
A Proofs — Operations on Generating Functions

Proof of Proposition 1. This is a standard fact about multivariate PGFs:

F
↵

(s
↵\i, 1) =

X

x↵

↵

(x
↵

)s
x↵\i
↵\i 1

xi
=

X

x↵\i

⇣X

xi

↵

(x
↵\i, xi

)

⌘
s
x↵\i
↵\i

The fact
P

x↵

↵

(x
↵

) = F
↵

(1, . . . , 1) follows by marginalizing each variable one at a time.

Proof of Proposition 2.
@a

@sa
i

F
↵

(s
↵

)

���
si=0

=

X

x↵\i

X

xi

↵

(x
↵\i, xi

)s
x↵\i
↵\i

@a

@sa
i

sxi
i

���
si=0

= a!
X

x↵\i

↵

(x
↵\i, a)s

x↵\i
↵\i

The final equality holds because @

a

@s

a
i
sxi
i

��
si=0

= a! if x
i

= a and zero otherwise.

Proof of Proposition 3. The PGF is

F
↵[j

(s
↵

, s
j

) =

X

x↵

X

xj

↵

(x
↵

) Binomial(x
j

| x
i

, ⇢)sx↵
↵

s
xj

j

=

X

x↵

↵

(x
↵

)sx↵
↵

X

xj

Binomial(x
j

| x
i

, ⇢)s
xj

j

=

X

x↵

↵

(x
↵

)sx↵
↵

(⇢s
j

+ 1� ⇢)xi

=

X

x↵

↵

(x
↵

)s
x↵\i
↵\i

�
s
i

(⇢s
j

+ 1� ⇢)�xi

= F
↵

(s
↵\i, si(⇢sj + 1� ⇢))

In the third line, we used the fact that the PGF of the Binomial distribution isP
x

Binomial(x|n, ⇢)sx = (⇢s+ 1� ⇢)n.

Proof of Proposition 4.

F
�

(s
↵

, s
�

, s
k

) =

X

x↵,x� ,xk

↵

(x
↵

)
�

(x
�

)I{x
k

= x
i

+ x
j

}sx↵
↵

s
x�

�

sxk
k

=

X

x↵,x�

↵

(x
↵

)
�

(x
�

)sx↵
↵

s
x�

�

s
xi+xj

k

=

X

x↵,x�

↵

(x
↵

)
�

(x
�

) · sx↵\i
↵\i · (s

k

s
i

)

xi · sx�\j
�\j · (s

k

s
j

)

xj

=

⇣X

x↵

↵

(x
↵

) · sx↵\i
↵\i · (s

k

s
i

)

xi

⌘
·
⇣X

x�

�

(x
�

) · sx�\j
�\j · (s

k

s
j

)

xj

⌘

= F
↵

(s
↵\i, sksi) · F�

(s
�\j , sksj)

Proof of Proposition 5. We can combine Propositions 3 and 2 to first expand the factor with a thinned
variable x

j

= ⇢ � x
i

and then observe x
j

= a. We get

F 0
↵

(s
↵

) =

1

a!

@a

@sa
j

F
↵

(s
↵\i, si(⇢sj + 1� ⇢))

���
sj=0

=

1

a!

@a

@ta
i

F
↵

(s
↵\i, ti)(si⇢)

a

���
ti=si(⇢sj+1�⇢)

!�����
sj=0

=

1

a!
(s

i

⇢)a
@a

@ta
i

F
↵

(s
↵\i, ti)

���
ti=si(1�⇢)

.

10

Algorithm 4 PGF-FORWARD implementation

Input: Vectors �, �, ⇢, y
Output: Likelihood p(y1:K)

1: a 0, b 0, f(s) 1

2: for k = 1 to K do
3: [a, b] ARRIVALS(a, b,�k)

4: [a, f] EVIDENCE(a, f, yk, ⇢k)
5: if k < K then
6: [a, b, f] SURVIVORS(a, b, f, �k)
7: end if
8: end for
9: return f(1) exp{a+ b}

10: function ARRIVALS(a, b,�)
11: a0 a+ �
12: b0 b� �
13: return a0, b0

14: end function

15: function EVIDENCE(a, f, y, ⇢)
16: a0 a(1� ⇢)
17: g 0, df f
18: for ` = 0 to y do
19: g g + df/(a``!(y � `)!)
20: df DERIV(df)
21: end for
22: g COMPOSE(g, s(1� ⇢))
23: g (a⇢)ysyg
24: return a0, g
25: end function

26: function SURVIVORS(a, b, f, �)
27: a0 a�
28: b0 b+ a(1� �)
29: f 0 COMPOSE(f, �s+ 1� �)
30: return a0, b0, f 0

31: end function

Proof of Proposition 6. This is an immediate consequence of Proposition 3 and Proposition 1 by
setting s

i

= 1 in Proposition 3.

