
A Optimization

In this section we fix our notation for gradients and establish some basic definitions and results that
we use in the sequel.

A.1 Gradient notation

We follow the notation in Bertsekas [1, A.5]. In particular, if f : Rn → Rm is a continuously
differentiable function, we define the gradient matrix of f , denoted∇f(x), to be the n×m matrix in
which the ith column is the gradient∇fi(x) of fi, the ith coordinate function of f , for i = 1, 2, . . . ,m.
That is,

∇f(x) = [∇f1(x) · · · ∇fm(x)] .

The transpose of∇f is the Jacobian matrix of f , in which the ijth entry is the function ∂fi/∂xj .

If f : Rn → R is continuously differentiable with continuously differentiable partial derivatives,
then we define the Hessian matrix of f , denoted ∇2f , to be the matrix in which the ijth entry is the
function ∂2f/∂xi∂xj .

Finally, if f : Rn × Rm → R is a function of (x, y) with x ∈ Rn and y ∈ Rm, we write

∇xf(x, y) =


∂f(x,y)
∂x1

...
∂f(x,y)
∂xm

 , ∇yf(x, y) =


∂f(x,y)
∂y1

...
∂f(x,y)
∂yn


∇2
xxf(x, y) =

(
∂2f(x, y)

∂xi∂xj

)
, ∇2

yyf(x, y) =

(
∂2f(x, y)

∂yi∂yj

)
,

∇2
xyf(x, y) =

(
∂2f(x, y)

∂xi∂yj

)
.

A.2 Local and partial optimizers

In this section we state the definitions of local partial optimizer and necessary conditions for optimality
that we use in the sequel.

Definition A.1 (Partial optimizer, local partial optimizer)
Let f : Rn ×Rm → R be an objective function to be maximized. For a fixed x ∈ Rn, we call a point
y∗∈ Rm an unconstrained partial optimizer of f given x if

f(x, y) ≤ f(x, y∗) ∀ y ∈ Rm

and we call y∗an unconstrained local partial optimizer of f given x if there exists an ε > 0 such that

f(x, y) ≤ f(x, y∗) ∀ y with ‖y − y∗‖ < ε,

where ‖ · ‖ is any vector norm.

Proposition A.2 (Necessary conditions for optimality, Prop. 3.1.1 of Bertsekas [1])
Let f : Rn × Rm → R be continuously differentiable. For fixed x ∈ Rn if y∗ ∈ Rm is an
unconstrained local partial optimizer for f given x then

∇yf(x, y∗) = 0.

If instead x and y are subject to the constraints h(x, y) = 0 for some continuously differentiable
h : Rn × Rm → Rm and y∗ is a constrained local partial optimizer for f given x with the regularity
condition that∇yh(x, y∗) is full rank, then there exists a Lagrange multiplier λ∗∈ Rm such that

∇yf(x, y∗) +∇yh(x, y∗)λ∗= 0,

and hence the cost gradient ∇yf(x, y∗) is orthogonal to the first-order feasible variations in y given
by the null space of∇yh(x, y∗)T.
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Note that the regularity condition on the constraints is not needed if the constraints are linear [1,
Prop. 3.3.7].

For a continuously differentiable function f : Rn → R, we say x∗ is a stationary point of f if
∇f(x∗) = 0. For general unconstrained smooth optimization, the limit points of gradient-based
algorithms are guaranteed only to be stationary points of the objective, not necessarily local optima.
Block coordinate ascent methods, when available, provide slightly stronger guarantees: not only is
every limit point a stationary point of the objective, in addition each coordinate block is a partial
optimizer of the objective. Note that the objective functions we consider maximizing in the following
are bounded above.

A.3 Partial optimization and the Implicit Function Theorem

Let f : Rn × Rm → R be a scalar-valued objective function of two unconstrained arguments
x ∈ Rn and y ∈ Rm, and let y∗ : Rn → Rm be some function that assigns to each x ∈ Rn a value
y∗(x) ∈ Rm. Define the composite function g : Rn → R as

g(x) , f(x, y∗(x))

and using the chain rule write its gradient as

∇g(x) = ∇xf(x, y∗(x)) +∇y∗(x)∇yf(x, y∗(x)). (1)

One choice of the function y∗(x) is to partially optimize f for any fixed value of x. For example,
assuming that arg maxy f(x, y) is nonempty for every x ∈ Rn, we could choose y∗ to satisfy
y∗(x) ∈ arg maxy f(x, y), so that g(x) = maxy f(x, y).1 Similarly, if y∗(x) is chosen so that
∇yf(x, y∗(x)) = 0, which is satisfied when y∗(x) is an unconstrained local partial optimizer for f
given x, then the expression in Eq. (1) can be simplified as in the following proposition.

