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Abstract

We consider the problem of finding the best arm in a stochastic Multi-armed
Bandit (MAB) game and propose a general framework based on verification that
applies to multiple well-motivated generalizations of the classic MAB problem. In
these generalizations, additional structure is known in advance, causing the task of
verifying the optimality of a candidate to be easier than discovering the best arm.
Our results are focused on the scenario where the failure probability § must be very
low; we essentially show that in this high confidence regime, identifying the best
arm is as easy as the task of verification. We demonstrate the effectiveness of our
framework by applying it, and matching or improving the state-of-the art results in
the problems of: Linear bandits, Dueling bandits with the Condorcet assumption,
Copeland dueling bandits, Unimodal bandits and Graphical bandits.

1 Introduction

The Multi-Armed Bandit (MAB) game is one where in each round the player chooses an action,
also referred to as an arm, from a pre-determined set. The player then gains a reward associated
with the chosen arm and observes the reward while rewards associated with the other arms are not
revealed. In the stochastic setting, each arm « has a fixed associated value p(z) throughout all rounds,
and the reward associated with the arm is a random variable, independent of the history, with an
expected value of p(x). In this paper we focus on the pure exploration task [9] in the stochastic
setting where our objective is to identify the arm maximizing p(«) with sufficiently high probability,
while minimizing the required number of rounds, otherwise known as the query complexity. This
task, as opposed to the classic task of maximizing the sum of accumulated rewards is motivated
by numerous scenarios where exploration (i.e. trying multiple options) is only possible in an initial
testing phase, and not throughout the running time of the game.

As an example consider a company testing several variations of a (physical) product, and then once
realizing the best one, moving to a production phase where the product is massively produced and
shipped to numerous vendors. It is very natural to require that the identified option is the best one
with very high probability, as a mistake can be very costly. Generally speaking, the vast majority of
uses-cases of a pure exploration requires the error probability J to be very small, so much so that
even a logarithmic dependence over § is non-negligible. Another example to demonstrate this is that
of explore-then-exploit type algorithms. There are many examples of papers providing a solution to a
regret based MAB problem where the first phase consists of identifying the best arm with probability
atleast 1 — 1/T, and then using it in the remainder of the rounds. Here, § = 1/7T is often assumed to
be the only non-constant.

We do not focus on the classic MAB problem but rather on several extensions of it for settings where
we are given as input some underlying structural properties of the reward function p. We elaborate
on the formal definitions and different scenarios in Section 2. Another extension we consider is that
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of Dueling Bandits where, informally, we do not query a single arm but rather a pair, and rather than
observing the reward of the arms we observe a hint as to the difference between their associated p
values. Each extension we discuss is motivated by different scenarios which we elaborate on in the
upcoming sections. In all of the cases mentioned, we focus on the regime of high confidence meaning
where the failure probability J is very small.

Notice that due to the additional structure (that does not exist in the classic case), verifying a candidate
arm is indeed the best arm can be a much easier task, at least conceptually, compared to that of
discovering which arm is the best. This observation leads us to the following design: Explore the
arms and obtain a candidate arm that is the best arm w.p. 1 — k for some constant «, then verify it
is indeed the best with confidence 1 — §. If the exploration procedure happened to be correct, the
query complexity of the problem will be composed of a sum of two quantities. One is that of the
exploration algorithm that is completely independent of 4, and the other is dependent of § but is
the query complexity of the easier verification task. The query complexity is either dominated by
that of the verification task, or by that of the original task with a constant failure probability. Either
way, for small values of § the savings are potentially huge. As it turns out, as discussed in Section 3,
a careful combination of an exploration and verification algorithm can achieve an expected query
complexity of Hexpiore + Hyerity Where Hexpiore 1S the exploration query complexity, independent of d,
and H..fy is the query complexity of the verification procedure with confidence 1 — ¢. Below, we
design exploration and verification algorithms for the problems of: Dueling bandits §4, Linear bandits
§5, Unimodal graphical bandits §6 and Graphical bandits' . In the corresponding sections we provide
short reviews of each MAB problem, and analyze their exploration and verification algorithms. Our
results improve upon the state-of-the-art results in each of these mentioned problem (See Table 1 for
a detailed comparison).

Related Works: We are aware of one attempt to capture multiple (stochastic) bandit problems
in a single frameworks, given in [20]. The focus there is mostly on problems where the observed
random variables do not necessarily reflect the reward, such as the dueling bandit problem, rather
than methods to exploit structure between the arms. For example, in the case of the dueling bandit
problem with the Condorcet assumption their algorithm does not take advantage of the structural
properties and the corresponding query complexity is larger than that obtained here (see Section 4.1).
We review the previous literature of each specific problem in the corresponding sections.

2 Formulation of Bandit Problems

The pure exploration Multi-Armed Bandit (MAB) problem, in the stochastic setting, can be generally
formalized as follows. Our input consists of a set K of arms, where each arm z is associated with
some reward p(z). In each round ¢ we play an arm x; and observe the outcome of a random variable
whose expected value is p(x4). Other non-stochastic settings exist yet they are outside the scope of
our paper; see [4] for a survey on bandit problems, including the stochastic and non-stochastic settings.
The objective in the best arm identification problem is to identify the arm? z* = arg max pu(x) while
minimizing the expected number of queries to the reward values of the arms. Other than the classic
MAB problem, where [ is a finite set and y is an arbitrary function there exist other frameworks
where some structure is assumed regarding the behavior of u over the arms of . An example for a
common framework matching this formulation, that we will analyze in detail in Section 5, is that
of the linear MAB. Here, K is a compact subset of R<, and the reward function 1 1s assumed to be
linear. Unlike the classic MAB case, an algorithm can take advantage of the structure of ;2 and obtain
a performance that is independent of the size of . Yet another example, discuss in Section 6, is that
of unimodal bandits, where we are given a graph whose vertices are the arms, and it is guaranteed
that the best arm is the unique arm having a maximal value among its neighbors in the graph.

The above general framework captures many variants of the MAB problem, yet does not capture
the Dueling Multi Armed Bandit (DMAB) problem. Here, the input as before consists of a set of
arms denoted by IC yet we are not allowed to play a single arm in a round but rather a pair x,y € K.
The general definition of the observation from playing the pair =,y is a random variable whose

Do to space restrictions we defer the section of Graphical bandits [7] to the extended version.

>This objective is naturally extended in the PAC setting where we are interested in an arm that is approximately
the best arm. For simplicity we restrict our focus to the best arm identification problem. We note that our general
framework of exploration and verification can be easily expanded to handle the PAC setting as well.



expected value is P(z,y) where P : L x K — R. The original motivating example for the DMAB
[22] problem is that of information retrieval, where a query to a pair of arms is a presentation of the
interleaved results of two ranking algorithms. The output is the 0 or 1, depending on the choice of the
user, i.e. whether she chose a result from one or ranker or the other. The i score here can be thought
of a quality score for a ranker, defined according to the P scores. We elaborate on the motivation
for the MAB problem and the exact definition of the best arm in Section 4. In an extended version
of this paper we discuss the problem of graphical bandits that is in some sense a generalization of
the dueling bandit problem. There, we are not allowed to query any pair but rather pairs from some
predefined set £ C IC x K.

3 Boosting the Exploration Process with a Verification Policy

In what follows we present results for different variants of the MAB problem. We discuss two types
of problems. The first is the well known pure exploration problem. Our input is the MAB instance,
including the set of arms and possible structural information, and a confidence parameter «. The
objective is to find the best arm w.p. at least 1 — x while using a minimal number of queries. We
often discuss variants of the exploration problem where in addition to finding the best arm, we wish
to obtain some additional information about the problem such as an estimate of the gaps of the reward
value of suboptimal arms from the optimal one, the identity of important arm pairs, etc. We refer
to this additional information as an advice vector #, and our objective is to minimize queries while
obtaining a sufficiently accurate advice vector and the true optimal arm with probability at least
1 — k. For each MAB problem we describe an algorithm referred to as FindBestArm with a query
complexity of® Hexplore - log(1/x) that obtains an advice vector 6 that is sufficiently accurate* w.p. at
least 1 — K.

Definition 1. Ler FindBestArm be an algorithm that given the MAB problem and confidence param-
eter k > 0 has the following guarantees. (1) with probability at least 1 — k it outputs a correct best
arm and advice vector 0. (2) its expected query complexity is Howpiore - 10g(1/K), where Hoypiore is
some instance specific complexity (that is not required to be known).

The second type of problem is that of verification. Here we are given as input not only the MAB
problem and confidence parameter J, but an advice vector 6, including the identity of a candidate
optimal arm.

Definition 2. Let VerifyBestArm be an algorithm that given the MAB problem, confidence parameter
0 > 0 and an advice vector 0 including a proposed identity of the best arm, has the following
guarantees. (1) if the candidate optimal arm is not the actual optimal arm, the output is ‘fail’ w.p. at
least 1 — 4. (2) if the advice vector is sufficiently accurate, and in particular the candidate is indeed
the optimal arm, we should output ‘success’ w.p. at least 1 — . (3) if the advice vector is sufficiently
accurate the expected query complexity is H,.ip, 10g(1/8). Otherwise, it is Hepiore 10g(1/9).

