,x,y) = @4 (a [r(z) — yh(x)}) 4+ c Dy (fb 7’(:17)) 4)

Figure 2 shows the plots of the convex surrogates Lymp and Lgp as well as that of the abstention loss.

Let (h},r}) denote the pair that attains the minimum of the expected loss E, ,, (Lsg(h, 7, x,y)) over
all measurable functions for @1 (u) = ®5(u) = exp( ). In Appendix F, we show that with n(z) =

P(Y =+1|X =), the pair (h},r}) where h} = 5. log (1) and 1} = 5 log ( T )

makes Lgp a calibrated loss, meaning that the sign of the (h*L, ) that minimizes the expected
surrogate loss matches the sign of the Bayes classifier (h*, 7*). More precisely, the following holds.
Theorem 1 (Calibration of convex surrogate). For a > 0and b > 0, the inf (j, .y E(g ) [L(h, 7, 2,9)]
is attained at (h,r}) such that sign(h*) = sign(h}) and sign(r*) = sign(r}) if and only if

b/a =2/(1-¢)/c




Figure 2: The left figure is a plot of the abstention loss. The middle figure is a plot of the surrogate
function Lyp while the right figure is a plot of the surrogate loss Lgg both for ¢ = 0.45.

The theorem shows that the classification and rejection solution obtained by minimizing the surrogate
loss for that choice of (a, b) coincides with the one obtained using the original loss. In the following,

we make the explicit choice of @ = 1 and b = 21/(1 — ¢)/c for the loss Lgp to be calibrated.

3.2 Learning guarantees for ensembles in classification with abstention

In the standard scenario of classification, it is often easy to come up with simple base classifiers that
may abstain. As an example, a simple rule could classify a message as spam based on the presence
of some word, as ham in the presence of some other word, and just abstain in the absence of both,
as in the boosting with abstention algorithm by Schapire and Singer [26]. Our objective is to learn
ensembles of such base hypotheses to create accurate solutions for classification with abstention.
Our ensemble functions are based on the framework described in Section 2.1. Let  and R be two
families of functions mapping X to [—1,1]. The ensemble family JF that we consider is then the
convex hull of H x R:

T T T
F = {(Zathmzatn) T>1,04 > O’Zat =1,h €X,r € J{}. (5)
=1 t=1 =1

Thus, (h,r) € F abstains on input z € X when r(x) < 0 and predicts the label sign(h(x)) otherwise.

Letu — ®1(—u) and u — Po(—u) be two strictly decreasing differentiable convex function upper-
bounding © — 1,<o over R. For calibration constants a, b > 0, and cost ¢ > 0, we assume that there
exist  and v such that @1 (au) < 1 and ¢ ®5(v) < 1, otherwise the surrogate would not be useful.
Let &' and ®, ! be the inverse functions, which always exist since ®; and ® are strictly monotone.
We will use the following definitions: Cp, = 2a®|(®;'(1)) and Cg, = 2cb @4 (®5'(1/c)).
Observe that for ®; (u) = ®o(u) = exp(u), we simply have Cg, = 2a and Cg, = 2b.

Theorem 2. Let H and R be two families of functions mapping X to R. Assume N > 1. Then, for
any § > 0, with probability at least 1 — § over the draw of a sample S of size m from D, the following
holds for all (h,r) € F:

log1/4

R(ha I‘) < ( ]}% S[LMB(ha r,z, y)] =+ O<I>1%m(j{) + (O¢‘1 + Cq)’z)%m(fR) + om .
T,y)~

The proof is given in Appendix C. The theorem gives effective learning guarantees for ensemble
pairs (h,r) € F when the base predictor and abstention functions admit favorable Rademacher
complexities. In earlier work [7], we present a learning bound for a different type of surrogate losses
which can also be extended to hold for ensembles.

Next, we derive margin-based guarantees in the case where ®1(u) = ®2(u) = exp(u). For any
p > 0, the margin-losses associated to Lyp and Lgp are denoted by L{; and L{y and defined for all
(h,r) € Fand (z,y) € X x {—1,+1} by

Lyg(h,r,2,y) = Las(bh/p,v/p,x,y)  and  Lgg(h,r,z,y) = Lss(h/p,v/p, ,y).
Theorem 2 applied to this margin-based loss results in the following corollary.

Corollary 3. Assume N > 1 and fix p > 0. Then, for any § > 0, with probability at least 1 — 6 over
the draw of an i.i.d. sample S of size m from D, the following holds for all f € F:

Rihr) < E (Kb g)]+ oo, 00 + 20 ) 4 \/@.