Proposition A.3 (Gradients of locally partially optimized objectives)
Let f : Rn × Rm → R be continuously differentiable, let y∗be a local partial optimizer of f given x
such that y∗(x) is differentiable, and define g(x) = f(x, y∗(x)). Then

∇g(x) = ∇xf(x, y∗(x)).

Proof. If y∗ is an unconstrained local partial optimizer of f given x then it satisfies∇yf(x, y∗) = 0,
and if y∗ is a regularly-constrained local partial optimizer then the feasible variation ∇y∗(x) is
orthogonal to the cost gradient∇yf(x, y∗). In both cases the second term in the expression for∇g(x)
in Eq. (1) is zero.

In general, when y∗(x) is not a stationary point of f(x, ·), to evaluate the gradient ∇g(x) we
need to evaluate ∇y∗(x) in Eq. (1). However, this term may be difficult to compute directly. The
function y∗(x) may arise implicitly from some system of equations of the form h(x, y) = 0 for
some continuously differentiable function h : Rn × Rm → Rm. For example, the value of y may
be computed from x and h using a black-box iterative numerical algorithm. However, the Implicit
Function Theorem provides another means to compute ∇y∗(x) using only the derivatives of h and
the value of y∗(x).

Proposition A.4 (Implicit Function Theorem, Prop. A.25 of Bertsekas [1])
Let h : Rn × Rm → Rm be a function and x̄ ∈ Rn and ȳ ∈ Rm be points such that

1. h(x̄, ȳ) = 0

2. h is continuous and has a continuous nonsingular gradient matrix∇yh(x, y) in an open set
containing (x̄, ȳ).

Then there exist open sets Sx̄ ⊆ Rn and Sȳ ⊆ Rm containing x̄ and ȳ, respectively, and a continuous
function y∗ : Sx̄ → Sȳ such that ȳ = y∗(x) and h(x, y∗(x)) = 0 for all x ∈ Sx̄. The function y∗ is

1For a discussion of differentiability issues when there is more than one optimizer, i.e. when argmaxy f(x, y)
has more than one element, see Danskin [2], Fiacco [3, Section 2.4], and Bonnans et al. [4, Chapter 4]. Here we
only consider the sensitivity of local stationary points and assume differentiability almost everywhere.
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unique in the sense that if x ∈ Sx̄, y ∈ Sȳ, and h(x, y) = 0, then y = y∗(x). Furthermore, if for
some p > 0, h is p times continuously differentiable, the same is true for y∗, and we have

∇y∗(x) = −∇xh (x, y∗(x)) (∇yh (x, y∗(x)))
−1
, ∀ x ∈ Sx̄.

As a special case, the equations h(x, y) = 0 may be the first-order stationary conditions of another
unconstrained optimization problem. That is, the value of y may be chosen by locally partially
optimizing the value of u(x, y) for a function u : Rn ×Rm → R with no constraints on y, leading to
the following corollary.
Corollary A.5 (Implicit Function Theorem for optimization subroutines)
Let u : Rn × Rm → R be a twice continuously differentiable function such that the choice h = ∇yu
satisfies the hypotheses of Proposition A.4 at some point (x̄, ȳ), and define y∗as in Proposition A.4.
Then we have

∇y∗(x) = −∇2
xyu (x, y∗(x))

(
∇2
yyu (x, y∗(x))

)−1
, ∀ x ∈ Sx̄.

B Exponential families

In this section we set up notation for exponential families and outline some basic results. Throughout
this section we take all densities to be absolutely continuous with respect to the appropriate Lebesgue
measure (when the underlying set X is Euclidean space) or counting measure (when X is discrete),
and denote the Borel σ-algebra of a set X as B(X ) (generated by Euclidean and discrete topologies,
respectively). We assume measurability of all functions as necessary.

Given a statistic function tx : X → Rn and a base measure νX , we can define an exponential family
of probability densities on X relative to νX and indexed by natural parameter ηx ∈ Rn by

p(x | ηx) ∝ exp {〈ηx, tx(x)〉} , ∀ηx ∈ Rn,

where 〈·, ·〉 is the standard inner product on Rn. We also define the partition function as

Zx(ηx) ,
∫

exp {〈ηx, tx(x)〉} νX (dx)

and define H ⊆ Rn to be the set of all normalizable natural parameters,

H , {η ∈ Rn : Zx(η) <∞} .
We can write the normalized probability density as

p(x | η) = exp {〈ηx, tx(x)〉 − logZx(ηx)} . (2)