It is very common that Hyerity < Hexplore @s it is clearly an easier problem to simply verify the
identity of the optimal arm rather than discover it. Our main result is thus somewhat surprising as
it essentially shows that in the regime of high confidence, the best arm identification problem is as
easy as verifying the identity of a candidate. Specifically we provide a complexity that is additive in
Hexplore and log(1/0) rather than multiplicative. The formal result is as follows.

Algorithm 1 Explore-Verify Framework

Input: Best arm identification problem, Oracle access to FindBestArm and VerifyBestArm with
failure probability tuning, failure probability parameter J, parameter «.
forallr=1...do
Call FindBestArm with failure probability «, denote by 6 its output.
Call VerifyBestArm with advice vector 6, that includes a candidate best arm z, and failure
probability §/ 272, If succeeded, return . Else, continue to the next iteration
end for

The general form of such algorithms is in fact H; log(1/x) + Ho. For simplicity we state our results for
the form H log(1/k); the general statements are an easy modification.
“The exact definition of sufficiently accurate is given per problem instance.



Theorem 3. Assume that algorithm 1 is given oracle access to FindBestArm and VerifyBestArm
with the above mentioned guarantees, and a confidence parameter § < 1/3. For any k < 1/3, the
algorithm identifies the best arm with probability 1 — § while using an expected number of at most

O (Hexplore IOg(l/’i) + (Hverify + K- Hexplore) 10g(1/6))

The following provides the guarantees for two suggested values of «. The first may not be known to
us but can very often be estimated beforehand. The second depends only on § hence is always known
in advance.

Corollary 4. By setting & = min {1/3, Hyeyify/ Hexpiore }» algorithm 1 has an expected number of at
most

O(Hexplore log(He.xpl()re/HL'erifv) + Hverify 1Og(1/5))
queries. By setting kK = min{1/3,1/log(1/6)}, algorithm 1 has an expected query complexity of at

most
O(Hexplore 10g(log(1/6)) + Hyeripy log(1/6))

Notice that by setting x to min {1/3,1/log(1/6)}, for any practical use-case, the dependence on ¢
in the left summand is nonexistent. In particular, this default value for x provides a multiplicative
saving of either Heypiore / Hverity, 1.€. the ratio between the exploration and verification problem, or

%. Since log(1/0) is rarely a negligible term, and as we will see in what follows, neither is

Hexplore / Herify, the savings are significant, hence the effectiveness of our result.

Proof of Theorem 3. In the analysis we often discuss the output of the sub-procedures in round r > 1,
even if the algorithm terminated before round 7. We note that these values are well-defined random
variables regardless of the fact that we may not reach the round. To prove the correctness of the
algorithm notice that since >~ | r~—2 < 2 we have with probability at least 1 — § that all runs of
VerifyBestArm do not err. Since we halt only when VerifyBestArm outputs ‘success’ our algorithm
indeed outputs the best arm w.p. at least 1 — §

We proceed to analyze the expected query complexity, and start with a simple observation. Let
QC;pg1e (1) denote the expected query complexity in round r, and let Y;. be the indicator variable to
whether the algorithm reached round . Since Y, is independent of the procedures running in round r
and in particular of the number of queries required by them, we have that the total expected query
complexity is

E

Z KQCsingle(r)] = Z E [YT] B [chingle(r)]
r=1 r=1

Hence, we proceed to analyze I [QCgge ()] and E[Y,] separately. For E [QCq,g.(r)] we have
E [chingle(r)] < HEXplore IOg(l/K)—i_

2r?
((1 - H) Hverify + K:Hexplore) log <6> <

272
Hexplore IOg(]-/"i) + (HHexplore + Hverify) IOg (6)

To explain the first inequality, the first summand is the complexity of FindBestArm . The second
summand is that of VerifyBestArm , that is decomposed to the complexity in the scenario where
FindBestArm succeeded vs. the scenario where it failed. To compute E[Y;], we notice that Y. is an
indicator function hence E[Y;] = Pr[Y;. = 1]. In order for Y, to take the value of 1 we must have that
for all rounds 7’ < r either VerifyBestArm or FindBestArm have failed. Since the failure or success of
the algorithms at different rounds are independent we have

1)
pilt = 1)< T () <27
r’'<r

The last inequality is since d, x < 1/3. We get that the expected number of queries required by the
algorithm is at most

o
» 2r2
2:3 .2 (H Log(1/k) + (i Hospore + Hrerity) 108 (5)) B
r=1
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Table 1: Comparison between the results obtained by our techniques and the state-of-the-art results in several bandit problem. K represents
the total number of arms, § the failure probability; in the case of linear bandits, d is the dimension of the space in which the arms lie. The
definitions the rest of the problem specific quantities are given in the corresponding sections. The ratio between the solutions, for a typical case
is given in the last column.

2. Z 27" (Hexplore log(l/ﬁ) + (K:Hexplore + Hverify) log(l/é)) +
r=1

2- Z 27" 10g(27“2) (HHexplore + Hverify) =0 (Hexplore log(l/ﬁ) + (ﬁHexplore + Hverify) 1Og(1/6))
r=1

O

In the following sections we provide algorithms for several bandit problems using the framework
of Theorem 3. In Table 1 we provide a comparison between the state-of-the-art results prior to this
paper and the results here.

4 Application to Dueling Bandits

The dueling bandit problem, introduced in [22], arises naturally in domains where feedback is
more reliable when given as a pairwise preference (e.g., when it is provided by a human) and
specifying real-valued feedback instead would be arbitrary or inefficient. Examples include ranker
evaluation [14, 23, 12] in information retrieval, ad placement and recommender systems. As with
other preference learning problems [10], feedback consists of a pairwise preference between a
selected pair of arms, instead of scalar reward for a single selected arm, as in the K -armed bandit
problem.

The formulation of the problem is the following. Given a set of arms /C, a query is to a pair x,y € K
and its output is a r.v. in {—1,1} with an expected reward of P;;. It is assumed that P is anti-
symmetric meaning® P(x,y) = —P(y, ) and the p values are determined by those of P. One
common assumption regarding P is the existence of a Condorcet winner, meaning there exist some
x* € K for which P(x*,y) > 0 for all y € K. In this case, * is defined as the best arm and the
reward associated with arm y is typically P(z*,y). A more general framework can be considered
where a Condorcet winner is not assumed to exist. In the absence of a Condorcet winner there is no
clear answer as to which arm is the best; several approaches are discussed in [20], [5], and recently in
[8, 3], that use some of the notions proposed by social choice theorists, such as the Copeland score or
the Borda score to measure the quality of each arm, or game theoretic concepts to determine the best
worst-case strategy over arms; we do not elaborate on all of them as they are outside the scope of this
paper. In Appendix B.2 we discuss one solution based on the Copeland score, where u(x) is defined
as the number of arm y # x where P(x,y) > 0.

A general framework capturing both the MAB and DMAB scenarios is that of partial monitoring
games introduced by [18]. In this framework, when playing an arm /C one obtains a reward p(x) yet
observes a different function h(x). Some connection between h and i is known in advance and based
on it, one can design a strategy to discover the best arm or minimize regret. As we do not present
results regarding this framework we do not elaborate on it any further, but rather mention that our
results, in terms of query complexity, cannot be matched by the existing results there.

*It is actually common to define the output of P as a number in [0, 1] and have P(z,y) = 1 — P(y, ), but
both definitions are equivalent up to a linear shift of P.



4.1 Dueling Bandits with the Condorcet Assumption

The Condorcet assumption in the Dueling bandit setting asserts the existence of an arm =* that beats
all other arms. In this section we discuss a solution for finding this arm under the assumption of its
existence. Recall that the observable input consists of a set of arms /C of size K. There is assumed
to exist some matrix P mapping each pair of arms z,y € K to a number p,, € [—1, 1]; the matrix
P has a zero diagonal, meaning p;, = 0 and is anti-symmetric p;y, = —py.. A query to the pair
(x,y) gives an observation to a random Bernoulli variable with expected value (1 + p,,)/2 and is
considered as an outcome of a match between x,y. As we assume the existence of a Condorcet
winner, there exists some 2* € C with py+, > 0 for all y # «.

The Condorcet dueling bandit problem, as stated here and without any additional assumptions was
tackled in several papers [20, 26, 16]. The best guarantees to date are given by [16] that provide an
asymptotically optimal regret bound for the problem, for the regime of a very large time horizon. This
result can be transformed into a best-arm identification algorithm, and the corresponding guarantee is
listed in Table 1. Loosely speaking, the result shows that it suffices to query each pair sufficiently
many times to separate the corresponding P, , from 0.5 with constant probability, and additionally
only K pairs must be queried sufficiently many times in order to separate the corresponding P, , from
0.5 with probability 1 — 6. We note that other improvements exist that achieve a better constant term
(the additive term independent of §) [25, 24] or an overall improved result via imposing additional
assumptions about P such as an induced total order, stochastic triangle inequality etc. [22, 23, 1].
These types of results however fall outside the scope of our paper.

