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Abstract

We study the problem of learning influence functions under incomplete observa-
tions of node activations. Incomplete observations are a major concern as most
(online and real-world) social networks are not fully observable. We establish
both proper and improper PAC learnability of influence functions under randomly
missing observations. Proper PAC learnability under the Discrete-Time Linear
Threshold (DLT) and Discrete-Time Independent Cascade (DIC) models is estab-
lished by reducing incomplete observations to complete observations in a modified
graph. Our improper PAC learnability result applies for the DLT and DIC models
as well as the Continuous-Time Independent Cascade (CIC) model. It is based
on a parametrization in terms of reachability features, and also gives rise to an
efficient and practical heuristic. Experiments on synthetic and real-world datasets
demonstrate the ability of our method to compensate even for a fairly large fraction
of missing observations.

1 Introduction

Many social phenomena, such as the spread of diseases, behaviors, technologies, or products, can
naturally be modeled as the diffusion of a contagion across a network. Owing to the potentially high
social or economic value of accelerating or inhibiting such diffusions, the goal of understanding
the flow of information and predicting information cascades has been an active area of research
[10,7,9, 14, 1, 20]. A key task here is learning influence functions, mapping sets of initial adopters
to the individuals who will be influenced (also called active) by the end of the diffusion process [10].

Many methods have been developed to solve the influence function learning problem [9, 7, 5, 8, 3,
16, 18, 24, 25]. Most approaches are based on fitting the parameters of a diffusion model based on
observations, e.g., [8, 7, 18, 9, 16]. Recently, Du et al. [3] proposed a model-free approach to learn
influence functions as coverage functions; Narasimhan et al. [16] establish proper PAC learnability of
influence functions under several widely-used diffusion models.

All existing approaches rely on the assumption that the observations in the training dataset are
complete, in the sense that all active nodes are observed as being active. However, this assumption
fails to hold in virtually all practical applications [15, 6, 2, 21]. For example, social media data are
usually collected through crawlers or acquired with public APIs provided by social media platforms,
such as Twitter or Facebook. Due to non-technical reasons and established restrictions on the APIs, it
is often impossible to obtain a complete set of observations even for a short period of time. In turn,
the existence of unobserved nodes, links, or activations may lead to a significant misestimation of the
diffusion model’s parameters [19, 15].

We take a step towards addressing the problem of learning influence functions from incomplete
observations. Missing data are a complicated phenomenon, but to address it meaningfully and
rigorously, one must make at least some assumptions about the process resulting in the loss of data.
We focus on random loss of observations: for each activated node independently, the node’s activation
is observed only with probability r, the retention rate, and fails to be observed with probability

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



1 — r. Random observation loss naturally occurs when crawling data from social media, where rate
restrictions are likely to affect all observations equally.

We establish both proper and improper PAC learnability of influence functions under incomplete
observations for two popular diffusion models: the Discrete-Time Independent Cascade (DIC) and
Discrete-Time Linear Threshold (DLT) models. In fact, randomly missing observations do not
even significantly increase the required sample complexity. The result is proved by interpreting the
incomplete observations as complete observations in a transformed graph,

The PAC learnability result implies good sample complexity bounds for the DIC and DLT mod-
els. However, the PAC learnability result does not lead to an efficient algorithm, as it involves
marginalizing a large number of hidden variables (one for each node not observed to be active).

Towards designing more practical algorithms and obtaining learnability under a broader class of
diffusion models, we pursue improper learning approaches. Concretely, we use the parameterization
of Du et al. [3] in terms of reachability basis functions, and optimize a modified loss function
suggested by Natarajan et al. [17] to address incomplete observations. We prove that the algorithm
ensures improper PAC learning for the DIC, DLT and Continuous-Time Independent Cascade (CIC)
models. Experimental results on synthetic cascades generated from these diffusion models and
real-world cascades in the MemeTracker dataset demonstrate the effectiveness of our approach. Our
algorithm achieves nearly a 20% reduction in estimation error compared to the best baseline methods
on the MemeTracker dataset.

