
5 Appendix

5.1 Proof of Theorem 1.1

Lemma 5.1. Let Q̄ , Q̄(A,A0), and z = [x⊤y⊤]⊤ for x ∈ X , y ∈ Y . For any x ∈ X , and

y ∈ Y , the iterate sequence {zk}k≥1 defined as in Theorem 1.1 satisfies for all k ≥ 0

L(xk+1,y)− L(x,yk+1) ≤
[

Dx(x,x
k) +Dy(y,y

k)−
〈

T (x− x
k), y − y

k
〉]

−
[

Dx(x,x
k+1) +Dy(y,y

k+1)−
〈

T (x− x
k+1), y − y

k+1
〉]

− 1

2
(zk+1 − z

k)⊤Q̄(zk+1 − z
k).

(24)

Proof. Note that x-subproblem in (5a) is separable in local decisions {xi}i∈N ; for each i ∈ N the

local subproblem over xi is strongly convex with constant 1/τi. Indeed, let pk = T⊤yk and define

{pki }i∈N such that pki is the subvector corresponding to the components of xi, i.e., pk = [pki ]i∈N .
Thus, the definitions of ρ, f and Dx, νx = 1, and (5a) imply that for all i ∈ N

xk+1

i = argmin
xi

ρi(xi) + fi(x
k
i ) +

〈

∇fi(x
k
i ), xi − xk

i

〉

+
〈

pki , xi

〉

+
1

2τi

∥

∥

∥
xi − xk

i

∥

∥

∥

2

. (25)

Therefore, the strong convexity of the objective in local subproblem (25) for i ∈ N implies

ρi(xi) +
〈

∇fi(x
k
i ), xi

〉

+
〈

pki , xi

〉

+
1

2τi

∥

∥

∥
xi − xk

i

∥

∥

∥

2

≥

ρi(x
k+1

i ) +
〈

∇fi(x
k
i ), x

k+1

i

〉

+
〈

pki , x
k+1

i

〉

+
1

2τi

∥

∥

∥
xk+1

i − xk
i

∥

∥

∥

2

+
1

2τi

∥

∥

∥
xi − xk+1

i

∥

∥

∥

2

.

Convexity of fi and Lipschitz continuity of ∇fi implies that

fi(xi) ≥ fi(x
k
i ) +

〈

∇fi(x
k
i ), xi − xk

i

〉

≥ fi(x
k+1

i ) +
〈

∇fi(x
k
i ), xi − xk+1

i

〉

− Li

2

∥

∥

∥
xk+1

i − xk
i

∥

∥

∥

2

.

Since
∑

i∈N
〈

pki , xi
〉

=
〈

Tx, yk
〉

for all x, summing these two inequalities for each i ∈ N , and

then summing the resulting inequalities over i ∈ N , we get

Φ(x) +Dx(x,x
k) ≥ (26)

Φ(xk+1) +
〈

T (xk+1 − x), yk
〉

+Dx(x,x
k+1) + 1

2
(xk+1 − x

k)⊤D̄τ (x
k+1 − x

k).

Similarly, let qk = T (2xk+1 − xk) and define qk0 ∈ R
m0 and qki ∈ R

mi for i ∈ N such that qk0 is

the subvector corresponding to the components of λ, and qki is the subvector corresponding to the

components of θi for i ∈ N , i.e., pk = [pk1
⊤
. . . pkN

⊤
pk0
⊤
]⊤. Thus, the definitions of h and Dy , and

νy = 1 imply that according to (5b) we have

λ
k+1 = argmin

λ

h0(λ)−
〈

qk0 ,λ
〉

+
1

2γ

∥

∥

∥
λ− λ

k
∥

∥

∥

2

,

θk+1

i = argmin
θi

hi(θi)−
〈

qki , θi
〉

+
1

2κi

∥

∥

∥
θi − θki

∥

∥

∥

2

, ∀ i ∈ N .

Therefore, the strong convexity of the objectives in these subproblems implies that

h0(λ)−
〈

qk0 ,λ
〉

+
1

2γ

∥

∥

∥
λ− λ

k
∥

∥

∥

2

≥ h0(λ
k+1)−

〈

qk0 ,λ
k+1
〉

+
1

2γ

∥

∥

∥
λ

k+1 − λ
k
∥

∥

∥

2

+
1

2γ

∥

∥

∥
λ− λ

k+1
∥

∥

∥

2

,

hi(θi)−
〈

qki , θi
〉

+
1

2κi

∥

∥

∥
θi − θki

∥

∥

∥

2

≥ hi(θ
k+1

i )−
〈

qki , θ
k+1

i

〉

+
1

2κi

∥

∥

∥
θk+1

i − θki

∥

∥

∥

2

+
1

2κi

∥

∥

∥
θi − θk+1

i

∥

∥

∥

2

.