In Appendix B.1 we provide an exploration and verification algorithm for the problem. The explo-
ration algorithm queries all pairs until finding, for each suboptimal arm x, an arm y with p,,, < 0;
the exploration algorithm provides as output not only the identity of the optimal arm, but for each
sub-optimal arm z, the identity of an arm y(z) that (approximately) maximizes p,, meaning it beats
x by the largest gap. The verification procedure is now straightforward. Given the above advice the
algorithm makes sure that for each allegedly sub-optimal z, the arm y(z) indeed beats it meaning
p(yz) > 0. We obtain the following formal result.

Theorem 5. Algorithm I, along with the exploration and verification algorithms given in Ap-
pendix B.1, finds the Condorcet winner w.p. at least 1 — & while using an expected amount of at
most

O Z p;}y + Z Zmin {pw;,yl min<0pwy2} +0 Z min p;yQ ln(K/(sz.y)

- Pay <0
y#r* THT* y#r Py rH£r* YPey

queries, where x* is the Condorcet winner.

S Application to Linear Bandits

The linear bandit problem was originally introduced in [2]. It captures multiple problems where there
is linear structure among the available options. Its pure exploration variant (as opposed to the regret
setting) was recently discussed in [19]. Recall that in the linear bandit problem the set of arms /C is
a subset of R%. The reward function associated with an arm 2 is a random variable with expected
value p(z) = w' z, for some unknown w € R<. For simplicity we assume that all vectors w, and
those of /C lie inside the Euclidean unit ball, and that the noise is sub-gaussian with variance 1 (hence
concentration bounds such as Hoeffding’s inequality can be applied).

The results of [19] offer two approaches. The first is a static strategy that guarantees, for failure

probability , a query complexity of %
x # 2" and Apin = mingz,+~ A,. The second is adaptive and provides better bounds in a specific
case where the majority of the hardship of the problem is in separating the best arm from the second

best arm.

with z* being the best arm, A, = w ' (z* — ) for

The algorithms are based on tools from the area of Optimal design of experiments where the high level
idea is the following: Consider our set of vectors (arms) K and an additional set of vecotrs Y. We are
interested in querying a sequence of ¢ arms from K that will minimize the maximum variance of the
estimation of w " 7, where the maximum is taken over all yy € Y. Recall that via the Azuma-Hoeffding
inequality, one can show that by querying a set of points xy, ..., x; and solving the Ordinary Least



Squares (OLS) problem, one obtains an unbiased estimator of w and the corresponding variance to a

point y is ‘ —1
A
- (Z wa) y
i=1

Hence, our formal problem statement is to obtain a sequence 1, . . ., x; that minimizes py, . 4, (Y)
defined as py, . ., (Y) = maxyey pa,,... 2, (y). Tools from the area of Optimal design of experi-
ments (see e.g. [21]) provide ways to obtain such sequences that achieve a multiplicative approxima-
tion of 1 4 d(d + 1)/t of the optimal sequence. In particular it is shown that as ¢ tends to infinity, ¢
times the p value of the optimal sequence of length ¢ tends to

—1
* A T T
1 .
p*(Y) min max y (E pwm) y

ze

with p restricted to being a distribution over XC. We elaborate on these in the extended version of the
paper.

[19] propose two and analyze two different choices of the set Y. The first is the set Y = K; querying
points of K in order to minimize p,, ... 5, (K) leads to a best arm identification algorithm with a query
complexity of dlog(K/r)/A2,  for failure probability . We use essentially the same approach for
the exploration procedure (given in the extended version), and with the same (asymptotic) query
complexity we do not only obtain a candidate best arm Z but also approximations of the different A,
for all x # x*. These are required for the verification procedure.

The second interesting set Y is the set Y = {% lx e K,z # a:*} Clearly this set is not known to

us in advance, but it helps in [19] to define a notion of the ‘true’ complexity of the problem. Indeed,
one cannot discover the best arm without verifying that it is superior to the others, and the set Y’
provides the best strategy to do so. The authors show that®
max[|ly[|* < p*(Y) < 4d/A%;,
yey
and bring examples where each of the inequalities are tight. Notice that the multiplicative gap between
the bounding expressions can be huge (at least linear in the dimension d), hence an algorithm with a
query complexity depending on p*(Y’) as opposed to d/A2 . can potentially be much better than the
above mentioned algorithm. The bound on p*(Y") proves in particular that indeed querying w.r.t. Y is a
better strategy than querying w.r.t. IC. This immediately translates into a verification procedure. Given
the advice from our exploration procedure, we have access to a candidate best arm, and approximate A
values. Hence, we construct this set Y and query according to it. We show that given a correct advice,
the query complexity for failure probability d is at most O (p* (Y*) log(Kp*(Y*)/d)). Combining
the exploration and verification algorithms, we get the following result.
Theorem 6. Algorithm 1, along with the exploration and verification algorithms described above
(we give a the formal version only in the extended version of the paper), finds the best arm w.p. at
least 1 — § while using an expected query complexity of

dlog (Kd/A2,
O( Og( / min

A2

min

) +p*<Y*>1og<1/é>>

6 Application to Unimodal Bandits

The unimodal bandit problem consists of a MAB problem given unimodality information. We focus
on a graphical variant defined as follows: There exist some graph G whose vertex set is the set of
arm /C and an arbitrary edge set E. For every sub-optimal arm x there exist some neighbor y in the
graph such that () < u(y). In other words, the best arm z* is the unique arm having a superior
rev;/ard compared to its immediate neighbors. The graphical unimodal bandit problem was introduced
by’ [13].

SUnder the assumption that all vectors in K lie in the Euclidean unit sphere

"Other variants of the unimodal bandit problem exist, e.g. one where the arms are the scalars in the intervals
[0, 1] yet we do not deal with them in this paper, as we focus on pure best arm identification problems and in
that scenario the regret setting is more common, and only a PAC algorithm is possible, translating to a T2/3
rather than /7T regret algorithm



Due to space constraints we limit the discussion here to a specific type of unimodal bandits in
which the underlying graph is line. The motivation here comes from a scenario where the point
set K represents an e-net over the [0, 1] interval and the x values come from some unimodal one-
dimensional function. We discuss the more general graph scenario only in the extended version of
the paper. To review the existing results we introduce some notations. For an arm z let T'(z) denote
the set of its neighbors in the graph. For a suboptimal arm z we let AL = max,cr ) p(y) — p(z)
be the gap between the reward of « and its neighbors and let A, = p(z*) — p(x) be its gap from the
best arm z*. We denote by AL. the minimal value of AL and A,;, be the minimal value of A,.
Notice that in reasonable scenarios, for a typical arm = we have AL < A, since many arms are far
from being optimal but have a close value to those of their two neighbors.

The state-of-the-art results to date, as far as we are aware, for the problem at hand is by [6], where
a method OSUB is proposed achieving an expected query complexity of (up to logarithmic terms
independent of §)®

O D AN+ > Alog(1/d)

zFa z€l(z*)

They show that the summand with the logarithmic dependence over ¢ is optimal. In the context of a
line graph we provide an algorithm whose exploration is a simple naive application of a best arm
identification algorithm that ignores the structure of the problem, e.g. Exponential Gap-Elimination
by [15]. The verification algorithm requires only the identity of the candidate best arm as advice. It
simply applies a best arm identification algorithm over the candidate arm and its neighborhood. The
following provides our formal results.

Theorem 7. Algorithm 1, along with the exploration of Exponential Gap-Elimination and the
verification algorithm of Exponential Gap-Elimination, applied to the neighborhood of the candidate
best arm, finds the best arm w.p. at least 1 — § while using an expected query complexity of

O > Alog(K/Amin)+ Y A;log(1/0)
TFx* el (z*)
The improvement w.r.t. the results of [6] is in the constant term independent of §. The replacement
of AL with A, leads to a significant improvement in many reasonable submodular functions. For
example, if the arms for an e-net over the [0, 1] interval, and the function is O(1)-Lipchitz then
D par (AL) 72 = Q(e7?) while 3, .. (A;) ™2 can potentially be O(e~?). Perhaps for this reason,
experiments in [6] showed that often, performing UCB on an e-net is superior to other algorithms.

7 Conclusions

We presented a general framework for improving the performance of best-arm identification problems,
for the regime of high confidence. Our framework is based on the fact that in MAB problems with
structure, it is often easier to design an algorithm for verifying a candidate arm is the best one, rather
than discovering the identity of the best arm. We demonstrated the effectiveness of our framework by
improving the state-of-the-art results in several MAB problems.
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Supplementary Material

A Auxiliary Algorithms

In what follows we present algorithms aimed for exploration and verification in several bandit setups.
In both cases we would like to bound the expected query complexity of the algorithm, rather than
(or in addition to) have a high probability bound on it. The algorithms we present can be directly
designed to have a bounded expected query complexity, albeit at the cost of having more technical
components in both the algorithm and their proofs. To ease the reading we design these algorithms
to have high probability bounds on the query complexity and provide a meta-algorithm below to
transform high probability bounds to bounds on the expectation.

