
A Backprop KF Computation Graph Architecture

The architecture of the computation graph corresponding to the BKF used in the synthetic tracking
task is shown in Figure 3. It consists of a feedforward neural network (blue blocks); recurrent part
based on Kalman filter (red blocks); and a block that guarantees positive semidefiniteness of the
observation covariance as well as the loss function (gray blocks). The network outputs a point estimate
of the intermediate observation zt and a vector L̂t, which is used to estimate the covariance Rt of
zt. We enforce the positive definiteness of Rt through Cholesky decomposition by constructing a
lower-triangular matrix Lt from L̂t with exponentiated diagonal elements and by setting Rt = LtL

T
t .

The full description of network is given in Table 3.

The Kalman filter is based on the following dynamical system:

xt+1 = f(xt) + Bwwt dynamics update
zt = Czxt + vt observation inferred from ot : zt = gθ(ot)

yt = Cyxt ground truth observation
(4)

The state vector xt tracks the position and velocity of the system. In the case of linear dynamics, the
dynamics function reduces to f(xt) = Axt. The dynamics noise, wt, and the observation noise, vt,
are assumed to be IID zero mean Gaussian random variables with covariances Q and Rt = LtL

T
t ,

respectively.

The Kalman filter updates are given by

µ′xt+1
= Aµt mean dynamics update

Σ′xt+1
= AΣxt

AT + BwQBT
w covariance dynamics update

Kt+1 = Σ′xt+1
CT(CΣ′xt+1

CT + Rt+1)
−1 Kalman gain

µxt+1
= µ′xt+1

+ Kt+1(zt+1 −Cµ′xt+1
) mean observation update

Σxt+1
= (I−Kt+1C)Σ′xt+1

covariance observation update.

(5)

The extended version of Kalman filters is obtained by setting A =
∂f

(
µ′xt+1

)
∂xt+1

. The recurrence
begins with the observation update. The covariance Σ′x0

is considered as a hyper parameter, and the
initialization scheme for the mean µ′x0

depends on the task at hand. Note that the labels yt represent
noiseless observations and are not incorporated in the Kalman filter updates, but instead they enter
the model at training time through the cost function

l(θ) =

N∑
i=1

T∑
t=1

1

2TN
(Cyµ

(i)
xt
− y

(i)
t )T(Cyµ

(i)
xt
− y

(i)
t ), (6)

where N and T denote the number and the length of training sequences, respectively.

B Synthetic Tracking Experiment

In the tracking experiment, the state vector xt corresponds to the 2D position and the velocity of the
red disk. The dynamics model is a simple integrator, and the dynamics noise is applied only to the
velocity of the disk.

The feedforward network used in the experiments is detailed in Table 3. The network gets a third
person view image as an observation ot (Figure 4). The filter state variables µ′x0

and Σ′x0
are

initialized with the ground truth state identity matrix. We chose this initialization scheme to suppress
the initial transient that would result if the initial estimation error was large.

We trained the model with the ADAM [13] optimizer with the default decay rates. We manually
picked a learning rate that resulted into the lowest validation error and it varied among the models.
We first trained the feedforward net to predict the position of the red disk (feedforward model). The
same parameters where then used in the piecewise KF that filters the feedforward predictions and
learns a constant observation covariance R. The feedforward model was then further fine-tuned
to predict also Rt with a maximum-likelihood objective. The resulting parameters were used to

10



Table 3: Feedforward networks

Tracking Visual Odometry
128x128x3 input tensor, image 150x50x6 input tensor, image + difference image
9x9 conv, 4, stride 2x2; ReLU; resp norm 7x7 conv, 16, stride 1x1; ReLU; resp norm
max-pool 2x2, stride 2x2 5x5 conv, 16, stride 2x1; ReLU; resp norm
9x9 conv, 8, stride 2x2; ReLU; resp norm 5x5 conv, 16, stride 2x1; ReLU; resp norm
max-pool 2x2, stride 2x2 5x5 conv, 16, stride 2x2; ReLU; resp norm; dropout, 0.9
fc, 16, ReLU fc, 128, ReLU
fc, 32, ReLU fc, 128, ReLU
fc, 2 (output, zt); fc, 3 (output, L̂t) fc, 2 (output, zt); fc, 3 (output, L̂t)

initialized both the BKF and the LSTM models. In the case of LSTM, we also removed the output
layers of the feedforward network, and concatenated the last hidden layer activations with the ground
truth initial state of the disk.

C KITTI Visual Odometry

In the 2D visual odometry experiment, the state vector xt is comprised of the coordinates and the
heading of the vehicle, expressed in the inertial frame, as well as forward and angular velocities,
expressed in the ego-centric frame, resulting into five state variables. The observation zt corresponds
to the velocities, and the ground truth observation yt to the position and the heading. The resulting
non-linear dynamics model is then linearized at the current state estimate in accordance with standard
extended Kalman filter updates.

The feedforward network architecture for visual odometry is listed in Table 3. We followed the same
training procedure as explained in Appendix B, with an exception that the feedforward network was
pretrained to predict the velocities, and we omitted the additional pretraining step on the maximum-
likelihood objective. Moreover, for the Kalman filter variants, we learned additionally the dynamics
covariance. For the LSTM model, we found it to be crucial to pretrain also the recurrent layers to
predict yt directly from the ground truth velocities. Therefore, we did not eliminate the bottleneck
output layers of the feedforward network during the final end-to-end finetuning of the LSTM model.
Although we used only monocular camera as an input, the dataset has stereo observation which we
treated as two independent monocular sequences. We further augmented the dataset with mirror
images by flipping them vertically and reversing the sign of the ground truth heading.

11