Since
〈

qk0 , λ
〉

+
∑

i∈N
〈

qki , θi
〉

=
〈

T (2xk+1 − xk), y
〉

for all y, summing the second inequality

over i ∈ N and then summing the resulting inequality with the first one, we get

h(y) +Dy(y,y
k) ≥ (27)

h(yk+1)−
〈

T (2xk+1 − x
k), yk+1 − y

〉

+Dy(y,y
k+1) +Dy(y

k+1,yk).

Summing (26) and (27) gives the desired result.
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Now we continue to the proof of Theorem 1.1. Let Q̄ , Q̄(A,A0). Since Q̄ � 0, we can drop the
last term in the inequality given in the statement of Lemma 5.1; and summing it over k, we get

K−1
∑

k=0

L(xk+1,y)− L(x,yk+1) ≤
[

Dx(x,x
0) +Dy(y,y

0)−
〈

T (x− x
0), y − y

0
〉]

−
[

Dx(x,x
K) +Dy(y,y

K)−
〈

T (x− x
K), y − y

K
〉]

.

Q̄ � 0 also implies that Dx(x,x
K) + Dy(y,y

K) −
〈

T (x− xK), y − yK
〉

≥ 0; therefore, (6)
follows from Jensen’s inequality.

Now suppose Q̄ ≻ 0, and let z∗ = [x∗⊤y∗⊤]⊤ be a saddle point for (4). From the definition of Q̄,
for all z, z′, we have

Dx(x,x
′) +Dy(y,y

′)−
〈

T (x− x
′), y − y

′〉 ≥ 1

2

∥

∥z− z
′∥
∥

2

Q̄
. (28)

Evaluating (24) at z = z∗, we get k ≥ 0

0 ≤ L(xk+1,y∗)− L(x∗,yk+1) ≤
[

Dx(x
∗,xk) +Dy(y

∗,yk)−
〈

T (x∗ − x
k), y∗ − y

k
〉]

−
[

Dx(x
∗,xk+1) +Dy(y

∗,yk+1)−
〈

T (x∗ − x
k+1), y∗ − y

k+1
〉]

− 1

2

∥

∥

∥
z
k+1 − z

k
∥

∥

∥

2

Q̄
. (29)

Note that (29) implies that
{

Dx(x
∗,xk) + Dy(y

∗,yk) −
〈

T (x∗ − xk), y∗ − yk
〉 }

k≥0
is a non-

increasing sequence. Using this fact together with (28), we get for all k ≥ 0

1

2

∥

∥

∥
z
k+1 − z

∗
∥

∥

∥

2

Q̄
≤ Dx(x

∗,x0) +Dy(y
∗,y0)−

〈

T (x∗ − x
0), y∗ − y

0
〉

.

Therefore, both {zk} and {z̄k} are bounded sequences. Hence, there is a subsequence {zkn}n≥1

converging to a limit point ẑ. From (29), it follows that
∑∞

k=0

∥

∥zk+1 − zk
∥

∥

2

Q̄
<∞. Since Q̄ ≻ 0,

for any ǫ > 0, there exists N1 such that for all n ≥ N1, we have
∥

∥zkn+1 − zkn

∥

∥ < ǫ
2 . From the

fact that zkn → ẑ, there exists N2 such that for all n ≥ N2, we have
∥

∥zkn − ẑ
∥

∥ < ǫ
2 . Therefore, by

letting N = max{N1, N2} we get
∥

∥zkn+1 − ẑ
∥

∥ < ǫ, i.e., zkn+1 → ẑ.

The optimality conditions for (5a) and (5b) imply that for all n ∈ Z+, we have αn ∈ ∂ρ(xkn+1)
and βn ∈ ∂h(ykn+1), where

αn , ∇ψx(x
kn)−∇ψx(x

kn+1)−
(

∇f(xkn) + T⊤ykn
)

,

βn
, ∇ψy(y

kn)−∇ψy(y
kn+1) + T

(

2xkn+1 − xkn
)

.