Consider the following example to demonstrate the problem dealt here: Consider an algorithm that
given some event of probability 1 — § succeeds and has a query complexity of at most 7. If this
event does not occur the query complexity of the algorithm can be, say, 1057'/6. The expected query
complexity of the algorithm is much larger than 7" but given the techniques we provide below it can
be reduced to O(T loglog(T")) while keeping the error probability O(d). We note that these tricks
are rather standard, and for this reason they only appear in the appendix.

A.1 Some Notation and Observations

In what follows we require some technical notation w.r.t. abstract MAB tasks and algorithms for
them. In our setting, a MAB task 7 is defined as a problem whose input is an oracle with black
box access to the stochastic variables corresponding to the arms (or arm pairs, in the dueling style
problems), parametrized by some unknown p € M. In addition to the oracle, the input may also
contain some advice vector #24®. The possible outputs for a solver of a task is denoted by the set ©.
The output set © in the identification task is the set of arms K. In some cases it will be a Cartesian
product of multiple copies of I and R, as we will require not only the best arm but various other
arms, arm-pairs, and estimates of gaps. In verification tasks, the output set © is simply {0, 1}.

For every characterization ; and advice vector #24"1® there exists a subset @™t C © of correct
outputs. In these, the estimates are sufficiently accurate, and the arm (pairs) identities are as expected.
In what follows, our exploration algorithms will be much simpler if designed to have a high probability
bound over their query complexity, rather than a bound over their expected query complexity. This is
formalized below.

Definition 8. An algorithm A for a MAB task T is said to be a high probability solver when: given
an input characterized by . and a failure parameter r it provides the following guarantee: There
exists some random event £, whose randomness originates from the randomness of the oracle outputs
and possibly the internal randomness of the algorithm, that occurs with probability at least 1 — K
such that given its occurrence, A provides a correct output 0 € O, Also, the expected query
complexity of A, conditioned on the occurrence of the event £ is at most Ty log(1/k) + Tp for some
constants T, Ty dependent only on the input’s characterization .

Our verification algorithms will be much simpler if designed to have a guaranteed bound on their
query complexity, only if given a correct advice vector #%"i®_ This is formally characterized as
follows.

Definition 9. An algorithm A for a MAB task T is said to be an input-dependent high probability
solver when given an input characterized by i, an advice vector 0V and a failure parameter § it
provides the following guarantee: There exists some random event £, whose randomness originates
from the randomness of the oracle outputs and possibly the internal randomness of the algorithm,
that occurs with probability at least 1 — § such that given its occurrence, A provides a correct
output @ € O Also, there exist some set O such that if the advice vector §°Vic¢ ¢ @¢!
then the expected query complexity of A, conditioned on the occurrence of the event £ is at most
TV log(1/6) + Ty for some constants TY , Ty dependent only on the input’s characterization .

A.2 Auxiliary Algorithm for Exploration

We now provide a meta-algorithm to transform a high probability solver (Definition 8) into an
algorithm with a bounded expected query complexity. In Algorithm 2 we invoke the input high
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probability solver .4 with a query-cap of 7". This means that if the algorithm does not terminate after
T queries it is forcefully stopped.

Algorithm 2 Controlling the Query Complexity

Input: Oracle access to a high probability solver A with, failure threshold x < 1/8
forallr =1,2,3,...do
Run A with parameter «/2r2 and query-cap of 2"
If A terminated before reaching the cap, halt and return its output.
end for

Lemma 10. Assume Algorithm 2 is given a high probability solver with guaranteed query complexity
of T1 log(1/k) + To, and failure parameter k < 1/8. It provides a correct output w.p. at least 1 — k
and its expected query complexity is at most O (T1 log(log(T1 + Tp)/k) + To)

Proof. The claim regarding the correct output stems from a union bound over all invocations of A.
For the query complexity, let rg be the first value of r for which

2" > Ty log(r?/2k) + To

Notice that for round r > rg, given the event in which the expected query complexity of A is
Ty log(r?/2k) + Ty, the probability of the algorithm not terminating in round r is, by Markov’s
inequality, at most

Ty log(r?/2k) + Tp
27"

) Tl 10g(7"8/2/€) + TO <
2r =

< (1 +2log(r/ro))

(1+ 2log(r/rp))2m0~"
Hence, the overall probability of the algorithm not terminating in round 7 is at most
(1—k)(1+2log(r/ro))2° "+ &

Assuming rg > 5 (otherwise, Ty, 77 are constants and the result is trivial), for » > r¢ + 3 and
k < 1/8, this probability is at most 1/4. We get that for r > 7o + 3, the probability that the algorithm
reached round 7 + 1 is at most 4™ 72~" due to the independence of the algorithm invocations. The
expected query complexity is thus bounded by

ro+2 oo
Z 9r + Z 4r0+2—r2r —
r=1 r=ro+3

ro+2 oo

r=1 r=ro+3

O (T1 log (log (T log(1/k) + To) /2K) + To)
The last inequality is due to the minimality of rg. O

A.3 Auxiliary Algorithm for Verification

In this section we deal with the verification algorithms that are designed to be input-dependent high
probability solver (Definition 9). Whenever discussing a verification algorithm Ay it is always
a case that we have an exploration algorithm, as discussed above. Given the previous section we
formally assume that there exist some exploration algorithm A g that does not require any advice
and is guaranteed to (1) terminate with an expected query complexity of T log(1/6) + TF and (2)
produce a correct output w.p. at least 1 — §. We may also assume, again by using the result of the
above section, that the algorithm Ay, given a correct advice vector gadviee = Q€I has an expected
query complexity of O (T} log(log(TY + T})/8) + Ty)).

The procedure we suggest here is straightforward. Run the verification algorithm Ay, in parallel to
Ag. Once one algorithm terminates we can terminate and use its output. This will in the worst case,
increase the query complexity by a factor of two.
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Lemma 11. Given an advice °%, when running Ay and Ag in parallel with parameter 0, the
output is correct with probability at least 1 — §. If the advice is correct (0°V¢ ¢ ©), the expected
query complexity is bounded by

O (T} log(log(TY + 1Y) /0) + Ty)
If the advice is incorrect, the expected query complexity is bounded by

2 (TF log(1/8) + 1Y)

B Dueling Bandits

In this section we provide exploration and verification algorithms for the Dueling Bandit problem,
both for the Condorcet version and the Copeland version.

B.1 Dueling Bandits with the Condorcet Assumption
B.1.1 Exploration

Algorithm 3 given below provides the required guarantees for exploration.

Algorithm 3 Exploration in Condorcet Bandits

Input: set of arms K, failure probability parameter «.
Q + {(x,y) | * # y € K}, the set of ordered arm pairs.
forallt=1...do
query each pairin {{z, y} |(z,y) € Q or (y,z) € @} once.
let v, = \/2In(2t2K?2/k)/t, and let {5, u,, be the lower and upper bounds of p,, according
to the confidence interval of radius ;.
Remove (z,y) from @ if
o [lyy>0
o Uy <0and2ug, <y
o (< O0and ¥y > Uy, for somey # y
stop when @ is empty
end for
output % as the unique element x for which ¢,,, > 0 for all y. For all x # %, output y(z) =
arg min ug,,

Lemma 12. [t holds with probability at least 1 — k that throughout time, for any pair x,y we have

Proof. According to Hoeffding’s inequality, since the observed r.v.’s for each pair are independent and
bounded in [—1, 1] we have that for any specific pair =, y and any time step ¢, the required property
holds w.p. at least 1 — /% K. The claims follows via union bound as there are K (K —1)/2 possible
pairs.

O
Lemma 13. Given the event of Lemma 12, when the algorithm halts we have
o The Condorcet winner x* is the unique arm for which for all y # x* we have £y« > 0

e Forall arms x # x* let y(x) = arg min uy,. We have pyy(,) < % ming pgy < 0

Proof. For the Condorcet winner z* we have p,-, > 0 for all y # «* hence the only way a pair
(x*,y) is eliminated from @ is when (.-, > 0. Also, for any non-winner z there is some y s.t.
Dzy < 0 hence it cannot be the case that £, > 0. This proves the first item. Consider now some
T # x*.

Define y’ as arg min, p,,, the arm that beats = by the most. We first show that 3’ could only have
been eliminated according to the elimination rule in Algorithm 3 described in the second bullet. Since
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Pzy < 0 it must be the case that £,,» < 0 at all times, hence it could not have been eliminated
according to the first bullet. If 4’ was eliminated according to the third bullet we must have for some
other y that

Py’ > emy’ > Ugy > Day

contradicting the definition of 3. It follows that indeed ¥’ is eliminated according to the second bullet
and at termination

1
Ugy <0, Ugy < iﬁw,
Now, according to the definition of y(z) as the minimizer of u,, we have

1

1
paty(:t) < uzy(m) S Uy < 5811/ < ipmy/

as required. O

After proving the correctness of the algorithm we proceed to analyze its query complexity.