We say that an exponential family is regular if H is open, and minimal if there is no η ∈ Rn \ {0}
such that 〈η, tx(x)〉 = 0 (νX -a.e.). We assume all families are regular and minimal.2 Finally, when
we parameterize the family with some other coordinates θ, we write the natural parameter as a
continuous function ηx(θ) and write the density as

p(x | θ) = exp {〈ηx(θ), tx(x)〉 − logZx(ηx(θ))}
and take Θ = η−1

x (H) to be the open set of parameters that correspond to normalizable densities.
We summarize this notation in the following definition.
Definition B.1 (Exponential family of densities)
Given a measure space (X ,B(X ), νX ), a statistic function tx : X → Rn, and a natural parameter
function ηx : Θ→ Rn, the corresponding exponential family of densities relative to νX is

p(x | θ) = exp {〈ηx(θ), tx(x)〉 − logZx(ηx(θ))} ,
where

logZx(ηx) , log

∫
exp {〈ηx, tx(x)〉} νX (dx)

is the log partition function.
2Families that are not minimal, like the density of the categorical distribution, can be treated by restricting all

algebraic operations to the subspace spanned by the statistic, i.e. to the smallest V ⊂ Rn with range tx ⊆ V .
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When we write exponential families of densities for different random variables, we change the
subscripts on the statistic function, natural parameter function, and log partition function to correspond
to the symbol used for the random variable. When the corresponding random variable is clear from
context, we drop the subscripts to simplify notation.

The next proposition shows that the log partition function of an exponential family generates cumu-
lants of the statistic.
Proposition B.2 (Gradients of logZ and expected statistics)
The gradient of the log partition function of an exponential family gives the expected sufficient
statistic,

∇ logZ(η) = Ep(x | η) [t(x)] ,

where the expectation is over the random variable x with density p(x | η). More generally, the moment
generating function of t(x) can be written

Mt(x)(s) , Ep(x | η)

[
e〈s,t(x)〉

]
= elogZ(η+s)−logZ(η)

and so derivatives of logZ give cumulants of t(x), where the first cumulant is the mean and the
second and third cumulants are the second and third central moments, respectively.

Given an exponential family of densities onX as in Definition B.1, we can define a related exponential
family of densities on Θ by defining a statistic function tθ(θ) in terms of the functions ηx(θ) and
logZx(ηx(θ)).
Definition B.3 (Natural exponential family conjugate prior)
Given the exponential family p(x | θ) of Definition B.1, define the statistic function tθ : Θ→ Rn+1

as the concatenation

tθ(θ) , (ηx(θ),− logZx(ηx(θ))) ,

where the first n coordinates of tθ(θ) are given by ηx(θ) and the last coordinate is given by
− logZx(ηx(θ)). We call the exponential family with statistic tθ(θ) the natural exponential family
conjugate prior to the density p(x | θ) and write

p(θ) = exp {〈ηθ, tθ(θ)〉 − logZθ(ηθ)}
where ηθ ∈ Rn+1 and the density is taken relative to some measure νΘ on (Θ,B(Θ)).

Notice that using tθ(θ) we can rewrite the original density p(x | θ) as

p(x | θ) = exp {〈ηx(θ), tx(x)〉 − logZx(ηx(θ))}
= exp {〈tθ(θ), (tx(x), 1)〉} .

This relationship is useful in Bayesian inference: when the exponential family p(x | θ) is a likelihood
function and the family p(θ) is used as a prior, the pair enjoy a convenient conjugacy property, as
summarized in the next proposition.
Proposition B.4 (Conjugacy)
Let the densities p(x | θ) and p(θ) be defined as in Definitions B.1 and B.3, respectively. We have the
relations

p(θ, x) = exp {〈ηθ + (tx(x), 1), tθ(θ)〉 − logZθ(ηθ)} (3)
p(θ |x) = exp {〈ηθ + (tx(x), 1), tθ(θ)〉 − logZθ(ηθ + (tx(x), 1))}

and hence in particular the posterior p(θ |x) is in the same exponential family as p(θ) with the natural
parameter ηθ + (tx(x), 1). Similarly, with multiple likelihood terms p(xi | θ) for i = 1, 2, . . . , N we
have

p(θ)

N∏
i=1

p(xi | θ) = exp

{
〈ηθ +

N∑
i=1

(tx(xi), 1), tθ(θ)〉 − logZθ(ηθ)

}
. (4)

Finally, we give a few more exponential family properties that are useful for gradient-based optimiza-
tion algorithms and variational inference. In particular, we note that the Fisher information matrix of
an exponential family can be computed as the Hessian matrix of its log partition function, and that
the KL divergence between two members of the same exponential family has a simple expression.
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Definition B.5 (Score vector and Fisher information matrix)
Given a family of densities p(x | θ) indexed by a parameter θ, the score vector v(x, θ) is the gradient
of the log density with respect to the parameter,

v(x, θ) , ∇θ log p(x | θ),
and the Fisher information matrix for the parameter θ is the covariance of the score,

I(θ) , E
[
v(x, θ)v(x, θ)T

]
,

where the expectation is taken over the random variable x with density p(x | θ), and where we have
used the identity E[v(x, θ)] = 0.
Proposition B.6 (Score and Fisher information for exponential families)
Given an exponential family of densities p(x | η) indexed by the natural parameter η, as in Eq. (2),
the score with respect to the natural parameter is given by

v(x, η) = ∇η log p(x | η) = t(x)−∇ logZ(η)

and the Fisher information matrix is given by
I(η) = ∇2 logZ(η).