Proof of Proposition 7. This is an immediate consequence of Proposition 4 and Proposition 1 by
setting s

i

= 1 and s
j

= 1 in Proposition 4.

B Implementation of PGF-FORWARD

The detailed algorithm, based on the proof of Theorem 1, is listed in Algorithm 4.

Here is the proof of the runtime result (Theorem 2):

Proof of Theorem 2. We assume a polynomial f is represented as a vector of coefficients {f
i

} of
length deg(f)+1. ARRIVALS takes constant time. The running time of EVIDENCE is O(y deg(f)) =
O(Y 2

): Lines 19 and 20 are executed y times and take time proportional to deg(g) and deg(df),
respectively, each of which is no more than deg(f). The operations outside the loop are bounded by
O(y+deg(f)). (Note that the COMPOSE operation in Line 22 is linear in deg(g)—simply multiply the
ith coefficient of g by (1� ⇢)i for all i.) The SURVIVORS function takes O(Y 2

) time. The COMPOSE
operation in Line 29 is more costly than the one on Line 22: we must expand

P
i

g
i

(�s + 1 � �)i
to compute the coeffients of si for all i—this can be done in O(deg(g)2) time by a number of
methods, e.g., applying the Binomial Theorem to expand each term. The ARRIVALS, EVIDENCE,
and SURVIVORS functions are each called K or K � 1 times. Therefore, the overall running time is
O(KY 2

).

C Implementation of PGF-TAIL-ELIMINATE

We provide a side-by-side comparison of PGF-TAIL-ELIMINATE with a non-PGF implementation
of the equivalent algorithm, TAIL-ELIMINATE, in Figure 7. The detailed PGF-TAIL-ELIMINATE
algorithm is listed in Algorithm 7.

Proof of Theorem 3. We again proceed inductively. From the proof of Theorem 1, we initially have
that A

i

(s) = f(s) exp{as+ b} where deg(f) =
P

i

k=1

y
k

. Then, in Line 1, we have

i,i+1

(s, t) = f
�
s(�

i

t+ 1� �
i

)

�
exp{a�

i

st+ a(1� �
i

)s+ b}
The first term is a bivariate polynomial f 0

(s, t) :=

P
deg(f)

i=0

f
i

si(�
i

t + 1 � �
i

)

i with max-degree
equal to deg(f), and the second term has the desired exponential form.

11

Algorithm 5 TAIL-ELIMINATE
Output: Unnormalized marginal p(ni, y1:K)

1: �i,i+1(ni, zi+1) := ↵i(ni)p(zi+1|ni)

2: for j = i+ 1 to K do
3: ⌘ij(ni, nj) :=

P
mj ,zj

�(ni, zj)p(mj)p(nj |zj ,mj)

4: ✓ij(ni, nj) :=⌘ij(ni, nj)p(yj |nj)

5: if j < K then
6: �i,j+1(ni, zj+1) :=✓ij(ni, nj)p(zj |nj�1)

7: end if
8: end for
9: return p(ni, y1:K) =

P
nK

✓iK(ni, nK)

Algorithm 6 PGF-TAIL-ELIMINATE
Output: PGF of unnormalized marginal p(ni, y1:K)

1: �i,i+1(s, t) := Ai(s(�it+ 1� �i))

2: for j = i+ 1 to K do
3: Hij(s, t) := �ij(s, t) exp{�k(t� 1)}
4: ⇥ij(s, t) :=

1
yj !

(t⇢j)
yj @

yjHij(s,u)

@u
yj

���
u=t(1�⇢j)

5: if j < K then
6: �i,j+1(s, t) := ⇥ij(s, �jt+ 1� �j)

7: end if
8: end for
9: return ⇥iK(s, 1)

Figure 7: Comparison of the PGF-TAIL-ELIMINATE algorithm with its equivalent using non-PGF
factors, TAIL-ELIMINATE.