Lemma 14. Given the event of Lemma 12, the algorithm will terminate after at most

0 Z p;*Qy + Z Zmin {p”j,y/:r;ii;l«)p”j} In(1/k)

yFT* THT* yFT

queries

Proof. Given the definition of ~;, for pairs of the form z*,y it holds that after
0 (p;?y log(p;ny ?/k)) many queries, Zm*y. > 0, taking care of the left summand in the expression
of the Lemma. The same holds for any pair x,y with p,, > 0, taking care of the components
in the right summand where the dominant part of the min expression is p;yQ. For the remain-
ing summands, consider an arm = # x*. Let A, = |miny/’pw,<0 Pzy|. Consider a time point

t = O(log(K/kAZ2)/A2) where we are guaranteed that all of the confidence intervals have a radius
of at most v = A, /6. At this time point, for y’ = arg min p,,, we have

Ugy < —BAL/6
Now, consider an arm y for which p,, > —A; /2. We have that
loy > =Dy /2 — Ny /6 > Ugy

hence the pair zy must be eliminated by time ¢. This complies with the minimum expression in
the Lemma statement. The remaining type of pairs to discuss are those with x # z* and y with
Pay < —A;/2. For these we have

Uy < =Dy /3, lyy > —20;/3 > 2uy,

and the pair xy is indeed eliminated by time ¢. The claim follows. [

B.1.2 Verification

Lemma 15. Assume that & = x* and for all x # x*, Dyy(z) < %miny Doy Then w.p. at least 1 — 6
the algorithm halts after

O| Y. min p./In(K/dpi,)

#x* Y,Pxy

many queries, and outputs ‘success’

Proof. We start with the observation that w.p. at least 1 — § all of the confidence intervals contain the
relevant p,,, throughout time (this is true due to Hoeffding’s inequality and a simple union bound
argument). For z # z* let A, = max, p,, and let t, = cA;?In(K/§A2) for some sufficiently
large constant c. Due to the guarantee for y(z), the guarantee about the correctness of the confidence
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Algorithm 4 Condorcet Dueling Bandits Verification

Input: set of arms /C, failure probability parameter 9, candidate Condorcet winner &, candidate
adversary y(x) for each x # & in K.
Q«{z]lz#2€ekK}
forallt =1...do
For every = € ), query the pair (z, y(x)) once
let v, = /2in (2t2K2/0) /t, and let £,,, uy, be the lower and upper bounds of p,,, according
to the confidence interval of radius ;.
Remove x from Q if 1,y (,) <0
if £y () > 0 for some z, terminate with an answer ‘fail’
if Q becomes empty, terminate with an answer of ’success’
end for

intervals, and their definition we have that after ¢, rounds it must be the case that u,,,) < 0. It
follows that the total number of queries is

Z ty =0 Z min<0p;y2 ln(K/épiy)
”

Y,Pxy
rHET* rHEr*

as required. To prove the correctness of the output, notice that since p., () < 0 it cannot be the case
that £,y > 0 for any x hence the algorithm will only terminate when all arms are removed from @
hence its output will be ‘success’. O

Lemma 16. Assume that & # x*. Then w.p. at least 1 — §, when the algorithm terminates it outputs
‘fail’

Proof. Recall that w.p. at least 1 — ¢ all of the confidence intervals contain the relevant p,,, throughout
time. We assume this is indeed the case and show the output must be ‘fail’. Since & # x* it must be
the case that some x # 1 is the Condorcet winner. For this arm, p,.,(,) > 0. Hence, throughout time
we must have ;) > 0 and if the algorithm terminates it cannot be because of () being empty, but
only due to £, (,y > 0 for some z’, meaning the output will be ‘fail’. O

Theorem 5 is now an immediate corollary of the above results, combined with those of Appendix A.

B.2 Copeland Dueling Bandits

In this section we analyze a natural extension of the Condorcet winner denoted as the Copeland
winner. This approach was suggested in several papers, e.g. [20, 5, 24]. The Copeland score of an
arm z is the number of arm it beats, i.e. ) vtz 1 [pzy > 0]. Notice that if the Condorcet winner exists
then the arm with the maximal Copeland score is unique and is indeed the Condorcet winner. We
assume throughout for simplicity that for all z # y, p,, # 0 meaning there are no ties. Extending
our results to a setting where ties can occur is purely technical and will cause complex guarantees,
hence we do not discuss the issue any further.

The state-of-the-art identification procedure can be achieved via an easy modification of the regret-
based results of [24]. We note mention that a very recent result by [17] improves the regret based
Copeland dueling bandit paper of [24], yet it is not clear how to transform it into a high probability
best arm identification algorithm. A loose description of the query complexity of the CCB algorithm
given in [24] is K2 + K (s + 1) log(1/d) for failure probability d, where s is the number of losses
suffered by a Copeland winner. They provide convincing arguments as to why in practice, the value
of s is constant despite the theoretical possibility of it scaling as K. The exact query complexity
guarantee is (up to logarithmic terms)

-2
s+1 _ 541
0 Z (pyx| —|—max{0,£r/1;aé}x{py/£}> + Z pny + Z —5 | log(1/9)

1
TH#Y zeC,y¢C z¢C (max,:';x Pyz
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Here, C is the set of Copeland winners, and we use max”* to denote an operator returning the k’th
largest value from a set. We note that in the same paper an additional algorithm (SCB) is presented
with an incomparable query complexity. The term that is related to ¢ is larger, but there is no quadratic
dependence in K, assuming the quantities of 1/ pﬁy are large, specifically p,, > 1/ VK for all z, 7.
For the purpose of brevity we do not elaborate on this result further.

Our methods can be used to improve upon the above result via rather simple algorithms. In what
follows we present an exploration and verification algorithm. The exploration algorithm queries
arm pairs uniformly and eliminates them once either it is clear whether p,, > 0 or vice versa,
or both x and y can be excluded from being a Copeland winner regardless of whether x beats y
or vice versa. The advice that is eventually produced consists of (1) the identity of a Copeland
winner Z (2) the identity of K — 1 — s arms ¢, ..., Jx—1—s that Z beats by the largest gap, and (3)
for every arm x # Z, the identity of s arms y{,...,y? that beat x by the largest gaps. Also, the
provided Copeland winner is the one for which the gaps in (2) are the largest in the sense that it
requires the least queries to verify that it beats the respective ¢’s with high confidence. We show
(Lemma 18) that the query complexity required to achieve this advice correctly w.p. at least 1 — x

is O (Z oty pmy log (K / /{pwy)). Given the above advice our verification algorithm verifies that

indeed £ is a Copeland winner. It queries the pairs z,y; uniformly until it discovers, with high
confidence, that pyz,, > 0 for all x # &, i and queries the pairs 7, §; until realizing pz4, > 0 for all 4.
If this is indeed the case then we have with high confidence that all arms other than & are beaten by at
least s arms, and % is beaten by at most s arms, hence % is indeed a Copeland winner w.h.p. If any
of the above inequalities do not hold, the algorithm outputs “fail’. The query complexity, for failure

probability 4, given a good advice vector is easily shown to be HY  log(1/9) for

H = O | min min E Pos E min g p2
cplnd z*eC v >0 T* yt - TYi

----- WK —1—s |Paxy, e V1Y | Pay <0

Theorem 17 describes the guarantees given by the described exploration and verification algorithms,
when combined with the techniques of Algorithm 1. It is an easy task to verify that in the regime
of small J, the expression is strictly smaller than the guarantee obtained by [24]. The exact ratio
depends on the structure of the different p/,, s.

Theorem 17. Algorithm 1, along with the exploration and verification algorithms given below, finds
a Copeland winner w.p. at least 1 — 0 while using an expected amount of at most

pr log K/pwy) + H cplnd 10g(1/5)
TFy
queries.

B.2.1 Exploration

Lemma 18. w.p. at least 1 — k we have

1. If there is more than one Copeland winner, let s denote the number of losses suffered by
the Copeland winners. Otherwise, let s be such that s + 1 is the smallest amount of losses
suffered by a non-Copeland winner

2. Upon termination, s; = s.
3. (minimality of x*) If there is more than one Copeland winner then x* is a Copeland winner
with
Z p;*Qy < 4m1n Z Pay

Y [Paxy>0 y [Pay >0
with C being the set of Copeland winners.