(@,y)~S P P



BA(S = ((x1,91), -+ (@i, Ym)))
1 fori <+ 1tomdo
2 D1(i,1) + 505 D1(4,2) « 5
3 fort«+ 1toT do
4 Zl,t “— Z;ﬂ;l Dt(@l);ZQ’t — Z'Zil Dt(l,2)
5 k argminje[l,N] 2Z1,t€t,j + Zl,tFj,l — 2\/ C(l — C)Z27t7j72 > Direction
6 7 + Zl,t(€t,k:+ T);’l) —2\/6(1—C)Z27tm?’2
7 if (Z1 — Z)e =1+ — Zem =1k < 7223 then
8 M —0p—1 D> Step 4
9

2
else 7; < log {— % + \/{2“21?2} + Z},t _ 1} > Step

10 Qg < 01 + ek
1 T Yool g
12 hy « Zjvzl ajh;
13 Zir = 2oy (re(wi) — yiby () + ‘I’/(—Q\/grt(%))
14 for i < 1tom do
’ 1—c
. @' (ry(z;)—yihe(2:) . ¢ (_2 g rt(mi))
15 Dt+1(zv 1) — ( Zt+y1 ( ) ;Dt+1(l’ 2) & Ztil

16 (h,x) + Y1 ar;(hj,r))
17 return (h, rg

Figure 3: Pseudocode of the BA algorithm for both the exponential loss with @1 (u) = ®o(u) =
exp(u) as well as for the logistic loss with @1 (u) = ®o(u) = logy(1 + e*). The parameters include
the cost of rejection ¢ and 8 determining the strength of the the c-constraint for the L1 regularization.
The definition of the weighted errors €, ; as well as the expected rejections, 7y, 1 and Ty, 2, are given
in Equation 7. For other surrogate losses, the step size 7, is found via a line search or other numerical
methods by solving argmin, F'(a;—1 + ney).

The bound of Corollary 3 applies similarly to L& since it is an upper bound on L{ . It can further

be shown to hold uniformly for all p € (0, 1) at the price of a term in O (\ / W) using standard
techniques [16, 22] (see Appendix C).

4 Boosting algorithm

Here, we derive a boosting-style algorithm (BA algorithm) for learning an ensemble with the option
of abstention for both losses Lyp and Lgg. Below, we describe the algorithm for Lgp and refer the
reader to Appendix H for the version using the loss L.

4.1 Objective function

The BA algorithm solves a convex optimization problem that is based on Corollary 3 for loss
Lgp. Since the last three terms of the right-hand side of the bound of the corollary do not de-
pend on c, this suggests to select o as the solution of mingea — Y1 L& (h, 1, z;,y;). Via
a change of variable & < «/p that does not affect the optimization problem, we can equiv-
alently search for ming>o % >t Leg(h, r, z;,y;) such that 23:1 a; < 1/p. Introducing the
Lagrange variable [ associated to the constraint ZtT:1 a; < 1/p, the problem can rewritten as:
ming>o % S Leg(h,r 2, y:) + 8 Zthl ay. Letting {(h1,71), ..., (hy,rn)} be the set of base
functions pairs for the classifier and rejection function, we can rewrite the optimization problem as



the minimization over ¢ > 0 of

;f}@(‘Nlam(xz yzza] xz)-l-C(I)(—bZa]rj xz>+ﬁz%~
-1 =

Thus, the following is the objective functlon of our optimization problem:

m N
= % E :(I)(rt(xi) —yihy(2;)) + c®(—bry(z;)) + 8 E ;. (6)
— =

4.2 Projected coordinate descent

The problem ming>o F(ar) is a convex optimization problem, which we solve via projected
coordinate descent. Let ey be the kth unit vector in RY and let F’(cv, e;) be the directional
derivative of I along the direction e; at o. The algorithm consists of the following three
steps. First, it determines the direction of maximal descent by k = argmax;c; ny [F”(ct—1,€5)].
Second, it calculates the best step n along the direction that preserves non-negativity of ¢ by
N =argming, | i, >0 F(ay—1 + neg). Third, it updates a;—1 to oy = ai—1 + ney.