Since ∇ψx and ∇ψy are continuously differentiable on dom ρ and domh, respectively, and since
ρ and h are proper, closed convex functions, it follows from Theorem 24.4 in [22] that

∂ρ(x̂) ∋ lim
n

α
n = −∇f(x̂)− T⊤ŷ, and ∂h(ŷ) ∋ lim

n
β

n = T x̂,

which also implies that ẑ is a saddle point of (4).

Since (29) is true for any saddle point z∗, by setting z∗ = ẑ in (29), one can conclude that {sk}k≥0
is a nonincreasing sequence, where

s
k
, Dx(x̂,x

k) +Dy(ŷ,y
k)−

〈

T (x̂− x
k), ŷ − y

k
〉

; (30)

moreover, s , limk s
k ≥ 0 exists since sk ≥ 0 for all k ≥ 0 due to (28). Therefore, s = limn s

kn ;
and since limn

〈

T (x̂− xkn), ŷ − ykn
〉

= 0 (from zkn → ẑ),

s = lim
n→∞

Dx(x̂,x
kn) +Dy(y

∗,ykn) = 0.

Therefore, zk → ẑ follows from (28) and (30).
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5.2 Proof of Lemma 2.1

Since Dγ ≻ 0, Schur complement condition implies that Q̄ � 0 if and only if

B − γ

[

M⊤M 0
0 0

]

� 0, where B ,

[

D̄τ −A⊤
−A Dκ

]

. (31)

Moreover, since Dκ ≻ 0, again using Schur complement and the fact that M⊤M = Ω ⊗ In,
one can conclude that (31) holds if and only if D̄τ − γ(Ω ⊗ In) − A⊤D−1

κ A � 0. By definition
Ω = diag([di]i∈N )−E, where Eii = 0 for all i ∈ N and Eij = Eji = 1 if (i, j) ∈ E or (j, i) ∈ E .
Note that diag([di]i∈N )+E � 0 since it is diagonally dominant. Therefore, Ω � 2diag([di]i∈N ).
Hence, it is sufficient to have D̄τ − 2γ diag([di]i∈N ) ⊗ In − A⊤D−1

κ A � 0, and this condition
holds if (10) is true. By the same argument, if (10) holds with strict inequality, then Q̄ ≻ 0.

5.3 Proof of Theorem 2.2

We start the proof with a simple observation. Every closed convex cone C ∈ R
m induces a decom-

position on R
m, i.e., according to Moreau decomposition, for any y ∈ R

m, there exist y1, y2 ∈ R
m

such that y1 ⊥ y2 and y = y1 + y2; in particular, y1 = PC(y) and y2 = PC◦(y) where C◦ = −C∗
is the polar cone of C. Hence, from the definition of a support function and the fact that 〈y, w〉 ≤ 0
for any y ∈ C◦ and w ∈ C, one can conclude that

σC(y) =

{

0 y ∈ C◦
+∞ o.w.

(32)

Note the iterate sequence {xk,θk}k≥0 generated by Algorithm DPDA-S in Fig. 1 is the same as

the PDA iterate sequence {xk,θk,λk}k≥0 computed according to (9) for solving (8) when λ0 =
γMx0. From Lemma 2.1, since the step-size parameters {τi, κi}i∈N and γ are chosen satisfying

(10) with strict inequality, the condition Q̄(A,A0) ≻ 0 in Theorem 1.1 holds, where A0 = M
for problem (8). Therefore, Theorem 1.1 implies that (6) holds for all K ≥ 1 with νx = νy = 1
and Bregman function Dx, Dy defined as in Definition 1. In particular, the result of Theorem 1.1

can be written more explicitly for (8) as follows: let x̄K , 1
K

∑K

k=1 xk, θ̄
K

, 1
K

∑K

k=1 θ
k and

λ̄
K

, 1
K

∑K

k=1 λ
k, then for any x ∈ R

n|N |, λ ∈ R
n|E|, θ ∈ R

m for m =
∑

i∈N mi, and for all

K ≥ 1, we have

L(x̄K ,θ,λ)−L(x, θ̄K
, λ̄

K
) ≤ Θ(x,θ,λ)/K, (33)

Θ(x,θ,λ) ,
1

2γ
‖λ− λ

0‖2 − 〈M(x− x
0),λ− λ

0〉

+
∑

i∈N

[

1

2τi
‖xi − x0

i ‖2 +
1

2κi

‖θi − θ0i ‖2 − 〈Ai(xi − x0
i ), θi − θ0i 〉

]

.