4. (minimality of y})

K—1-—s
Z Pty <4 Zpl yi
i=1

’yx 1—s |pzyl>0
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Algorithm 5 Copeland Bandits Exploration

Input: set of arms /C, failure probability parameter «.
Q< {(x,9) |z #y}
forallt=1...do
query each pair in {{z, y} |(z,y) € Q or (y,z) € Q} once
let v, = \/2in (2t2K?2/k) /t, and let £y, ug, be the lower and upper bounds of p,, according
to the confidence interval of radius ;.
For arm z, let Ly(z) = |{y | sy <0}, Ly(z) = [{y | fzy < 0}] be the lower and upper
bounds on the number of losses of x.
Set s; = mingex Ly ()
Let B = {z | Ly(x) > s.} be the set of arms that can be excluded from being a Copeland
winner.
Remove (z,y) from Q if
o lyy>0and 20,y > uyy
o U,y < 0and2uy, </l
e zcBand/l, >0
o 1€ B, ly <0andlyy >ming, ., maXie[s,] Uzy,
If @ is empty, terminate and:
e  Output z* as the arm not in B, minimizing ming, .., | Loy, >0 >
e Outputyj,...,Yx_1_g,» the minimizers of the above expression
e Forevery x # z*, output {y;(z)};~,, the minimizers of min,, _,  maX;ec[s,] Uy,
end for

Klst€2
T*Yq

5. (minimality of y;(x)) For any x # x* we have

§ i -2
D, min max p,.,.
zyl @ = y Loy | Poy<Oi€[s] Y

6. The query complexity of the algorithm is at most

Zpry K/K/pry)

z#y

Proof. We prove the lemma based on the event that all confidence intervals contain p,,, for all x,y
pairs, throughout time. It is an easy exercise to see that this event happens w.p. at least 1 — «.

Given the event of the confidence intervals being accurate it is clear that L, (z), Ly(x) are indeed
upper and lower bounds on the losses of an arm . As a result, any arm z € B cannot be a Copeland
winner since being in B interprets into having some arm x’ # x with L, (z') < Lg(x).

To prove item 2, it suffices to show that s; is not too large upon termination. For s; to be too large we
must have that for all z € C, L, () is strictly larger than the true number of losses of . This implies
that there exist some (x,y) pair with € C' such that u,,, > 0 and ¢,,, < 0. This pair could not have
been eliminated according to the first and second bullets describing the elimination. Since x € C'
cannot be in the set B, the pair x, y cannot be eliminated according to the third and fourth bullets
either. It follows that while s; > s, the set () cannot be empty and the algorithm will not terminate.

We proceed to prove items 3 and 4. A conclusion of the above discussion is that upon termination,
we have for all pairs x, y where x is a Copeland winner that £, > 2uz, > 0 or ug, < 0. In case
there is more than one Copeland winner we have that for z*,

Y. mh < D!

Y |Pexy>0 Y |pax y>0
min 072 < min qu? <
zeC Y — zeC Yy =
Yy |pmy>0 Yy ‘pzy>0
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: —2
min E 4
zeC pxy

Y |Pzy>0

Also,
K—1-s K—1-s

Z Py v S Z 0 yr T
min Zf;gyi <
i

Yl YK —1—5 |[Paxy; >0

: -2
4 min E Uiy, <
i

Y1, YK —1—s [Pary; >0

4 sz s

Y15 YK —1— e‘P; gy, >0

We proceed to analyze Item 5. Notice first that due to s; = s, for all arms = # x* we have upon
termination knowledge of at least s arms y that beat x, meaning u,, < 0. If follows that

S

S
meyxm D ) = min Z Uy, <
=1

s | Ugy,; <0< 1
S
. —92 .
min 4 E (xyi < min 4 E pmyl
YiyeeYs | Ugy; <O i—1 YiyeYs | Ugy, <O

Next, consider an arm y for which p,,, < 0 but upon termination it holds that u,,, > 0. It must be the
case that for some arm y., (y),
0> pay > Loy > Uay, (y) > Pay,(y)
and we have that
min 4 P < min 4 P
Y1s--3Ys | Uzy, <0 Z v 1y--3Ys ‘ Pzxy; <0 Z i
thus proving Item 5.
It remains to analyze the query complexity. Notice that once 0 < 0.5uUzy < £yy 0r 0 > 0.505y > Ugy,

both the (ordered) pairs (x,y), (y, z) are eliminated from @ and hence the unordered pair x, y is
not queried again. Since p, lies within the confidence region, and its radius at time ¢ scales as

V/1og(Kt/k)/t, we get that x, y can be queried no more than O(p;,” log(K/kp2,)) times before
being eliminated from Q). O

B.2.2 Verification

Algorithm 6 Copeland Bandits Verification

Input: set of arms K, failure probability parameter §, candidate winner & and K — s different arms
U1, -, JK—s, for every x # &, s arms y; (), . . ., ys(x).
Q — {(,9:) [ i € [K — 8]} U{(w,s(2)) | w # &, i € [s]}
forallt=1...do
query each pairin {{z, y} |(z,y) € Q or (y,x) € Q} once
let v, = /2ln (2t2K2/0) /t, and let {5, ug, be the lower and upper bounds of p, according
to the confidence interval of radius ;.
If uzg, < 0forsome ¢ € [K — s], terminate and output ‘fail’
If £y, (2) > O for some x # , i € [s], terminate and output ‘fail’
Remove from @ all (x, y) for which the corresponding confidence region does not contain zero.
If ) is empty, terminate and output ‘success’
end for

Lemma 19. If there is more than one Copeland winner, let s denote the number of losses suffered by
the Copeland winners. Otherwise, let s be such that s + 1 is the smallest amount of losses suffered by
a non-Copeland winner. Assume the advice is proper, meaning that:
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1. & is the Copeland winner minimizing, up to a multiplicative term of 4, the expression

> vy

Y |[Pay>0

> Pay, <4 2 P,

Y1 7yK 1—s \pzy,>0

3. Forany x # & we have

—2
Zpry«c = min MAX Dy (x)

Ysy | Pay<0 lE[St]

Then, w.p. at least 1 — § Algorithm 6 outputs ‘success’ and has a query complexity of at most

O | min min Zp;fyi log(Kp;Eyi/é) + Z Z pTy log(Kpry /0)

T*E€C Y1, YK —1—5 |Paxy, >0
T [Py, TET* Y1, | Pay <O

Proof. We notice that w.p. at least 1 — §, for all pairs «, y and throughout time p,,, lies inside the
corresponding confidence interval. Given this event, and the fact that the radius of the confidence

intervals scale as \/log(t/0)/t we get that after

O | min min Zp;?yi log(Kp;Eyi/é) + Z Z pTy log(Kpry /0)

T*€C Y1, YK —1—5 |Paxy, >0
Y [Py, TET* Y1,.Ys | Pay <0

many queries, no confidence interval contains zero and the algorithm terminates. This proves the
query complexity. The correctness follows from the fact that p,,, is always contained in the confidence
intervals and that the advice is proper, as detailed in the claim. O

Lemma 20. Given an advice with % that is not a Copeland winner, the probability of Algorithm 6
giving an output of ‘success’ is at most 6.

Proof. Assume that for all §,, ..., JKx—1—s it holds that pz5, > 0. This means that £ suffers at most
s losses. Assume further that for all 2 # 2 and all i € [s], pyy,(,) < 0. This means that all x # &
suffer at least s losses. It follows that these assumptions lead to Z being a Copeland winner. Since the
claim is for the opposite case, we must have pzy, < 0 for some 7 or p,, () > 0 for some i.

Hence, if the confidence intervals are always correct, the corresponding pair will never be eliminated
from @ and the only possible output for the algorithm is ‘fail’. It follows that in order for the
algorithm to output ‘success’ some confidence interval must be wrong and this event happens w.p. at
most d, as required.

Theorem 17 is now an immediate corollary of the above results, combined with those of Appendix A.

C Linear Bandits

C.1 Auxilary Tools

In this section we analyze algorithms that query the unknown vector w at various points and obtain a
confidence region for it. We make use of the following lemma providing a high probability confidence
region given a set of queried points.

Lemma 21. Let y be an arbitrary vector in the unit sphere and let z1, ...,z be an arbitrary
sequence of vectors in the unit sphere. Let 1, . . ., v be noisy outcomes of queries to {w " z;}; where
the noise has mean zero, absolute value of at most 1 almost surely, and is independent in each i. Let
A=) zzz;r b=>"zr; and @ = A=1b. It holds for any o > 0 that

Pr [|(w — ) y| > v ayTA—ly} < 2exp(—a/2)
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Proof. Denote by Z the matrix whose i’th column is z;. Denote by ¢; the noise in query ¢ meaning
r; = w'z + ¢ and let € be the vector of length ¢ with the different ¢; values. According to the
definition of W we see that

y (w—b) =y " Zle =" (y" Z"ie;

for Z1 being the pseudo-inverse’ matrix of Z. It follows that the error associated with y is a martingale
sum and according to the Azuma-Hoeffding inequality it can be bounded by

Pr[|(w— )"y > Valy" 2] < 2exp(-a/2)
Since Z1(Z")T = A~ the claim follows O

In both the exploration and verification algorithms, we use a fixed strategy for querying points. In
particular we query a sequence of points z1, . .., z; that aim to minimize

—1
— T T
p(zl7"'7zt) 71,1}162132(:(/ <Zzzzz ) Yy

i
For some fixed set Y. We follow a common approach in the area of optimal design of experiments

and choose the z vectors greedily. At each time step we choose the point that minimizes the above
expression. In [19], appendix C, a review of this method is given stating that for

1
*(Y) = minmaxy " x|
p*(Y) = minmaxy (sz y

ze

where p is restricted to be a distribution over /C, it holds that for any ¢,

pr(Y) <t p(zr,...y2e) <p"(Y) - (L+d(d+1)/t) (1
Additionally, in the case where Y = IC, it is also known that
pH(K) < d )

In the following section we will aim to find a sequence corresponding to a set Y while having access
to a different set Y’ = {«a(y) - y | y € Y}, where the a(y)’s are arbitrary scalars in [1/¢, ¢] for some
constant ¢ > 1. The following observation provides a guarantee for a sequence w.r.t. Y given its
guarantee w.r.t. Y.