Several recent works also aim to address the issue of missing observations in social network analysis,
but with different emphases. For example, Chierichetti et al. [2] and Sadikov et al. [21] mainly focus
on recovering the size of a diffusion process, while our task is to learn the influence functions from
several incomplete cascades. Myers et al. [15] mainly aim to model unobserved external influence
in diffusion. Duong et al. [6] examine learning diffusion models with missing links from complete
observations, while we learn influence functions from incomplete cascades with missing activations.
Most related to our work are papers by Wu et al. [23] and simultaneous work by Lokhov [13]. Both
study the problem of network inference under incomplete observations. Lokhov proposes a dynamic
message passing approach to marginalize all the missing activations, in order to infer diffusion model
parameters using maximum likelihood estimation, while Wu et al. develop an EM algorithm. Notice
that the goal of learning the model parameters differs from our goal of learning the influence functions
directly. Both [13] and [23] provide empirical evaluation, but do not provide theoretical guarantees.

2 Preliminaries

2.1 Models of Diffusion and Incomplete Observations

Diffusion Model. We model propagation of opinions, products, or behaviors as a diffusion process
over a social network. The social network is represented as a directed graph G = (V, E'), where
n = |V| is the number of nodes, and m = |E| is the number of edges. Each edge e = (u,v) is
associated with a parameter w,,, representing the strength of influence user w has on v. We assume
that the graph structure (the edge set E) is known, while the parameters w,,, are to be learned.
Depending on the diffusion model, there are different ways to represent the strength of influence
between individuals. Nodes can be in one of two states, inactive or active. We say that a node gets
activated if it adopts the opinion/product/behavior under the diffusion process. In this work, we focus
on progressive diffusion models, where a node remains active once it gets activated.

The diffusion process begins with a set of seed nodes (initial adopters) .S, who start active. It then
proceeds in discrete or continuous time: according to a probabilistic process, additional nodes may
become active based on the influence from their neighbors. Let N (v) be the in-neighbors of node v
and A; the set of nodes activated by time ¢. We consider the following three diffusion models:

Discrete-time Linear Threshold (DLT) model [10]: Each node v has a threshold 6, drawn inde-
pendently and uniformly from the interval [0, 1]. The diffusion under the DLT model unfolds in
discrete time steps: a node v becomes active at step t if the total incoming weight from its active
neighbors exceeds its threshold: Zue N4, Wuo > 0,.

Discrete-time Independent Cascade (DIC) model [10]: The DIC model is also a discrete-time
model. The weight w,, € [0, 1] captures an activation probability. When a node u becomes active in
step t, it attempts to activate all currently inactive neighbors in step ¢t + 1. For each neighbor v, it



succeeds with probability w,,,. If it succeeds, v becomes active; otherwise, v remains inactive. Once
u has made all these attempts, it does not get to make further activation attempts at later times.

Continuous-time Independent Cascade (CIC) model [8]: The CIC model unfolds in continuous
time. Each edge e = (u, v) is associated with a delay distribution with w,,, as its parameter. When a
node u becomes newly active at time ¢, for every neighbor v that is still inactive, a delay time d,,, is
drawn from the delay distribution. d,,, is the duration it takes w to activate v, which could be infinite
(if v does not succeed in activating v). Nodes are considered activated by the process if they are
activated within a specified observation window [0, 7].

Fix one of the diffusion models defined above and its parameters. For each seed set S, let Ag
be the distribution of final active sets. (In the case of the DIC and DLT model, this is the set of
active nodes when no new activations occur; for the CIC model, it is the set of nodes active at
time 7.) For any node v, let F,,(S) = Proba.a,[v € A] be the (marginal) probability that v
is activated according to the dynamics of the diffusion model with initial seeds S. Then, define
the influence function F : 2V — [0,1]" mapping seed sets to the vector of marginal activation
probabilities: F'(S) = [F1(S5),..., F,,(S)]. Notice that the marginal probabilities do not capture the
full information about the diffusion process contained in Ag (since they do not observe co-activation
patterns), but they are sufficient for many applications, such as influence maximization [10] and
influence estimation [4].