Note that under the assumption in (10), Schur complement condition guarantees that
[

1

τi
In −A⊤i

−Ai
1

κi
Imi

]

�
[

2

τi
In 0⊤

0 2

κi
Imi

]

.

Therefore,

Θ(x,θ,λ) ≤
∑

i∈N

[

1

τi
‖xi − x0

i ‖2 +
1

κi

‖θi − θ0i ‖2
]

+
1

2γ
‖λ− λ

0‖2 − 〈M(x− x
0),λ− λ

0〉. (34)

Note that, if Assumption 1.1 holds, one can construct a primal-dual optimal solution (x∗,θ∗,λ∗) to
(7) which is a saddle point for L in (8); hence, L(x∗,θ∗,λ∗) = Φ(x∗) and θ∗i ∈ K◦i for i ∈ N .

Define w̃ = [w̃i]i∈N such that w̃i , Aix̄
K
i −bi ∈ R

mi for i ∈ N . SinceKi is a closed convex cone,

it induces a decomposition on R
mi for i ∈ N , i.e., consider w̃1

i = PKi
(w̃i) and w̃2

i = PK◦

i
(w̃i).

Note that since w̃i = w̃1
i + w̃

2
i ,

∥

∥w̃2
i

∥

∥ = ‖PKi
(w̃i)− w̃i‖ = dKi

(w̃i). Define θ̃ = [θ̃i]i∈N such that

θ̃i , 2‖θ∗i ‖ 1
‖w̃2

i
‖ w̃

2
i ∈ K◦i . Therefore,

〈Aix̄
K
i − bi, θ̃i〉 = 2

‖θ∗i ‖
‖w̃2

i ‖
〈

w̃1
i + w̃2

i , w̃
2
i

〉

= 2 ‖θ∗i ‖ dKi
(Aix̄

K
i − bi), (35)
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where the second equality follows from w̃1
i ⊥ w̃2

i . Similarly, define λ̃ , 2‖λ∗‖(M x̄K/
∥

∥M x̄K
∥

∥).

Hence, 〈M x̄K , λ̃〉 = 2‖λ∗‖‖M x̄K‖. Therefore, together with (35), we get

L(x̄K , θ̃, λ̃)− L(x∗,θ∗,λ∗) = Φ(x̄K)− Φ(x∗) + 2

(

‖λ∗‖‖M x̄
K‖+

∑

i∈N
dKi

(Aix̄
K
i − bi)‖θ∗i ‖

)

.

Now we are going to upper bound Θ(x∗, θ̃, λ̃) using (34). Since λ0 = γMx0, we get

1

2γ
‖λ̃− λ

0‖2 − 〈M(x∗ − x
0), λ̃− λ

0〉 = 1

2γ

(

‖λ̃− λ
0 − γM(x∗ − x

0)‖2 − γ2‖M(x∗ − x
0)‖2

)

=
2

γ
‖λ∗‖2 − γ

2

∥

∥Mx
0
∥

∥

2
, (36)

where in the last equality follows from Mx∗ = 0. Since θ∗ and λ∗ maximize the Lagrangian

function at x∗, and we set θ0i = 0, the definitions of θ̃i, λ̃, and (33), (34) together imply that

L(x̄K , θ̃, λ̃)− L(x∗,θ∗,λ∗) ≤ L(x̄K , θ̃, λ̃)− L(x∗, θ̄K
, λ̄

K
) ≤ 1

K
Θ(x∗, θ̃, λ̃) ≤ Θ1

K
.

Therefore, we can conclude that

Φ(x̄K)− Φ(x∗) + 2

(

‖λ∗‖‖M x̄
K‖+

∑

i∈N
dKi

(Aix̄
K
i − bi)‖θ∗i ‖

)

≤ Θ1

K
, (37)

where we use L(x∗,θ∗,λ∗) = Φ(x∗) and the fact that σKi
(θ̃i) = 0 due to (32) since θ̃i ∈ K◦i for

i ∈ N . Moreover, since (x∗,θ∗,λ∗) is a saddle-point for L in (8), we clearly have L(x̄K ,θ∗,λ∗)−
L(x∗,θ∗,λ∗) ≥ 0; therefore,

Φ(x̄K)− Φ(x∗) + 〈λ∗,M x̄
K〉+

∑

i∈N

〈

θ∗i , Aix̄
K
i − bi

〉

≥ 0. (38)

Recall that i ∈ N we defined w̃1
i = PKi

(w̃i) and w̃2
i = PK◦

i
(w̃i), where w̃i , Aix̄

K
i − bi ∈ R

mi .