Lemma 22. Let Y C RY let Y' = {a(y) -y | y € Y}, where the a(y)’s are arbitrary scalars in
[1/c,c], withc > 1, and let x1, . .., x¢ € K. Assume that

. -1
cp (Y > tmaxy ' Tz
p (V') = tmaxy <§_; y
then we have that )
. _
Sp*(Y) > tmaxy ' Zx,xj Yy
yey i=1
Proof. Let

-1
p} = arg min maxy' <Z p(sc)xa:T> Yy

€A €Yy
P Ikl Y zeK

be the distribution over the possible set of points achieving p*(Y).

p*(Y) = maxy' <Z pgk/(x);vxT> y >

€Yy
Y ze

If the singular value decomposition of Z is > oiviu; then Zt = 3 o; 1uiviT
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Hence, we get that

C.2 Exploration

Algorithm 7 Linear Bandits Exploration

Input: set of arms KC, failure probability parameter «.
A() «— 1
forallt=1,2,3,...do
Pick a point z; € K minimizing max,cxc 2" (A;_1 + 22" )z
Update A; = A;_1 + 22 , b= Z§=1 rizi, W= At_lb

Forz € Kletvy, = \/xTAjlxln(K4t2/n)/2
If there exist some Z € K such that

o' (&~ )

for all z # &, output & as the best arm and A, = &7 (2 — x) for all z # 2.
end for

The following lemma is immediate given a union bound and Lemma 21.
Lemma 23. w.p. at least 1 — « it holds that for all t > 0 and all x € K that

|(w — w)Tx‘ < Yz
Lemma 24. Let x* be the best arm, A, = w' (v* — x) and Ay = min, A,. Given the event of
Lemma 23 the algorithm terminates after at most O (max {d*,dIn(Kd/Amink) /A2, }) queries.
Also, T is the best arm and 0.5A, < AI < 1.5A, for all suboptimal x.

Proof. We begin with correctness of the algorithm: Since it always holds that
|(w - UAJ)T:L“ <Yz

for all x, upon termination we have that for any = # Z,

Kt

w (E—z) >0 (F—2) =Y — Y2 > 272 + 27 >0

meaning that Z is indeed the optimal arm. It follows that A, > 2, + 2v;. Since
|(w — w) " (& — )| <o+ s < Ag/2
the claim regarding A, holds.

We now turn to bounding the query complexity. For ¢t > d(d + 1) we have for all z € K by
Equations (1) and (2) that

Yo <V p*(K)In(K4t2/k)/t < \/dIn(K4t2/k)/t
It follows that for ¢ > 64d In(K4t?/k) /A2, we have

min

Yz < Amin/8

for all . For such ¢,
wT(x* —xz)> wT(:r* — ) =Yg — Yar >

and the algorithm will terminate after O (dIn(Kd/AZ; r)/A2,.) queries as required O

min min
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C.3 Verification

Algorithm 8 Linear Bandits Verification

Input: set of arms K, failure probability parameter §, candidate winner Z, for any x # & a parameter
Ay > 0.
AO — IA
Y {*Flzek, v#i}
forallt=1,2,3,...do
Pick a point z; € K minimizing maxycy y (A1 +z2")y
Update Ay = A; 1 + 22, b= Zle iz, = A7 b
For x € KC let

Yo = /(@ —2)T A7 (@ — 2) In(K412/5) /2

If
Yo < W (& — )
for all z # &, output ‘success’
if there exist x # & for which
Yo < W (x — &)
output ‘fail’
end for

As mentioned in the main paper, the query complexity of the algorithm will be expressed in terms of
p*(Y*) defined as

zt—ax)T zz') (z* — x
p*(Y*) =min max ( ) (ZIEKQPI ) ( )
p zeKx#x* Aa:
where the minimum is taken over distributions over
The following lemma is immediate given a union bound and Lemma 21.

Lemma 25. w.p. at least 1 — § it holds that for all t > 0 and all x € K that

|(w =) (& —2)] <7

Lemma 26. If & is the best arm and A,/2 < A, < 15A, for all © %+ & then given
the event of Lemma 25 the algorithm will output ‘success’ and will terminate after at most
t = O (max {d?, p*(Y*) In(Kp*(Y*)t/5)}) queries.

Proof. In order for the algorithm to output ‘fail” it must be that
W (x— &) > >w' (z—2) + 7.

which is assumed not to happen, hence the algorithm must output ‘success’.

To analyze the query complexity, For ¢ > d(d 4 1) we have for all z € K by Equation 1 that

e < Vp*(Y)AZ In(K4t2/3) /t

hence if t > \/p* (V) In(K4t2/5) we get that 7, < A, meaning that for all z # 7,
W' (& —x)>w' (2 —x) =7 >0

and the algorithm will terminate. The claim follows from noticing that since A, /2 < Am < 1.5A,
it must be the case that p*(Y") < 32p*(Y™*) (Lemma 22). O

Lemma 27. If & is not the best arm then w.p. at least 1 — § the algorithm will output ‘fail’
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Proof. We prove the lemma conditioned on the occurrence of the event of Lemma 25. Since 2 is
suboptimal there must be some x € K for which w' ( — z) < 0. For the algorithm to output
‘success’ it must be the case that

W () >y >w (Z—2)+ ..
But, according to our assumption this can never happen, hence the algorithm must output ‘fail’ when
it terminates. O

Theorem 6 is now an immediate corollary of the above results, combined with those of Appendix A.

D Unimodal Bandits

D.1 Unimodal Bandits for General Graphs

In this section we present the existing results, as well as our own for the unimodal bandit problem
with general graphs. To review the existing results we introduce some notations. We denote by d
the maximum degree of the graph. For an arm z let I'(z) be the set of arms y in the immediate
neighborhood of z in the graph. For a suboptimal arm z we let AL = maxyer ) u(y) — pu(x) be
the gap between the reward of x and its neighbors and let A, = p(z*) — u(z) be its gap from the
best arm z*. We denote by Al . the minimal value of AL and A, be the minimal value of A,.

min
Notice that AL, < A, and that the ratio between the two is potentially unbounded. Furthermore,

min —

it is very often the case that for most z, AL < A, as x may be a clear bad choice compared to the
optimal arm but still have a very close value to those of its immediate neighbors. Consider a subset
of the edges forming a spanning tree 7" over the graph. We say that T is traversable if it preserves
the unimodality property, meaning that every x # x* there exist some neighbor in 7" with a superior
reward. Denote by D(T) the diameter, i.e. the longest shortest path between a pair of vertices, in T,
and denote by D the maximum value of D(T") with the maximum taken over all possible traversable
trees 7'

The method GLSE in [13], though aimed for the regret setting can be proved to achieve, for fail-
ure probability x an expected query complexity of O (Dd(A};,)?log(1/k) + Dlog(D)) for the
special case where the graph is a tree, in which case D is simply the diameter of the tree. In [6],
a method OSUB is proposed achieving an expected query complexity of (up to logarithmic terms

independent of )

o> AN+ > APlog(1/k)

cFT* z€el(z*)
for general graphs. The latter result has a better dependency over «, and they in fact prove that it
is asymptotically optimal when « tends to 0. However, when compared to GLSE while discussing
trees, in some cases the size of the graph could be as large as K = d**(P) in which case the linear
dependence over KC can lead to inferior results compared to those of [13].

Our methods lead to two algorithms, differing only in the exploration strategy, each improving a
different result of those mentioned above. In the first setting we use the idea of [13] and jump from
one vertex to the next, while always increasing the reward of the visited arm. The algorithm is detailed
in Appendix D, and achieves an expected query complexity of O (Ddlog (Dd/rALy,) /(AL)?).
The second exploration algorithm is a simple naive application of a best arm identification algorithm
that ignores the structure of the problem, e.g. Exponential Gap-Elimination [15] that achieves an

expected query complexity of

O > AP log(log(1/Az)/k) | < O (KALE log (log(1/Amin)/k))

10The result of [6] is in fact tighter in the sense that it takes advantage of the variance of the estimators by
using confidence bounds based on KL-divergence. In the case of uniform variance however, the stated results
here are accurate. More importantly, the KL-divergence type techniques can be applied here to obtain the same
type of guarantees, at the expense of a slightly more technical analysis. For this reason we present the results for
the case of uniform variance.
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In both cases, the verification algorithm requires only the identity of the candidate best arm as advice.
It simply applies a best arm identification algorithm over the candidate arm and its neighborhood. Its

expected query complexity, given a correct advice is O (err(x*) A2 log (log(l/AI)/5)> . The
following provides our formal results.