Proposition B.7 (KL divergence in an exponential family)
Given an exponential family of densities p(x | η) indexed by the natural parameter η, as in Eq. (2),
and two particular members with natural parameters η1 and η2, respectively, the KL divergence from
one to the other is

KL(p(x | η1) ‖ p(x | η2)) , Ep(x | η1)

[
log

p(x | η1)

p(x | η2)

]
(5)

= 〈η1 − η2, ∇ logZ(η1)〉 − (logZ(η1)− logZ(η2)).

C Natural gradient SVI for exponential families

In this section we give a derivation of the natural gradient stochastic variational inference (SVI)
method of Hoffman et al. [5] using our notation. We extend the algorithm in Section D.

C.1 SVI objective

Let p(x, y | θ) be an exponential family and p(θ) be its corresponding natural exponential family
prior as in Definitions B.1 and B.3, writing

p(θ) = exp
{
〈η0
θ , tθ(θ)〉 − logZθ(η

0
θ)
}

p(x, y | θ) = exp
{
〈η0
xy(θ), txy(x, y)〉 − logZxy(η0

xy(θ))
}

= exp {〈tθ(θ), (txy(x, y), 1)〉} (6)

where we have used tθ(θ) =
(
η0
xy(θ),− logZxy(η0

xy(θ))
)

in Eq. (6).

Given a fixed observation y, for any density q(θ, x) = q(θ)q(x) we have

log p(y) = Eq(θ)q(x)

[
log

p(θ)p(x, y | θ)
q(θ)q(x)

]
+ KL(q(θ)q(x) ‖ p(θ, x | y))

≥ Eq(θ)q(x)

[
log

p(θ)p(x, y | θ)
q(θ)q(x)

]
where we have used the fact that the KL divergence is always nonnegative. Therefore to choose
q(θ)q(x) to minimize the KL divergence to the posterior p(θ, x | y) we define the mean field varia-
tional inference objective as

L [ q(θ)q(x) ] , Eq(θ)q(x)

[
log

p(θ)p(x, y | θ)
q(θ)q(x)

]
(7)

and the mean field variational inference problem as
max .q(θ)q(x)L [ q(θ)q(x) ] . (8)

The following proposition shows that because of the exponential family conjugacy structure, we
can fix the parameterization of q(θ) and still optimize over all possible densities without loss of
generality.
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Proposition C.1 (Optimal form of the global variational factor)
Given the mean field optimization problem Eq. (8), for any fixed q(x) the optimal factor q(θ) is
detetermined (νΘ-a.e.) by

q(θ) ∝ exp
{
〈η0
θ + Eq(x) [ (txy(x, y), 1) ] , tθ(θ)〉

}
.

In particular, the optimal q(θ) is in the same exponential family as the prior p(θ).

This proposition follows immediately from a more general lemma, which we reuse in the sequel.
Lemma C.2 (Optimizing a mean field factor)
Let p(a, b, c) be a joint density and let q(a), q(b), and q(c) be mean field factors. Consider the mean
field variational inference objective

Eq(a)q(b)q(c)

[
log

p(a, b, c)

q(a)q(b)q(c)

]
.

For fixed q(a) and q(c), the partially optimal factor q∗(b) over all possible densities,

q∗(b) , arg max
q(b)

Eq(a)q(b)q(c)

[
log

p(a, b, c)

q(a)q(b)q(c)

]
, (9)

is defined (almost everywhere) by
q∗(b) ∝ exp

{
Eq(a)q(c) log p(a, b, c)

}
.

In particular, if p(c | b, a) is an exponential family with p(b | a) its natural exponential family conjugate
prior, and log p(b, c | a) is a multilinear polynomial in the statistics tb(b) and tc(c), written

p(b | a) = exp
{
〈η0
b (a), tb(b)〉 − logZb(η

0
b (a))

}
,

p(c | b, a) = exp
{
〈η0
c (b, a), tc(c)〉 − logZc(η

0
c (b, a))

}
= exp

{
〈tb(b), η0

c (a)T(tc(c), 1)〉
}
,

for some matrix η0
c (a), then the optimal factor can be written

q∗(b) = exp {〈η∗b , tb(b)〉 − logZb(η
∗
b )} , η∗b , Eq(a)η

0
b (a) + Eq(a)q(c)η

0
c (a)T(tc(c), 1).