For all i ∈ N , θ∗i ∈ K◦i and w̃1
i ∈ Ki imply 〈θ∗i , w̃1

i 〉 ≤ 0; hence, for all i ∈ N ,

〈Aix̄
K
i − bi, θ

∗
i 〉 = 〈w̃i − w̃1

i + w̃1
i , θ

∗
i 〉 ≤ 〈w̃i − w̃1

i , θ
∗
i 〉 ≤ ‖θ∗i ‖dKi

(Aix̄
K
i − bi).

Together with (38), we conclude that

Φ(x̄K)− Φ(x∗) + ‖λ∗‖‖M x̄
K‖+

∑

i∈N
‖θ∗i ‖dKi

(Aix̄
K
i − bi) ≥ 0. (39)

By combining inequalities (37) and (39) immediately implies the desired result. Finally, since (10)
in Lemma 2.1 holds with strict inequality, Q̄(A,A0) ≻ 0. Hence, the proof of convergence for {xk}
and {x̄k} follows from Theorem 1.1.

5.4 Proof of Theorem 3.2

In order to prove Theorem 3.2, we first prove Theorem 5.2 which help us to appropriately bound
L(x̄K ,y)−L(x, ȳK). Next, we provide a technical result in Lemma 5.3 to study the error accumu-

lation, and another technical result in Lemma 5.4 to show the asymptotic convergence of {xk,yk}.
Theorem 5.2. Let y = [θ⊤µ⊤]⊤ such that µ ∈ R

n|N |, θ = [θi]i∈N ∈ R
m, and m ,

∑

i∈N mi;

and {xk,yk}k≥0 be the iterate sequence generated using Algorithm DPDA-D, displayed in Fig. 2,

initialized from an arbitrary x0 and y0; and {ek}k≥1 be the proximal error sequence defined as in

(20). For any x ∈ X , and y ∈ Y , the iterate sequence {xk,yk}k≥0 satisfies for all k ≥ 0

L(xk+1,y)− L(x,yk+1) ≤ Ek+1(µ) +
[

Dx(x,x
k) +Dy(y,y

k)−
〈

T (x− x
k), y − y

k
〉]

(40)

−
[

Dx(x,x
k+1) +Dy(y,y

k+1)−
〈

T (x− x
k+1), y − y

k+1
〉]

− 1

2
(zk+1 − z

k)⊤Q̄(zk+1 − z
k),

where zk = [xk⊤yk⊤]⊤, Dx, Dy are Bregman functions defined as in Definition 1, T = [A⊤A⊤0 ]
⊤

for block-diagonal matrix A , diag([Ai]i∈N ) ∈ R
m×n|N | and A0 = In|N |, Q̄ , Q̄(A,A0) is

defined as in Theorem 1.1 for A0 = In|N |, and Ek(µ) , ‖ek‖
(

2γ
√
N B + ‖µ− µk‖

)

for k ≥ 1.
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Proof. For k ≥ 0, let qk , 2xk+1−xk. From strong convexity of σC(µ)−〈qk, µ〉+ 1
2γ ‖µ−µk‖22

in µ and the fact that λk+1 is its minimizer we conclude that

σC(µ)− 〈qk, µ〉+ 1

2γ
‖µ− µ

k‖2 ≥ σC(λ
k+1)− 〈qk, λk+1〉+ 1

2γ
‖λk+1 − µ

k‖2 + 1

2γ
‖µ− λ

k+1‖2.

According to (20), µk = λk + γek for all k ≥ 1; hence, from (22) we have

σC(µ)− 〈qk, µ〉+ 1

2γ
‖µ− µ

k‖22 ≥
σC(µ

k+1)− 〈qk, µk+1〉+ 1

2γ
‖µk+1 − µ

k‖22 + 1

2γ
‖µ− µ

k+1‖22 − Sk+1(µ), (41)

where the error term Sk+1(µ) is defined as

Sk+1(µ) , γ
√
N B‖ek+1‖ − γ‖ek+1‖2 −

〈

e
k+1, µ− 2µk+1 + µ

k + γqk
〉

. (42)