In Line 3, suppose �
ij

(s, t) = f(s, t) exp{ast+ bs+ ct+ d}. Then H
ij

(s, t) = f(s, t) exp{ast+
cs+ (c+ �

k

)t+ (d� �
k

)}, which has the desired form.

In Line 4, the suppose H
ij

(s, u) = f(s, u) exp{ast+ bs+ cu+ d}. One can verify by calculating
the yth partial derivative of H

ij

with respect to u that:

⇥

ij

(s, t) = ⇢
yj

j

·

tyj

yjX

`=0

(as+ c)yj�`

`!(y
j

� `)! · @
`

@u`

f(s, u)
��
u=t(1�⇢j)

!
·exp�a(1�⇢

j

)st+bs+c(1�⇢)t+d

The term in parentheses is again a bivariate polynomial—the largest exponent of s and t have both
increased by y

j

, so the max-degree increases by y
j

. The exponential term is in the desired form and
can absorb the scalar ⇢yj . Therefore, in Line 4, ⇥

ij

(s, t) has the desired form, and the degree of the
polynomial part of the representation increases by y

j

.

In Line 6, suppose ⇥
ij

(s, t) = f(s, t) exp{ast + bs + ct + d}. Then �

i,j+1

(s, t) =

g(s, t) exp
�
a�

k

st +
�
b + a(1 � �

k

)

�
s + c�

k

t +
�
d + c(1 � �

k

)

�
, where g(s, t) = f(s, h(t))

is the composition of f with the affine function h(t) = �
k

t+ 1� �
k

, so g is a bivariate polynomial
of the same degree as f . Therefore, �

i,j+1

(s, t) has the desired form.

We have shown that each PGF retains the desired form. Furthermore, the max-degree of the polyno-
mial is initially equal to

P
i

k=1

y
k

and increases by y
j

for all j = i+ 1 to K, so it is always bounded
by Y =

P
K

k=1

y
k

.

Proof of Theorem 4 (PGF-TAIL-ELIMINATE running time). We assume for simplicity that all poly-
nomials have max-degree equal to the upper bound Y . A bivariate polynomial is represented as a
matrix of Y 2 coefficients for the monomials sitj .

The running time of INIT-SURVIVORS function is dominated by Line 16, which takes O(Y 2

) time.
For each term in the sum, the coefficients of the polynomial (�t + 1 � �)i can be computed in
O(i) = O(Y) time (e.g., by the Binomial Theorem) and then multiplied by f

i

to determine the
coefficients of sitj for all j. This repeats O(Y) times, once for each term in the sum.

The running time of ARRIVALS is O(1).

The running time of SURVIVORS is O(Y 3

). The COMPOSE operation in Line 41 can be structured as
X

i,j

f
ij

si(�t+ 1� �)j =
X

i

si
X

j

f
ij

(�t+ 1� �)j

For each value of i, we compose the univariate polynomial
P

j

f
ij

tj with the affine function �t+1��.
This can be done in O(Y 2

) time, as in the proof of Theorem 2, for a total running time of O(Y 3

).

12

Algorithm 7 PGF-TAIL-ELIMINATE implementation
Input: Vectors �, �, ⇢, y, index i, parameters f, a, b of initial PGF Ai(s) = f(s) exp{as + b} (from PGF-

FORWARD)
Output: Final PGF for unnormalized marginal p(ni, y1:K) in form f(s) exp{as+ b}

1: // Initialize: f(s, t) exp{ast+ bs+ ct+ d}
2: [a, b, c, d, f] INIT-SURVIVORS(a, b, f, �i)
3: for j = i+ 1 to K do
4: [c, d] ARRIVALS(c, d,�k)

5: [a, c, f] EVIDENCE(a, c, f, yk, ⇢k)
6: if k < K then
7: [a, b, c, d, f] SURVIVORS(a, b, c, d, f, �k)
8: end if
9: end for