Cascades and Incomplete Observations. We focus on the problem of learning influence functions
from cascades. A cascade C' = (S, A) is a realization of the random diffusion process; S is the set of
seeds and A ~ Ag, A D S is the set of activated nodes at the end of the random process. Similar to
Narasimhan et al. [16], we focus on activation-only observations, namely, we only observe which
nodes were activated, but not when these activations occurred.!

To capture the fact that some of the node activations may have been unobserved, we use the following
model of independently randomly missing data: for each (activated) node v € A\ S, the activation of
v is actually observed independently with probability . With probability 1 — r, the node’s activation
is unobservable. For seed nodes v € S, the activation is never lost. Formally, define A as follows:
each v € S is deterministically in A, and each v € A \ Sisin A independently with probability 7.
Then, the incomplete cascade is denoted by C' = (S, A).

2.2 Objective Functions and Learning Goals

To measure estimation error, we primarily use a quadratic loss function, as in [16, 3]. For two
n-dimensional vectors x, y, the quadratic loss is defined as (y(z,y) = L - []z — y||3. We also use
this notation when one or both arguments are sets: when an argument is a set .S, we formally mean to
use the indicator function x s as a vector, where xg(v) = 1 if v € S, and xs(v) = 0 otherwise. In
particular, for an activated set A, we write (s (A4, F(S)) = ||xa — F(9)|[3.

We now formally define the problem of learning influence functions from incomplete observations.
Let P be a distribution over seed sets (i.e., a distribution over 2V), and fix a diffusion model M and
parameters, together giving rise to a distribution A g for each seed set. The algorithm is given a set
of M incomplete cascades C = {(S1, A1), ..., (Swm, Anr)}, where each S; is drawn independently
from P, and A; is obtained by the incomplete observation process described above from the (random)
activated set A; ~ Ag,. The goal is to learn an influence function F' that accurately captures the
diffusion process. Accuracy of the learned influence function is measured in terms of the squared
error with respect to the true model: erry[F] = Egwp a~nag [Usq(A, F(S))]. That is, the expectation
is over the seed set and the randomness in the diffusion process, but not the data loss process.

PAC Learnability of Influence Functions. We characterize the learnability of influence functions
under incomplete observations using the Probably Approximately Correct (PAC) learning frame-
work [22]. Let F 4 be the class of influence functions under the diffusion model M, and F, the class
of influence functions the learning algorithm is allowed to choose from. We say that F 4 is PAC learn-
able if there exists an algorithm .A with the following property: for all ¢,6 € (0, 1), all parametriza-
tions of the diffusion model, and all distributions P over seed sets S: when given activation-only

"Narasimhan et al. [16] refer to this model as partial observations; we change the terminology to avoid
confusion with “incomplete observations.”



and incomplete training cascades C = {(S1, Ay),..., (S, Arr)} with M > poly(n,m,1/e,1/6),
A outputs an influence function F' € F satisfying Prob[erry[F] — erryg[F*] > €] < 6.

Here, F'* € F, is the ground truth influence function. The probability is over the training cascades,
including the seed set generation, the stochastic diffusion process, and the missing data process.
We say that an influence function learning algorithm A is proper if F C Fay; that is, the learned
influence function is guaranteed to be an instance of the true diffusion model. Otherwise, we say that
A is an improper learning algorithm.

3 Proper PAC Learning under Incomplete Observations

In this section, we establish proper PAC learnability of influence functions under the DIC and DLT
models. For both diffusion models, F 4 can be parameterized by an edge parameter vector w, whose
entries w, are the activation probabilities (DIC model) or edge weights (DLT model). Our goal is to
find an influence function F'*¥ € F, that outputs accurate marginal activation probabilities. While
our goal is proper learning — meaning that the function must be from Fx, — we do not require
that the inferred parameters match the true edge parameters w. Our main theoretical results are
summarized in Theorems 1 and 2.