Theorem 28. Algorithm 1, along with the exploration algorithm detailed in Appendix D.2 and the
verification algorithm of Exponential Gap-Elimination, applied to the neighborhood of the candidate
best arm, finds the best arm w.p. at least 1 — § while using an expected query complexity of

z€l(z*)

queries. When applied with the exploration algorithm of Exponential Gap-Elimination, it achieves
an expected query complexity of

O A72log (K/Amin) + Y. A;%log(1/0)
THT* z€l(z*)

Notice that the first result strictly improves that of [13], while being applicable to both trees and
general graphs, and the second result improves, in the terms independent of §, the result of [6], as
Amin Z Afniry

D.2 Exploration Algorithm

We proceed to provide an exploration algorithm for the graphical unimodal bandit problem. We begin
by presenting a sub-procedure that visits a single node in the graph in Algorithm 9.

Algorithm 9 Node Visit in Graphical Unimodal Bandits

Input: set of arms I, additional arm x and confidence parameter &.
Q<+ Tu{z}
forallt=1,2,3,...do
Query each arm in ) once
Let /i(y) be the empirical reward of arm y € Q.

Set
v =+/2In (2(|T] + D)2 /k) /t

Eliminate all arms y € @ for which fi(z) — ja(y) > v
If there exists an y € @ for which fi(y) — fi(x) > =, output y
If @ is empty, output x’

end for

To provide the analysis of the algorithm we introduce some notations. For an arm x and set I, let
A = max{maxyer p(y) — p(x), minger p(z) — p(y)}.
Lemma 29. With probability at least 1 — & it holds that Algorithm 9 (1) terminates within

O (IT|log (|T|/kA%) /A?)
queries, and (2) if x has the maximal value among T U {x} then the output is x, otherwise the output

is some y with p(y) > p(z).

Proof. Recall that our model assumption dictates that the random variables of y(y) are in the region
[0, 1], hence according to Hoeffding’s inequality we have that for any arm y and any time ¢, w.p. at
least 1 — x/2(|T| + 1)t2, |a(y) — p(y)| < /2. It follows via union bound that for all arms and all
time steps |i(y) — u(y)| < /2. The claim immediately follows. O

Our exploration algorithm, given in Algorithm 10, consists of applying the above procedure in order
to traverse the graph while increasing the p value until reaching x*.
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Algorithm 10 Graphical Unimodal Bandits Exploration

Input: set of arms /C, confidence parameter .

Pick an arbitrary arm x .

forallr =1,2,3,...do
Ifr=1,setl’ =T(x1),elsesetI’ = '(z,.) \ {z,—1}.
Invoke Algorithm 9 with input z,., T', k" = x/27?
If the output is ., halt and output x,. as the best arm. Otherwise, for an output y proceed to the
next iteration with x, 1 = v.

end for

The following is immediate given the definitions of D and AL. given in the previous section and
the Lemma 29.

Lemma 30. With probability at least 1 — k it holds that Algorithm 10 (1) terminates within

O (Ddlog (Dd/kAL;,) /(ALi)?)

min

queries, and (2) outputs the best arm x*.

Theorem 28 is now an immediate corollary of the above results, combined with those of Appendix A.

E Application to Graphical Bandits

The Graphical Bandits problem is a variant of the dueling bandit problem presented in [7]. As in
the dueling bandit scenario, in each round the user plays a pair of arms (x, ). The difference is an
additional restriction where not all pairs are valid but only a subset of the pairs denoted by E. In their
paper, the authors assume that each arm has an associated reward p(x) € [0, 1] and that the outcome
of a query to (z,y) is a random variable in [—1, 1] with an expected value of u(x) — u(y). While
other variations may be worth considering, we restrict ourselves to the same assumptions here for
simplicity.

In [7], the complexity of the problem is tied to the diameter of the graph, meaning the largest distance
in edges in the graph G(K, E) between a pair of arms. Denoting the diameter as D, they provide a
best arm identification problem that fails w.p. at most x and requires an expected query complexity of

K Dlog(K/k)log*(K)
A2

min

with A,,;, being the gap between the best and second best arm. We use the exact same algorithm for
the exploration, as the verification process requires only the identity of a candidate best arm. Given
this candidate 2, our verification procedure is defined as follows. It first computes a shortest path (in
edges) tree originating from &, denoted by 7". Next, it performs an elimination tournament where at
each round the edges leading to surviving arms are queried. That is, once an arm z is known w.h.p. to
be beaten by z,  is removed from the set of surviving arms and any edges in 7" that do not lead to
any other surviving arm, will not be queried again. The formal algorithm and its analysis are given in
Appendix E.1. To present its guarantee we introduce a few notations. Let =* be the best arm and let
A, = p(x*) — p(z) be the gap for a suboptimal arm. Let T be the shortest path tree originating from
2™ produced by the BFS (breadth first search) algorithm given and let d(x) be the distance from z* to
 in the graph. Let E(T') be the set of edges in T and for an edge e in E(T') let h, = max, d(z)/A2
where the maximum is taken over arms x whose path towards them in 7" contains the edge e. Our
verification algorithm in Appendix E.1, given a correct advice and tuned for failure probability &,
achieves an expected query complexity of

O > helog(Khe/d) g()([@;m)
e€E(T) min

As a corollary, given the techniques of Theorem 3 we get:
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Theorem 31. Algorithm 1, along with the exploration algorithm of [7] and the verification algorithms
given in Appendix E. 1, finds the best arm w.p. at least 1 — § while using an expected amount of at
most

KD 10g (KD/Amin) 10g2 (K

0 AT ) 4 > helog(Khe/s) | <
min e€E(T)
o (KD (log (KD/Awin) log?(K) + log(1/6)) )
A?nm

queries.

E.1 Verification in Graphical Bandits

Algorithm 11 is our verification algorithm. For z € K, denote by A, = (i) — uu(x) the gap between
rewards of the candidate arm & and that of . In the algorithm we keep a confidence interval around
the empirical estimation AI of A, of radius 7,.. We use an adaptation of Proposition 1 in [7] to our
terminology to prove the required a high probability confidence bound.

Algorithm 11 Graphical Bandits Verification

Input: set of arms K, a graph structure G = (K, E), and a candidate winner Z.
compute the shortest path tree (in edges) originating from &
Q « K\ {#)
For every edge e in the tree, keep n. < 0,/i. < 0.
forallt=1,23,...do
For arm x denote by 7(x) the path from Z to x in the tree.
Let E/ = UIGQT((.’I;)
query each e € E’ once
Let /i, be the empirical estimation of the expected value returned by a query to an edge e. Set

Am = Z ﬂey
eem(x)

= \/2|n(x)| In(4Kt2/5)/t

If A, 4 v, <0 for any x, output ‘fail’
Remove all z meeting A, — v, > 0 from @
If @ is empty, output ‘success’

end for

Lemma 32. For any x € K and any time step t we have w.p. at least 1 — § /2 Kt? that

o

Proof. Due to the definition of Ar we have that for our estimator Am it holds that
(z)[t

SEHE

with €; being independent zero mean noise terms in [—1, 1]. By Hoeffding’s inequality we have that
for any v > 0,

| =

m[ o |8 - A }sawm—fnumm>
In particular, for v, we get
. b}
2 2
Pr[[A, = Au| < 7| < 2exp(—2t/2im(@)]) = 2exp(— (4K E2/9)) = 3=
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As a corollary, via a simple union bound argument we obtain
Lemma 33. With probability at least 1 — § it holds that for all t and all x

‘Ax—Ax

<Yz

Lemma 34. [f % is not the optimal arm then w.p. at least 1 — 6 the algorithm will output ‘fail’

Proof. Since Z is not the optimal arm there is some arm z s.t. A, < 0. If the algorithm provided an
output of ‘success’ then x must have been eliminated from (). At that point we must have had

AI > Yy > AI + Ve
and this event can occur w.p. of at most § O

Lemma 35. Assume that T is the best arm. Let e be an edge in T, the shortest path tree originating
from x*, computed by our algorithm. Let K(e) be the set of arms for which e € w(x), and let
he = maxgex(e) ()| A2 Then wp. at least 1 — § the algorithm will output ‘success’ and use at

most O (ZeeE(T) he ln(Khe/6)> queries.

Proof. We analyze the algorithm given the occurrence of the event of Lemma 33, that happens w.p.
at least 1 — 6. We begin with the proof of correctness. If the algorithm provided an output of ‘fail’
then for some x must have had ) .

Ay < =y <Ay — 72
where the last inequality holds since Z is the best arm hence A, = A, > 0. This is a contradiction.

We continue to analyze the query complexity. Consider an arbitrary sub-optimal arm z and let ¢ be
such that

t > 8A?|m(z)| In(4K1?/95)
We have that v, < A, /2 and

Ax>Ax_'YxZ’Yx

meaning that x is eliminated from @ at that time. The claim regarding the query complexity
immediately follows.
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