The pseudocode of the BA algorithm is given in Figure 3. The step and direction are based on
F'(oy_1,e;). Forany ¢ € [1,T], define a distribution D, over the pairs (4, n), with n in {1, 2}

' (v (z;) — yihy_1 () ' (=bry—y(z;))
Zy Zy ’

where Z, is the normalization factor given by Z, = >." &’ (rt,l(mi) — yiht,l(xi)) +
@’ (—b rt_l(xi)). In order to derive an explicit formulation of the descent direction that is based
on the weighted error of the classification function h; and the expected value of the rejection func-
tion r;, we use the distributions D; ; and Do, defined by D;(i,1)/Z71 4 and D,(i,1)/Z,,, where
Ziy = Yoie Dy(i,1) and Zoy = Y., Dy(i,2) are the normalization factors. Now, for any
j € [1,N] and s € [1,T], we can define the weighted error ¢, ; and the expected value of the
rejection function, 7*; 1 and 7'; 5, over distribution Dy ; and Dy ; as follows:

ctj=5|l— E [yz'hj(%)}]a Tia=_ B [rjx)], and7jp = E [rj(z)]. (7

iNDl,t ’LNDlyt Z"’Dz,t

Dt(i, 1) ==

and Dy(:,2) =

Using these definition, we show (see Appendix D) that the descent direction is given by

k= argmin QZl,tEtJ + Zl,tFj,l — 2\/ C(l — C)ZQ,tFj72.
JE[L,N]

This equation shows that Z; ; and 24/c(1 — ¢) Z5 ; re-scale the weighted error and expected rejection.
Thus, finding the best descent direction by minimizing this equation is equivalent to finding the best
scaled trade-off between the misclassification error and the average rejection cost. The step size can
in general be found via line search or other numerical methods, but we have derived a closed-form
solution of the step size for both the exponential and logistic loss (see Appendix D.2). Further details
of the derivation of projected coordinate descent on [’ are also given in Appendix D.

Note that for r; — 0T in Equation 6, that is when the rejection terms are dropped in the objective, we
retrieve the L1-regularized Adaboost. As for Adaboost, we can define a weak learning assumption
which requires that the directional derivative along at least one base pair be non-zero. For § = 0, it

. _ Ve(l—¢)Za s _ .
does not hold when for all j: 2¢, ; — 1 = —7; 1 + %m 2, which corresponds to a balance
between the edge and rejection costs for all j. Observe that in the particular case when the rejection
functions are zero, it coincides with the standard weak learning assumption for Adaboost (e5 ; = L

2
for all 7).

The following theorem provides the convergence of the projected coordinate descent algorithm for
our objective function, F'(«x). The proof is given in Appendix E.

Theorem 4. Assume that @ is twice differentiable and that ®"(u) > 0 for all u € R. Then, the

projected coordinate descent algorithm applied to F' converges to the solution o* of the optimization
problem maxq >0 F(c). If additionally ® is strongly convex over the path of the iterates o, then

there exists T > 0 and v > 0 such that for all t > 7, F(a41) — F(a*) < (1-1) (F(ow) — F(a*)).
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Figure 4: Illustration of the abstention stumps on a variable X.

Specifically, this theorem holds for the exponential loss ®(u) = exp(u) and the logistic loss
O(—u) = log,(1 + e~ ™) since they are strongly convex over the compact set containing the os.

4.3 Abstention stumps

We first define a family of base hypotheses, abstention stumps, that can be viewed as extensions of the
standard boosting stumps to the setting of classification with abstention. An abstention stump hg, g,
over the feature X is defined by two thresholds 61, 62 € R with ; < 5. There are 6 different such
stumps, Figure 4 illustrates two of them. For the left figure, points with variables X less than or equal
to 0, are labeled negatively, those with X > 65 are labeled positively, and those with X between 6,
and 6, are rejected. In general, an abstention stump is defined by the pair (hg, g, (X), ro,,0,(X))
where, for Figure 4-left, hg, ¢,(X) = —1x<g, + 1x>0, and g, 9,(X) = 1o, < x<0,.

Thus, our abstention stumps are pairs (h,7) with h taking values in {—1,0, 1} and # in {0, 1}, and
such that for any x either h(z) or #(x) is zero. For our formulation and algorithm, these stumps can
be used in combination with any v > 0, to define a family of base predictor and base rejector pairs of
the form (h(z),y—7(x)). Since a is non-negative, the value -y is needed to correct for over-rejection
by previously selected abstention stumps. The ~ can be automatically learned by adding to the set
of base pairs the constant functions (hg, 7o) = (0, —1). An ensemble solution returned by the BA
algorithm is therefore of the form ( dorarhi(x), ", atrt(aj)) where ays are the weights assigned to
each base pair.