Theorem 1. Ler A € (0,0.5). The class of influence functions under the DIC model in which all
edge activation probabilities satisfy we € [A\,1 — M| is PAC learnable under incomplete observations

. . . . ~ 3
with retention rate . The sample complexity® is O( Tt )-
Theorem 2. Ler A € (0,0.5), and consider the class of influence functions under the DLT model such
that the edge weight for every edge satisfies w, € [\, 1— )|, and for every node v, 1 —ZueN(v) Wyy €
[\, 1 — X]. This class is PAC learnable under incomplete observations with retention rate r. The
n3m
e2rt )

sample complexity is O(

In this section, we present the intuition and a proof sketch for the two theorems. Details of the proof
are provided in Appendix B.

The key idea of the proof of both theorems is that a set of incomplete cascades C on G under the two
models can be considered as essentially complete cascades on a transformed graph G = (V, E). The

influence functions of nodes in G can be learned using a modification of the result of Narasimhan et
al. [16]. Subsequently, the influence functions for G are directly obtained from the influence functions

for G, by exploiting that influence functions only focus on the marginal activation probabilities.

The transformed graph G is built by adding a layer of n nodes to the graph G. For each node v € V'
of the original graph, we add a new node v’ € V' and a directed edge (v,v’) with known and fixed
edge parameter w,,» = 7. (The same parameter value serves as activation probability under the DIC
model and as edge weight under the DLT model.) The new nodes V' have no other incident edges,
and we retain all edges e = (u,v) € E. Inferring their parameters is the learning task.

For each observed (incomplete) cascade (S;, fli) on G (with S; C fli), we produce an observed

activation set A as follows: (1) for each v € A4; \ S;, we let v’ € A} deterministically; (2) for each
v € S; independently, we include v' € A} with probability r. This defines the training cascades

¢ ={(Si, AD}.

Now consider any edge parameters w, applied to both G and the first layer of G. Let F(S) denote
the influence function on G, and F'(S) = [Fy/(S), ..., F,/(5)] the influence function of the nodes
in the added layer V' of GG. Then, by the transformation, for all nodes v € V, we get that

Fv’(5> = TE)(S) (D

And by the definition of the observation loss process, Prob[v € A;] = r- F,(S) = F,/(S) for all
non-seed nodes v ¢ S;.

While the cascades C are not complete on all of G, ina precise sense, they provide complete
information on the activation of nodes in V'. In Appendix B, we show that Theorem 2 of Narasimhan

et al. [16] can be extended to provide identical guarantees for learning F (S) from the modified

2The O notation suppresses poly-logarithmic dependence on 1/, 1/§, n, and m.



observed cascades C. For the DIC model, this is a straightforward modification of the proof from
[16]. For the DLT model, [16] had not established PAC learnability?, so we provide a separate proof.

Because the results of [16] and our generalizations ensure proper learning, they provide edge
weights w between the nodes of V. We use these exact same edge weights to define the learned
influence functions in G. Equation (1) then implies that the learned influence functions on V' satisfy
F,(S) = % - F\,/(S). The detailed analysis in Appendix B shows that the learning error only scales

by a multiplicative factor 2.

The PAC learnability result shows that there is no information-theoretical obstacle to influence
function learning under incomplete observations. However, it does not imply an efficient algorithm.
The reason is that a hidden variable would be associated with each node not observed to be active,
and computing the objective function for empirical risk minimization would require marginalizing
over all of the hidden variables. The proper PAC learnability result also does not readily generalize to
the CIC model and other diffusion models, even under complete observations. This is due to the lack
of a succinct characterization of influence functions as under the DIC and DLT models. Therefore,
in the next section, we explore improper learning approaches with the goal of designing practical
algorithms and establishing learnability under a broader class of diffusion models.