If one customizes the steps of Lemma 5.1 for problem (11) using µk+1 instead of λk+1, it immedi-
ately follows from (41) that for all k ≥ 0:

L(xk+1,y)− L(x,yk+1) ≤ Sk+1(µ) +
[

Dx(x,x
k) +Dy(y,y

k)−
〈

T (x− x
k), y − y

k
〉]

(43)

−
[

Dx(x,x
k+1) +Dy(y,y

k+1)−
〈

T (x− x
k+1), y − y

k+1
〉]

− 1

2
(zk+1 − z

k)⊤Q̄(zk+1 − z
k),

where zk = [xk⊤yk⊤]⊤, and Q̄ , Q̄(A,A0) is defined as in Theorem 1.1 for A0 = In|N |.

For k ≥ 0, let hk+1 , PC(
1
γ
µk + qk); hence, λk+1 = µk + γqk − γhk+1. Since µk+1 =

λk+1 + γek+1, we have µk + γqk − µk+1 = γ(hk+1 − ek+1); therefore, (42) can be written as

Sk+1(µ) = γ
√
N B‖ek+1‖ −

〈

ek+1, µ− µk+1 + γhk
〉

≤ Ek+1(µ), (44)

where the inequality follows from Cauchy-Schwarz inequality and the fact that ‖hk+1‖ ≤
√
N B

since hk+1 ∈ C. Combining (43) and (44) gives the desired result.

The Lemma 5.3 below is a slight extension of Proposition 3 in [20], where it is stated for q = 1. The
proof is omitted due to limited space. The next result in Lemma 5.4 follows from [23].

Lemma 5.3. Let α ∈ (0, 1), q ≥ 1 is a rational number, and d ∈ Z+. Define P (k, d) =

{∑d

i=0 cik
i : ci ∈ R i = 1, . . . , d} denote the set of polynomials of k with degree at most d.

Suppose p(k) ∈ P (k, d) for k ≥ 1, then
∑+∞

k=0 p
(k)α

q√
k is finite.

Lemma 5.4. Let {ak}, {bk}, and {ck} be non-negative real sequences such that ak+1 ≤ ak−bk+ck
for all k ≥ 1, and

∑∞
k=1 c

k <∞. Then a = limk→∞ ak exists, and
∑∞

k=1 b
k <∞.

Now we are ready to prove Theorem 3.2.

5.5 Proof of Theorem 3.2

Setting A0 = In|N | instead of M in the proof of Lemma 2.1, one can show that Q̄ = Q̄(A,A0) ≻ 0
when the condition in (23) holds for all i ∈ N ; thus, we can drop the last term in (40). Similar to

the proof of Theorem 1.1, summing (40) over k after dropping − 1
2

∥

∥zk+1 − zk
∥

∥

Q̄
, using Jensen’s

inequality, and dropping the last term, Dx(x,x
K) +Dy(y,y

K)−
〈

T (x− xK), y − yK
〉

≥ 0, in
the telescoping sum gives

L(x̄K ,y)− L(x, ȳK) ≤ 1

K

[

Dx(x,x
0) +Dy(y,y

0)−
〈

T (x− x
0), y − y

0
〉

+

K
∑

k=1

Ek(µ)
]

. (45)

Note that Ek(µ) appearing in (45) is the error term due to approximating PC in the k-th iteration

of the algorithm for k ≥ 1. Furthermore, (45) can be written more explicitly as follows: let x̄K ,
1
K

∑K

k=1 x
k, µ̄K , 1

K

∑K

k=1 µ
k, and θ̄

K
, 1

K

∑K

k=1 θ
k, then for any x,µ ∈ R

n|N |, θ ∈ R
m

14



such that m =
∑

i∈N mi, and for all K ≥ 1, we have

L(x̄K ,θ,µ)−L(x, θ̄K
, µ̄K) ≤ Θ(x,θ,µ)/K,

Θ(x,θ,µ) ,
1

2γ
‖µ− µ

0‖2 − 〈x− x
0, µ− µ

0〉+
K
∑

k=1

Ek(µ)

+
∑

i∈N

[

1

2τi
‖xi − x0

i ‖2 +
1

2κi

‖θi − θ0i ‖2 − 〈Ai(xi − x0
i ), θi − θ0i 〉

]

.

Note that under the assumption in (23), Schur complement condition guarantees that
[

1

τi
In −A⊤i

−Ai
1

κi
Imi

]

�
[

2

τi
In 0⊤

0 2

κi
Imi

]

.