As a special case, when c is conditionally independent of b given a, so that p(c | b, a) = p(c | b), then

p(c | b) = exp {〈tb(b), (tc(c), 1)〉} , η∗b , Eq(a)η
0
b (a) + Eq(c)(tc(c), 1).

Proof. Rewrite the objective in Eq. (9), dropping terms that are constant with respect to q(b), as

Eq(a)q(b)q(c)

[
log

p(a, b, c)

q(b)

]
= Eq(b)

[
Eq(a)q(c) log p(a, b, c)− log q(c)

]
= Eq(b)

[
log expEq(a)q(c) log p(a, b, c)− log q(c)

]
= −Eq(b)

[
q(b)

p̃(b)

]
+ const

= −KL(q(b) ‖ p̃(b)) + const,

where we have defined a new density p̃(b) ∝ exp
{
Eq(a)q(c) log p(a, b, c)

}
. We can maximize the

objective by setting the KL divergence to zero, choosing q(b) ∝ exp
{
Eq(a)q(c) log p(a, b, c)

}
. The

rest follows from plugging in the exponential family densities.

Proposition C.1 justifies parameterizing the density q(θ) with variational natural parameters ηθ as
q(θ) = exp {〈ηθ, tθ(θ)〉 − logZθ(ηθ)}

where the statistic function tθ and the log partition function logZθ are the same as in the prior
family p(θ). Using this parameterization, we can define the mean field objective as a function of the
parameters ηθ, partially optimizing over q(x),

L(ηθ) , max
q(x)

Eq(θ)q(x)

[
log

p(θ)p(x, y | θ)
q(θ)q(x)

]
. (10)

The partial optimization over q(x) in Eq. (10) should be read as choosing q(x) to be a local partial
optimizer of Eq. (7); in general, it may be intractable to find a global partial optimizer, and the results
that follow use only first-order stationary conditions on q(x). We refer to this objective function,
where we locally partially optimize the mean field objective Eq. (7) over q(x), as the SVI objective.
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C.2 Easy natural gradients of the SVI objective

By again leveraging the conjugate exponential family structure, we can write a simple expression for
the gradient of the SVI objective, and even for its natural gradient.
Proposition C.3 (Gradient of the SVI objective)
Let the SVI objective L(ηθ) be defined as in Eq. (10). Then the gradient∇L(ηθ) is

∇L(ηθ) =
(
∇2 logZθ(ηθ)

) (
η0
θ + Eq∗(x) [ (txy(x, y), 1) ]− ηθ

)
where q∗(x) is a local partial optimizer of the mean field objective Eq. (7) for fixed global variational
parameters ηθ.

Proof. First, note that because q∗(x) is a local partial optimizer for Eq. (7) by Proposition A.3, we
have

∇L(ηθ) = ∇ηθEq(θ)q∗(x)

[
log

p(θ)p(x, y | θ)
q(θ)q∗(x)

]
.

Next, we use the conjugate exponential family structure and Proposition B.4, Eq. (3), to expand

Eq(θ)q∗(x)

[
log

p(θ)p(x, y | θ)
q(θ)q∗(x)

]
= 〈η0

θ + Eq∗(x)(txy(x, y), 1)− ηθ, Eq(θ)[tθ(θ)]〉

−
(
logZθ(η

0
θ)− logZθ(ηθ)

)
.

Note that we can use Proposition B.2 to replace Eq(θ)[tθ(θ)] with∇ logZθ(ηθ). Differentiating with
respect to ηθ and using the product rule, we have

∇L(ηθ) = ∇2 logZθ(ηθ)
(
η0
θ + Eq∗(x)(txy(x, y), 1)− ηθ

)
−∇ logZθ(ηθ) +∇ logZθ(ηθ)

= ∇2 logZθ(ηθ)
(
η0
θ + Eq∗(x)(txy(x, y), 1)− ηθ

)
.

As an immediate result of Proposition C.3, the natural gradient [6] defined by

∇̃L(ηθ) ,
(
∇2 logZθ(ηθ)

)−1∇L(ηθ)

has an even simpler expression.
Corollary C.4 (Natural gradient of the SVI objective)
The natural gradient of the SVI objective Eq. (10) is

∇̃L(ηθ) = η0
θ + Eq∗(x)[ (txy(x, y), 1) ]− ηθ.

The natural gradient corrects for a kind of curvature in the variational family and is invariant to
reparameterization of the family [7]. As a result, natural gradient ascent is effectively a second-
order quasi-Newton optimization algorithm, and using natural gradientds can greatly accelerate the
convergence of gradient-based optimization algorithms [8, 9]. It is a remarkable consequence of the
exponential family structure that natural gradients of the partially optimized mean field objective
with respect to the global variational parameters can be computed efficiently (without any backward
pass as would be required in generic reverse-mode differentiation). Indeed, the exponential family
conjugacy structure makes the natural gradient of the SVI objective even easier to compute than the
flat gradient.