4 Efficient Improper Learning Algorithm

Instead of parameterizing the influence functions using the edge parameters, we adopt the model-free
influence function learning framework, InfluLearner, proposed by Du et al. [3] to represent the
influence function as a sum of weighted basis functions. From now on, we focus on the influence
function F,(.S) of a single fixed node v.

Influence Function Parameterization. For all three diffusion models (CIC, DIC and DLT), the
diffusion process can be characterized equivalently using live-edge graphs. Concretely, the results
of [10, 4] state that for each instance of the CIC, DIC, and DLT models, there exists a distribution
T over live-edge graphs H assigning probability vz to each live-edge graph H such that F*(S) =

ZH:at least one node in S has a path to v in H VH-

To reduce the representation complexity, notice that from the perspective of activating v, two different
live-edge graphs H, H' are “equivalent” if v is reachable from exactly the same nodes in H and
H'. Therefore, for any node set T', Iet 87 1= 3 5., ucrty the nodes in T have paths to v in & VH- We then use
characteristic vectors as feature vectors rr = xr, where we will interpret the entry for node u
as u having a path to v in a live-edge graph. More precisely, let ¢(x) = min{z, 1}, and x g the
characteristic vector of the seed set S. Then, gzb(x—sr -rp) = 1 if and only if v is reachable from S,
and we can write 7 (S) = > B - d(x 4 - ).

This representation still has exponentially many features (one for each 7). In order to make the learn-
ing problem tractable, we sample a smaller set 7 of K features from a suitably chosen distribution,
implicitly setting the weights S of all other features to 0. Thus, we will parametrize the learned
influence function as F2(S) = > 7.+ Br - d(x§ - ).

The goal is then to learn weights S for the sampled features. (They will form a distribution, i.e.,
[|B]]1 = 1 and 8 > 0.) The crux of the analysis is to show that a sufficiently small number K of
features (i.e., sampled sets) suffices for a good approximation, and that the weights can be learned
efficiently from a limited number of observed incomplete cascades. Specifically, we consider the
log likelihood function ¢(¢,y) = ylogt + (1 — y)log(1 — t), and learn the parameter vector (a

distribution) by maximizing the likelihood Zf\il UEP(S:), xa,(v)).

Handling Incomplete Observations. The maximum likelihood estimation cannot be directly ap-
plied to incomplete cascades, as we do not have access to A; (only the incomplete version A;). To
address this issue, notice that the MLE problem is actually a binary classification problem with log
loss and y; = x4, (v) as the label. From this perspective, incompleteness is simply class-conditional
noise on the labels. Let y; = x ;. (v) be our observation of whether v was activated or not under
the incomplete cascade i. Then, Prob[g; = 1]y; = 1] = r and Prob[g; = 1|y; = 0] = 0. In words,

3[16] shows that the DLT model with fixed thresholds is PAC learnable under complete cascades. We study
the DLT model when the thresholds are uniformly distributed random variables.



the incomplete observation y; suffers from one-sided error compared to the complete observation y;.
By results of Natarajan et al. [17], we can construct an unbiased estimator of ¢(¢, y) using only the
incomplete observations ¥, as in the following lemma.

Lemma 3 (Corollary of Lemma 1 of [17]). Ler y be the true activation of node v and y the
incomplete observation. Then, defining {(t,y) := %y logt + 2=L(1 — y) log(1 — t), for any t, we

have Eg {E(t,gj)} ={(t,y). '

Based on this lemma, we arrive at the final algorithm of solving the maximum likelihood estimation
problem with the adjusted likelihood function (¢, y):

Maximize Zf\il E(Ff(si)»XAi(U)) )
subject to 18l =1,8>0.

We analyze conditions under which the solution to (2) provides improper PAC learnability under
incomplete observations; these conditions will apply for all three diffusion models.