Therefore,

Θ(x,θ,µ) ≤
∑

i∈N

[

1

τi
‖xi − x0

i ‖2 +
1

κi

‖θi − θ0i ‖2
]

+
1

2γ
‖µ− µ

0‖2

− 〈x− x
0,µ− µ

0〉+
K
∑

k=1

Ek(µ). (46)

As argued in the proof of Theorem 2.2, if Assumption 1.1 holds, one can construct a saddle point
(x∗,θ∗,λ∗) forL in (11); hence, L(x∗,θ∗,λ∗) = Φ(x∗) and θ∗i ∈ K◦i for i ∈ N . As in the proof of

Theorem 2.2, define θ̃ = [θ̃i]i∈N such that θ̃i , 2‖θ∗i ‖
(

‖PK◦

i
(Aix̄

K
i − bi)‖

)−1 PK◦

i
(Aix̄

K
i − bi) ∈

K◦i , which implies

〈Aix̄
K
i − bi, θ̃i〉 = 2‖θ∗i ‖dKi

(Aix̄
K
i − bi). (47)

Define C̃ , {x ∈ R
n|N | : ∃x̄ ∈ R

n s.t. xi = x̄, ∀i ∈ N}. Note that C̃ is a closed convex cone, and

the projection PC̃(x) = 1⊗ p̃(x), where p̃(x) is defined in (15). Let µ̃ = 2 ‖λ∗‖ P
C̃◦ (x̄

K)

‖P
C̃◦ (x̄K)‖ ∈ C̃◦,

where C̃◦ denotes polar cone of C̃. Hence, it can be verified that 〈µ̃, x̄K〉 = 2‖λ∗‖dC̃(x̄K). Note

that µ̃ ∈ C̃◦ implies that σC̃(µ̃) = 0; moreover, we also have C ⊆ C̃; hence, σC(µ̃) ≤ σC̃(µ̃) = 0.

Therefore, we can conclude that σC(µ̃) = 0 since 0 ∈ C. Together with (47), we get

L(x̄K , θ̃, µ̃)−L(x∗,θ∗,λ∗) = Φ(x̄K)−Φ(x∗)+2
(

‖λ∗‖dC̃(x̄K) +
∑

i∈N
dKi

(Aix̄
K
i − bi)‖θ∗i ‖

)

. (48)

Now we are going to upper bound Θ(x∗, θ̃, µ̃) using (46). Since µ0 = 0, from Cauchy-Schwarz
inequality,

|〈x∗ − x
0, µ̃− µ

0〉| ≤ 2‖λ∗‖‖x∗ − x
0‖. (49)

Since θ∗ and λ∗ maximize the Lagrangian function at x∗, and θ0 = 0, it follows from (47), (49),
and (46) that

L(x̄K , θ̃, µ̃)− L(x∗,θ∗,λ∗) ≤ L(x̄K , θ̃, µ̃)− L(x∗, θ̄K
, µ̄K)

≤ 1

K
Θ(x∗, θ̃, µ̃) ≤ 1

K

(

Θ2 +

K
∑

k=1

Ek(µ̃)

)

.

Therefore, we can conclude that

Φ(x̄K)− Φ(x∗) + 2

(

‖λ∗‖dC̃(x̄K) +
∑

i∈N
dKi

(Aix̄
K
i − bi)‖θ∗i ‖

)

≤ 1

K

(

Θ2 +

K
∑

k=1

Ek(µ̃)

)

, (50)

where we use L(x∗,θ∗,λ∗) = Φ(x∗) and the fact that σKi
(θ̃i) = 0 due to (32) since θ̃i ∈ K◦i .

Since (x∗,θ∗,λ∗) is a saddle-point for L in (11), we clearly have L(x̄K ,θ∗,λ∗)−L(x∗,θ∗,λ∗) ≥
0; therefore,

Φ(x̄K)− Φ(x∗) + 〈λ∗, x̄K〉+
∑

i∈N

〈

θ∗i , Aix̄
K
i − bi

〉

≥ 0. (51)

As shown in the proof of Theorem 2.2, for all i ∈ N , we have

〈Aix̄
K
i − bi, θ

∗
i 〉 ≤ ‖θ∗i ‖dKi

(Aix̄
K
i − bi).