C.3 Stochastic natural gradients for large datasets

The real utility of natural gradient SVI is in its application to large datasets. Consider the model
composed of global latent variables θ, local latent variables x = {xn}Nn=1, and data y = {yn}Nn=1,

p(θ, x, y) = p(θ)

N∏
n=1

p(xn, yn | θ),
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where each p(xn, yn | θ) is a copy of the same likelihood function with conjugate prior p(θ). For
fixed observations y = {yn}Nn=1, let

q(θ, x) = q(θ)

N∏
n=1

q(xn)

be a variational family to approximate the posterior p(θ, x | y) and consider the SVI objective given
by Eq. (10). Using Eq. (4) of Proposition B.4, it is straightforward to extend the natural gradient
expression in Corollary C.4 to an unbiased Monte Carlo estimate which samples terms in the sum
over data points.

Corollary C.5 (Unbiased Monte Carlo estimate of the SVI natural gradient)
Using the model and variational family

p(θ, x, y) = p(θ)

N∏
n=1

p(xn, yn | θ), q(θ)q(x) = q(θ)

N∏
n=1

q(xn),

where p(θ) and p(xn, yn | θ) are a conjugate pair of exponential families, define L(ηθ) as in Eq. (10).
Let the random index n̂ be sampled from the set {1, 2, . . . , N} and let pn > 0 be the probability it
takes value n. Then

∇̃L(ηθ) = En̂
[
η0
θ +

1

pn̂
Eq∗(xn̂)[ (txy(xn̂, yn̂), 1) ]− ηθ

]
,

where q∗(xn̂) is a local partial optimizer of L given q(θ).

Proof. Taking expectation over the index n̂, we have

En̂
[

1

pn̂
Eq∗(xn̂)[ (txy(xn̂, yn̂), 1) ]

]
=

N∑
n=1

pn
pn

Eq∗(xn)[ (txy(xn, yn), 1) ]

=

N∑
n=1

Eq∗(xn)[ (txy(xn, yn), 1) ] .

The remainder of the proof follows from Proposition B.4 and the same argument as in Proposition C.3.

The unbiased stochastic gradient developed in Corollary C.5 can be used in a scalable stochastic
gradient ascent algorithm. To simplify notation, in the following sections we drop the notation
for multiple likelihood terms p(xn, yn | θ) for n = 1, 2, . . . , N and return to working with a single
likelihood term p(x, y | θ). The extension to multiple likelihood terms is immediate.

C.4 Conditinally conjugate models and block updating

The model classes often considered for natural gradient SVI, and the main model classes we consider
here, have additional conjugacy structure in the local latent variables. In this section we introduce
notation for this extra structure in terms of the additional local latent variables z and discuss the local
block coordinate optimization that is often performed to compute the factor q∗(z)q∗(x) for use in the
natural gradient expression.

Let p(z, x, y | θ) be an exponential family and p(θ) be its corresponding natural exponential family
conjugate prior, writing

p(θ) = exp
{
〈η0
θ , tθ(θ)〉 − logZθ(η

0
θ)
}
, (11)

p(z, x, y | θ) = exp
{
〈η0
zxy(θ), tzxy(z, x, y)〉 − logZzxy(η0

zxy(θ))
}

= exp {〈tθ(θ), (tzxy(z, x, y), 1)〉} , (12)

where we have used tθ(θ) =
(
η0
zxy(θ),− logZzxy(η0

zxy(θ))
)

in Eq. (12). Additionally, let
tzxy(z, x, y) be a multilinear polynomial in the statistics functions tx(x), ty(y), and tz(z), let p(z | θ),
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p(x | z, θ), and p(y |x, z, θ) = p(y |x, θ) be exponential families, and let p(z | θ) be a conjugate prior
to p(x | z, θ) and p(x | z, θ) be a conjugate prior to p(y |x, θ), so that

p(z | θ) = exp
{
〈η0
z(θ), tz(z)〉 − logZz(η

0
z(θ))

}
, (13)

p(x | z, θ) = exp
{
〈η0
x(z, θ), tx(x)〉 − logZx(η0

x(z, θ))
}

= exp
{
〈tz(z), η0

x(θ)T(tx(x), 1)〉
}
, (14)

p(y |x, θ) = exp
{
〈η0
y(x, θ), ty(y)〉 − logZy(η0

y(x, z, θ))
}

= exp
{
〈tx(x), η0

y(θ)T(ty(y), 1)〉
}
, (15)

for some matrices η0
x(θ) and η0

y(θ).