These conditions are similar to those of Lemma 1 in the work of Du et al. [3], and concern the
approximability of the reachability distribution ;.. Specifically, let ¢ be a distribution over node
sets T such that ¢(T") < C'85. for all node sets T'. Here, C'is a (possibly very large) number that we
will want to bound below. Let 71, ..., Tk be K i.i.d. samples drawn from the distribution g. The
features are then 7, = X1, . We use the truncated version of the function F/%*(.S) with parameter* \
asin [3]: EPA(S) = (1 =20\ FP(S) + A

Let M be the class of all such truncated influence functions, and Ff“ € M, the influence
functions obtained from the optimization problem (2). The following theorem (proved in Appendix C)
establishes the accuracy of the learned functions.

~ 2
Theorem 4. Assume that the learning algorithm uses K = Q(%) features in the influence function

it constructs, and observes® M = Q(ljfﬁ) incomplete cascades with retention rate r. Then, with

probability at least 1 — 6, the learned influence functions Ff’)‘ for each node v and seed distribution
P satisfy Egp [(FU‘“(S) —Fx9)?] <

The theorem implies that with enough incomplete cascades, an algorithm can approximate the ground
truth influence function to arbitrary accuracy. Therefore, all three diffusion models are improperly
PAC learnable under incomplete observations. The final sample complexity does not contain the graph
size, but is implicitly captured by C, which will depend on the graph and how well the distribution
B+ can be approximated. Notice that with = 1, our bound on M has logarithmic dependency on C
instead of polynomial, as in [3]. The reason for this improvement is discussed further in Appendix C.

Efficient Implementation. As mentioned above, the features 7' cannot be sampled from the exact
reachability distribution 37, because it is inaccessible (and complex). In order to obtain useful
guarantees from Theorem 4, we follow the approach of Du et al. [3], and approximate the distribution
B with the product of the marginal distributions, estimated from observed cascades.

The optimization problem (2) is convex and can therefore be solved in time polynomial in the number
of features K. However, the guarantees in Theorem 4 require a possibly large number of features. In
order to obtain an efficient algorithm for practical use and our experiments, we sacrifice the guarantee
and use a fixed number of features.

5 Experiments

In this section, we experimentally evaluate the algorithm from Section 4. Since no other methods
explicitly account for incomplete observations, we compare it to several state-of-the-art methods
for influence function learning with full information. Hence, the main goal of the comparison is to
examine to what extent the impact of missing data can be mitigated by being aware of it. We compare

“The proof of Theorem 4 in Appendix C will show how to choose ).

The € notation suppresses all logarithmic terms except log C, as C could be exponential or worse in the
number of nodes.
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Figure 1: MAE of estimated influence as a function of the retention rate on synthetic datasets for (a)
CIC model, (b) DIC model, (c) DLT model. The error bars show one standard deviation.

our algorithm to the following approaches: (1) CIC fits the parameters of a CIC model, using the
NetRate algorithm [7] with exponential delay distribution. (2) DIC fits the activation probabilities
of a DIC model using the method in [18]. (3) InfluLearner is the model-free approach proposed
by Du et al. in [3] and discussed in Section 4. (4) Logistic uses logistic regression to learn the
influence functions F,(S) = f(x¢ - ¢y +b) for each u independently, where c,, is a learnable weight
vector and f(x) = H% is the logistic function. (5) Linear uses linear regression to learn the total

influence o(S) = ¢' - x5 + b of the set S. Notice that the CIC and DIC methods have access to
the activation time of each node in addition to the final activation status, giving them an inherent
advantage.

5.1 Synthetic cascades

Data generation. We generate synthetic networks with core-peripheral structure following the
Kronecker graph model [12] with parameter matrix [0.9,0.5;0.5,0.3].5 Each generated network
has 512 nodes and 1024 edges. Subsequently, we generate 8192 cascades as training data using
the CIC, DIC and DLT models, with random seed sets whose sizes are power law distributed. The
retention rate is varied between 0.1 and 0.9. The test set contains 200 independently sampled seed
sets generated in the same way as the training data. Details of the data generation process are provided
in Appendix A.