10: return f(s, 1) exp{(a+ b)s+ (c+ d)}

11: function INIT-SURVIVORS(a, b, f, �)
12: a0 a�
13: b0 b(1� �)
14: c0 0

15: d0 b
16: f 0

(s, t)
P

i fis
i
(�t+ 1� �)i

17: return a0, b0, c0, d0, f 0

18: end function

19: function ARRIVALS(c, d,�)
20: c0 c+ �
21: d0 d� �
22: return c0, d0

23: end function

24: function EVIDENCE(a, c, f, y, ⇢)
25: a0 a(1� ⇢)
26: c0 c(1� ⇢)
27: g 0, df f
28: for ` = 0 to y do

29: g g +

MULT(df, (as+ c)y�`
)

`!(y � `)!
30: df PARTIAL(df, t)
31: end for
32: g COMPOSE(g, t(1� ⇢))
33: g ⇢ysyg
34: return a0, g
35: end function

36: function SURVIVORS(a, b, f, �)
37: a0 a�
38: b0 b+ a(1� �)
39: c0 c�
40: d0 d+ c(1� �)
41: f 0 COMPOSE(f, �t+ 1� �)
42: return a0, b0, f 0

43: end function

The total running time of PGF-TAIL-ELIMINATE excluding the EVIDENCE function is therefore
O(KY 3

).

The running time of one call to EVIDENCE is O(yY 2

log Y). It is dominated by Line 29. The
multiplication in this line can be structured as

⇣X

i,j

(df)
ij

sitj
⌘
(as+ c)y�`

=

X

j

tj
⇣X

i

(df)
ij

si
⌘
(as+ c)y�`

For each value of j, we multiply two univariate polynomials in s whose total degree is at most
Y . This can be done in time O(Y log Y) using a fast Fourier transform. We repeat this at most
Y · y times—once for each possible value of j and `. The total running time of a single call to
EVIDENCE is therefore O(yY 2

log Y). The total running time of all calls to the evidence function is
O(

P
K

j=i+1

y
k

Y 2

log Y) = O(Y 3

log Y).

The overall running time is therefore O(Y 3

(K + log Y)).

D Proof of Theorem 5 — Extracting Marginal Probabilities and Moments

Proof of Theorem 5. We assume for the proof that the PGF is already normalized, which can be
done by setting b b � logZ. For (i) and (ii), we use the following standard facts about PGFs:

13

µ = F (1)

(1) and �2

= F (2)

(1)� µ2

+ µ [3]. Then we have:

µ = F (1)

(1) =

d

ds
f(s)eas+b

���
s=1

= f 0
(1)ea+b

+ af(1)ea+b

= ea+b

mX

i=0

(mf
i

+ af
i

)

= ea+b

mX

i=0

(a+m)f
i

And

F (2)

(1) =

d2

ds2
f(s)eas+b

���
s=1

= f (2)

(1)ea+b

+ 2f (1)

(1)aea+b

+ a2f(1)

= ea+b

⇣
f (2)

(1) + 2af (1)

(1) + a2f(1))
⌘

= ea+b

mX

i=0

�
m(m� 1)f

i

+ 2amf
i

+ a2f
i

�

= ea+b

mX

i=0

((a+m)

2 �m)f
i

For part (iii), we use the following standard fact about the Taylor expansion of the exponential:

eas =
1X

j=0

aj

j!
sj

Then we have:

F (s) =
⇣ mX

i=0

f
i

si
⌘
eas+b

= eb
⇣ mX

i=0

f
i

si
⌘⇣ 1X

j=0

aj

j!
sj
⌘

= eb
mX

i=0

1X

j=0

f
i

aj

j!
si+j

= eb
1X

`=0

s`
min{m,`}X

i=0

f
i

a`�i

(`� i)!

The final expression reveals the unique explicit representation of the PGF as a formal power series in
s. The coefficient of s`, which is equal to the value of the PMF at `, is eb

P
min{m,`}
i=0

f
i

a

`�i

(`�i)!

.

14

	Introduction
	The Poisson Hidden Markov Model
	Variable Elimination with Generating Functions
	Operations on Generating Functions
	The PGF-Forward Algorithm for Poisson HMMs
	Computing Marginals by Tail Elimination
	Extracting Posterior Marginals and Moments

	Experiments
	Conclusion
	Proofs — Operations on Generating Functions
	Implementation of pgf-forward
	Implementation of pgf-tail-eliminate
	Proof of Theorem 5 — Extracting Marginal Probabilities and Moments