Now, consider a sample of m points sorted by the value of X, which we denote by X; < --- < X,,,.
For abstention stumps, the derivative of the objective, F, can be further simplified (see Appendix G)
such that the problem can be reduced to finding an abstention stump with the minimal expected
abstention loss (61, 62), that is

m
aregrélinz 2D, (i, 1)[1yi:+11XiS91 + 1yi:*11Xi>02] + (2Dt(i’ 1) — cb Dy (i, 2)>191<XiS92'
1,V2 i=1

Notice that given m points, at most (m + 1) thresholds need to be considered for §; and 65. Hence, a
straightforward algorithm inspects all possible O(m?) pairs (61, 62) with 6; < 65 in time O(m?).
However, Lemma 5 below and further derivations in Appendix G, allows for an O(m)-time algorithm
for finding optimal abstention stumps when the problem is solved without the constraint ; < 6.
Note that while we state the lemma for the abstention stump in Figure 4-left, similar results hold for
any of the 6 types of stumps.

Lemma 5. The optimization problem without the constraint (61 < 02) can be decomposed as
follows:

m
argmin l(60y,6) = argminz 2Dy (i,1)1y,=411x,<0, + (2Dt(i7 1) — ¢b Dy (4, 2))191<Xi (8)

01,02 01 i—1

+ argeminz 2D, (i, 1)1y,——11x,50, + (2D4(i, 1) — ¢b Dy(4,2)) 1 x,<0,- (9)
2 i=1

The optimization Problems (8) and (9) can be solved in linear time, via a method similar to that
of finding the optimal threshold for a standard zero-one loss boosting stump. When the condition
61 < 02 does not hold, we can simply revert to finding the minimum of (61, 63) in the naive way. In
practice, we find most often that the optimal solution of Problem 8 and Problem 9 satisfies 61 < 65.

5 Experiments

In this section, we present the results of experiments with our abstention stump BA algorithm based
on Lgp for several datasets. We compare the BA algorithm with the DHL algorithm [1], as well as a
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confidence-based boosting algorithm TSB. Both of these algorithms are described in further detail
in Appendix B. We tested the algorithms on six data sets from UCI’s data repository, specifically
australian, cod, skin, banknote, haberman, and pima. For more information about the data sets,
see Appendix L. For each data set, we implemented the standard 5-fold cross-validation where we
randomly divided the data into training, validation and test set with the ratio 3:1:1. Using a different
random partition, we repeated the experiments five times. For all three algorithms, the cost values
ranged over ¢ € {0.05,0.1,...,0.5} while threshold -y ranged over v € {0.08,0.16, ...,0.96}. For
the BA algorithm, the 3 regularization parameter ranged over 3 € {0,0.05,...,0.95}. All experi-
ments for BA were based on T' = 200 boosting rounds. The DHL algorithm used polynomial kernels
with degree d € {1,2,3} and it was implemented in CVX [8]. For each cost ¢, the hyperparameter
configuration was chosen to be the set of parameters that attained the smallest average rejection loss
on the validation set. For that set of parameters we report the results on the test set.

We first compared the confidence-based TSB algorithm with the BA and DHL algorithms (first row
of Figure 5). The experiments show that, while TSB can sometimes perform better than DHL, in
a number of cases its performance is dramatically worse as a function of ¢ and, in all cases it is
outperformed by BA. In Appendix J, we give the full set of results for the TSB algorithm.

In view of that, our next series of results focus on the BA and DHL algorithms, directly designed to
optimize the rejection loss, for 3 other datasets (second row of Figure 5). Overall, the figures show
that BA outperforms the state-of-the-art DHL algorithm for most values of c, thereby indicating that
BA yields a significant improvement in practice. We have also successfully run BA on the CIFAR-10
data set (boat and horse images) which contains 10,000 instances and we believe that our algorithm
can scale to much larger datasets. In contrast, training DHL on such larger samples did not terminate
as it is based on a costly QCQP. In Appendix J, we present tables that report the average and standard
deviation of the abstention loss as well as the fraction of rejected points and the classification error
on non-rejected points.

6 Conclusion

We introduced a general framework for classification with abstention where the predictor and
abstention functions are learned simultaneously. We gave a detailed study of ensemble learning
within this framework including: new surrogate loss functions proven to be calibrated, Rademacher
complexity margin bounds for ensemble learning of the pair of predictor and abstention functions,
a new boosting-style algorithm, the analysis of a natural family of base predictor and abstention
functions, and the results of several experiments showing that BA algorithm yield a significant
improvement over the confidence-based algorithms DHL and TSB. Our algorithm can be further
extended by considering more complex base pairs such as more general ternary decision trees with
rejection leaves. Moreover, our theory and algorithm can be generalized to the scenario of multi-class
classification with abstention, which we have already initiated.
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