Algorithm settings. We apply all algorithms to cascades generated from all three models; that
is, we also consider the results under model misspecification. Whenever applicable, we set the
hyperparameters of the five comparison algorithms to the ground truth values. When applying the
NetRate algorithm to discrete-time cascades, we set the observation window to 10.0. When applying
the method in [18] to continuous-time cascades, we round activation times up to the nearest multiple
of 0.1, resulting in 10 discrete time steps. For the model-free approaches (InfluLearner and our
algorithm), we use K = 200 features.

Results. Figure 1 shows the Mean Absolute Error (MAE) between the estimated total influence
o(S) and the true influence value, averaged over all testing seed sets. For each setting (diffusion
model and retention rate), the reported MAE is averaged over five independent runs.

The main insight is that accounting for missing observations indeed strongly mitigates their effect:
notice that for retention rates as small as 0.5, our algorithm can almost completely compensate for
the data loss, whereas both the model-free and parameter fitting approaches deteriorate significantly
even for retention rates close to 1. For the parameter fitting approaches, even such large retention
rates can lead to missing and spurious edges in the inferred networks, and thus significant estimation
errors. Additional observations include that fitting influence using (linear or logistic) regression
does not perform well at all, and that the CIC inference approach appears more robust to model
misspecification than the DIC approach.

Sensitivity of retention rate. We presented the algorithms as knowing 7. Since r itself is inferred
from noisy data, it may be somewhat misestimated. Figure 2 shows the impact of misestimating 7.
We generate synthetic cascades from all three diffusion models with a true retention rate of 0.8, and

We also experimented on Kronecker graphs with hierarchical community structure ([0.9, 0.1; 0.1, 0.9]) and
random structure ([0.5, 0.5; 0.5, 0.5]). The results are similar and omitted due to space constraints.
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then apply our algorithm with (incorrect) retention rate r € {0.6,0.65, ...,0.95,1}. The results are
averaged over five independent runs. While the performance decreases as the misestimation gets
worse (after all, with » = 1, the algorithm is basically the same as InfluLearner), the degradation is
graceful.

5.2 Influence Estimation on real cascades

We further evaluate the performance of our method on the real-world MemeTracker’ dataset [11].
The dataset consists of the propagation of short textual phrases, referred to as Memes, via the
publication of blog posts and main-stream media news articles between March 2011 and February
2012. Specifically, the dataset contains seven groups of cascades corresponding to the propagation

ERINNT3 CEINNT3

of Memes with certain keywords, namely “apple and jobs”, “tsunami earthquake”, “william kate
marriage”’, “occupy wall-street”, “airstrikes”, “egypt” and “elections.” Each cascade group consists
of 1000 nodes, with a number of cascades varying from 1000 to 44000. We follow exactly the same

evaluation method as Du et al. [3] with a training/test set split of 60%/40%.

To test the performance of influence function learning under incomplete observations, we randomly
delete 20% of the occurrences, setting » = 0.8. The results for other retention rates are similar and
omitted. Figure 3 shows the MAE of our methods and the five baselines, averaged over 100 random
draws of test seed sets, for all groups of memes. While some baselines perform very poorly, even
compared to the best baseline (InfluLearner), our algorithm provides an 18% reduction in MAE
(averaged over the seven groups), showing the potential of data loss awareness to mitigate its effects.

6 Extensions and Future Work

In the full version available on arXiv, we show both experimentally and theoretically how to generalize
our results to non-uniform (but independent) loss of node activations, and how to deal with a
misestimation of the retention rate . Any non-trivial partial information about r leads to positive
PAC learnability results.

A much more significant departure for future work would be dependent loss of activations, e.g., losing
all activations of some randomly chosen nodes. As another direction, it would be worthwhile to
generalize the PAC learnability results to other diffusion models, and to design an efficient algorithm
with PAC learning guarantees.
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