This model class includes many common models, including the latent Dirichlet allocation, switching
linear dynamical systems with linear-Gaussian emissions, and mixture models and hidden Markov
models with exponential family emissions. The conditionally conjugate structure is both powerful
and restrictive: while it potentially limits the expressiveness of the model class, it enables block
coordinate optimization with very simple and fast updates, as we show next. When conditionally
conjugate structure is not present, these local optimizations can instead be performed with generic
gradient-based methods and automatic differentiation [10].
Proposition C.6 (Unconstrained block coordinate ascent on q(z) and q(x))
Let p(θ, z, x, y) be a model as in Eqs. (11)-(15), and for fixed data y let q(θ)q(z)q(x) be a corre-
sponding mean field variational family for approximating the posterior p(θ, z, x | y), with

q(θ) = exp {〈ηθ, tθ(θ)〉 − logZθ(ηθ)} ,
q(z) = exp {〈ηz, tz(z)〉 − logZz(ηz)} ,
q(x) = exp {〈ηx, tx(x)〉 − logZx(ηx)} ,

and with the mean field variational inference objective

L[ q(θ)q(z)q(x) ] = Eq(θ)q(z)q(x)

[
log

p(θ)p(z | θ)p(x | z, θ)p(y |x, z, θ)
q(θ)q(z)q(x)

]
.

Fixing the other factors, the partial optimizers q∗(z) and q∗(x) for L over all possible densities are
given by

q∗(z) , arg max
q(z)

L[ q(θ)q(z)q(x) ] = exp {〈η∗z , tz(z)〉 − logZz(η
∗
z)} ,

q∗(x) , arg max
q(x)

L[ q(θ)q(z)q(x) ] = exp {〈η∗x, tx(x)〉 − logZx(η∗x)} ,

with

η∗z = Eq(θ)η0
z(θ) + Eq(θ)q(x)η

0
x(θ)T(tx(x), 1), (16)

η∗x = Eq(θ)q(z)η0
x(θ)tz(z) + Eq(θ)η0

y(θ)T(ty(y), 1). (17)

Proof. This proposition is a consequence of Lemma C.2 and the conjugacy structure.

Proposition C.6 gives an efficient block coordinate ascent algorithm: for fixed ηθ, by alternatively
updating ηz and ηx according to Eqs. (16)-(17) we are guaranteed to converge to a stationary point
that is partially optimal in the parameters of each factor. In addition, performing each update requires
only computing expected sufficient statistics in the variational factors, which means evaluating
∇ logZθ(ηθ), ∇ logZz(ηz), and ∇ logZx(ηx), quantities that be computed anyway in a gradient-
based optimization routine. The block coordinate ascent procedure leveraging this conditional
conjugacy structure is thus not only efficient but also does not require a choice of step size.

Note in particular that this procedure produces parameters η∗z(ηθ) and η∗x(ηθ) that are partially optimal
(and hence stationary) for the objective. That is, defining the parameterized mean field variational
inference objective as L(ηθ, ηz, ηx) = L[ q(θ)q(z)q(x) ], for fixed ηθ the block coordinate ascent
procedure has limit points η∗z and η∗x that satisfy

∇ηzL(ηθ, η
∗
z(ηθ), η

∗
x(ηθ)) = 0, ∇ηxL(ηθ, η

∗
z(ηθ), η

∗
x(ηθ)) = 0.
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D The SVAE objective and its gradients

In this section we define the SVAE variational lower bound and show how to efficiently compute
unbiased stochastic estimates of its gradients, including an unbiased estimate of the natural gradient
with respect to the variational parameters with conjugacy structure. The setup here parallels the setup
for natural gradient SVI in Section C, but while SVI is restricted to complete-data conjugate models,
here we consider more general likelihood models.

D.1 SVAE objective

Let p(x | θ) be an exponential family and let p(θ) be its corresponding natural exponential family
conjugate prior, as in Definitions B.1 and B.3, writing

p(θ) = exp
{
〈η0
θ , tθ(θ)〉 − logZθ(η

0
θ)
}
, (18)

p(x | θ) = exp
{
〈η0
x(θ), tx(x)〉 − logZx(η0

x(θ))
}

= exp {〈tθ(θ), (tx(x), 1)〉} , (19)

where we have used tθ(θ) =
(
η0
x(θ),− logZx(η0

x(θ))
)

in Eq. (19). Let p(y |x, γ) be a general family
of densities (not necessarily an exponential family) and let p(γ) be an exponential family prior on its
parameters of the form

p(γ) = exp
{
〈η0
γ , tγ(γ)〉 − logZγ(η0

γ)
}
.