15



Similarly, we can also show that 〈λ∗, x̄K〉 ≤ ‖λ∗‖dC̃(x̄K). Together with (51), we conclude that

Φ(x̄K)− Φ(x∗) + ‖λ∗‖dC̃(x̄K) +
∑

i∈N
‖θ∗i ‖dKi

(Aix̄
K
i − bi) ≥ 0. (52)

Finally, note that (18) implies that ‖Rk(x)−PC(x)‖ ≤ N Γαqk ‖x‖ for all x, and
∥

∥xk
∥

∥ ≤
√
N B

for k ≥ 1, it follows from (20) and (21) that

‖ek+1‖ = ‖PC
(

1

γ
µ

k + 2xk+1 − x
k
)

−Rk
(

1

γ
µ

k + 2xk+1 − x
k
)

‖

≤ N Γαqk

∥

∥

∥

1

γ
µ

k + 2xk+1 − x
k
∥

∥

∥
≤ 4N

3

2BΓαqk (k + 1). (53)

Moreover, using (53) and (21) we obtain that

K
∑

k=1

Ek(µ̃) =

K
∑

k=1

‖ek‖
(

2γ
√
N B + ‖µ̃− µ

k‖
)

≤
K
∑

k=1

4N
3

2BΓαqkk
(

2γ
√
N B + ‖µ̃− µ

k‖
)

≤ 8N2B2Γ

K
∑

k=1

αqk

[

2γk2 +

(

γ +
‖λ∗‖√

NB

)

k

]

= Θ3(K). (54)

From Lemma 5.3, it follows that supK∈Z+
Θ3(K) < ∞. Therefore, combining inequalities (50),

(52) and (54) immediately implies the desired result.

Let z∗ = [x∗⊤y∗⊤]⊤ be a saddle point for L in (11), where y∗ = [θ∗⊤λ∗⊤]⊤. Due to (23), we

have Q̄ ≻ 0; hence, evaluating (40) at z = z∗, we get k ≥ 0

0 ≤ L(xk+1,y∗)− L(x∗,yk+1) ≤Ek+1(λ∗) +
[

Dx(x
∗,xk) +Dy(y

∗,yk)−
〈

T (x∗ − x
k), y∗ − y

k
〉]

−
[

Dx(x
∗,xk+1) +Dy(y

∗,yk+1)−
〈

T (x∗ − x
k+1), y∗ − y

k+1
〉]

− 1

2

∥

∥

∥
z
k+1 − z

k
∥

∥

∥

2

Q̄
. (55)

Define ak , Dx(x
∗,xk) + Dy(y

∗,yk) −
〈

T (x∗ − xk), y∗ − yk
〉

, bk , 1
2

∥

∥zk+1 − zk
∥

∥

2

Q̄
, and

ck , Ek+1(λ∗) for k ≥ 0. Clearly, bk ≥ 0 and ck ≥ 0 for k ≥ 0. Moreover, from the

definition of Q̄, it follows that (28) holds for all z, z′; therefore, ak ≥ 1
2

∥

∥zk − z∗
∥

∥

2

Q̄
≥ 0 for k ≥ 0.

Finally, note that (54) also implies that
∑K

k=1E
k(λ∗) ≤ Θ3(K). Since supK∈Z+

Θ3(K) < ∞,

Lemma 5.4 implies that limk→∞ ak exists. Thus, {ak} is a bounded sequence, and this also implies

that {zk} is bounded as well. Consequently, there exists a subsequence {zkn}n such that zkn → ẑ
as n → ∞. Since (55) is true for any saddle point z∗, by setting z∗ = ẑ in (55), one can conclude

that s , limk s
k ≥ 0 exists, where

s
k
, Dx(x̂,x

k) +Dy(ŷ,y
k)−

〈

T (x̂− x
k), ŷ − y

k
〉

, (56)

for k ≥ 0. Since s = limn s
kn and limn

〈

T (x̂− xkn), ŷ − ykn
〉

= 0 (from zkn → ẑ), clearly

s = lim
n→∞

Dx(x̂,x
kn) +Dy(y

∗,ykn) = 0,

which also implies that zk → ẑ.
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5.6 Additional figures

Figure 4: Comparison among DPDA-S on a random graph with algebraic connectivity 4, local SVMs for two
nodes, and central SVM against test data. All models are trained with C = 2.

Figure 5: Comparison among DPDA-S on a random graph with algebraic connectivity 4, local SVMs for two
nodes, and central SVM against training data. All models are trained with C = 2.
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