For fixed y, consider the mean field family of densities q(θ, γ, x) = q(θ)q(γ)q(x) and the mean field
variational inference objective

L[ q(θ)q(γ)q(x) ] , Eq(θ)q(γ)q(x)

[
log

p(θ)p(γ)p(x | θ)p(y |x, γ)

q(θ)q(γ)q(x)

]
. (20)

By the same argument as in Proposition C.1, without loss of generality we can take the global factor
q(θ) to be in the same exponential family as the prior p(θ), and we denote its natural parameters by
ηθ, writing

q(θ) = exp {〈ηθ, tθ(θ)〉 − logZθ(ηθ)} .
We restrict q(γ) to be in the same exponential family as p(γ) with natural parameters ηγ , writing

q(γ) = exp {〈ηγ , tγ(γ)〉 − logZγ(ηγ)} .
Finally, we restrict3 q(x) to be in the same exponential family as p(x | θ), writing its natural parameter
as ηx. Using these explicit variational natural parameters, we rewrite the mean field variational
inference objective in Eq. (20) as

L(ηθ, ηγ , ηx) , Eq(θ)q(γ)q(x)

[
log

p(θ)p(γ)p(x | θ)p(y |x, γ)

q(θ)q(γ)q(x)

]
. (21)

To perform efficient optimization in the objective L defined in Eq. (21), we consider choosing the
variational parameter ηx as a function of the other parameters ηθ and ηγ . One natural choice is to set
ηx to be a local partial optimizer of L, as in Section C. However, finding a local partial optimizer
may be computationally expensive for general densities p(y |x, γ), and in the large data setting this
expensive optimization would have to be performed for each stochastic gradient update. Instead, we
choose ηx by optimizing over a surrogate objective L̂, which we design using exponential family
structure to be both easy to optimize and to share curvature properties with the mean field objective
L. The surrogate objective L̂ is

L̂(ηθ, ηγ , ηx, φ) , Eq(θ)q(γ)q(x)

[
log

p(θ)p(γ)p(x | θ) exp{ψ(x; y, φ)}
q(θ)q(γ)q(x)

]
= Eq(θ)q(x)

[
log

p(θ)p(x | θ) exp{ψ(x; y, φ)}
q(θ)q(x)

]
+ const, (22)

3The parametric form for q(x) need not be restricted a priori, but rather without loss of generality given the
surrogate objective Eq. (22) and the form of ψ used in Eq. (23), the optimal factor q(x) is in the same family as
p(x | θ). We treat it as a restriction here so that we can proceed with more concrete notation.
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where the constant does not depend on ηx. We define the function ψ(x; y, φ) to have a form related
to the exponential family p(x | θ),

ψ(x; y, φ) , 〈r(y;φ), tx(x)〉, (23)

where {r(y;φ)}φ∈Rm is some class of functions parameterized by φ ∈ Rm, which we assume only
to be continuously differentiable in φ. We call r(y;φ) the recognition model. We define η∗x(ηθ, φ) to
be a local partial optimizer of L̂,

η∗x(ηθ, φ) , arg min
ηx

L̂(ηθ, ηγ , ηx, φ),

where the notation above should be interpreted as choosing η∗x(ηθ, φ) to be a local argument of
maximum. The results to follow rely only on necessary first-order conditions for unconstrained local
optimality.

Given this choice of function η∗x(ηθ, φ), we define the SVAE objective to be

LSVAE(ηθ, ηγ , φ) , L(ηθ, ηγ , η
∗
x(ηθ, φ)), (24)

where L is the mean field variational inference defined in Eq. (21), and we define the SVAE optimiza-
tion problem to be

max .ηθ,ηγ ,φLSVAE(ηθ, ηγ , φ).

We summarize these definitions in the following.
Definition D.1 (SVAE objective)
Let L denote the mean field variational inference objective

L[ q(θ)q(γ)q(x) ] , Eq(θ)q(γ)q(x)

[
log

p(θ)p(γ)p(x | θ)p(y |x, γ)

q(θ)q(γ)q(x)

]
, (25)

where the densities p(θ), p(γ), and p(x | θ) are exponential families and p(θ) is the natural expo-
nential family conjugate prior to p(x | θ), as in Eqs. (18)-(19). Given a parameterization of the
variational factors as

q(θ) = exp {〈ηθ, tθ(θ)〉 − logZθ(ηθ)} , q(γ) = exp {〈ηγ , tγ(γ)〉 − logZγ(ηγ)} ,
q(x) = exp {〈ηx, tx(x)〉 − logZx(ηx)} ,

let L(ηθ, ηγ , ηx) denote the mean field variational inference objective Eq. (25) as a function of these
variational parameters. We define the SVAE objective as

LSVAE(ηθ, ηγ , φ) , L(ηθ, ηγ , η
∗
x(ηθ, φ)),

where η∗x(ηθ, φ) is defined as a local partial optimizer of the surrogate objective L̂,

η∗x(ηθ, φ) , arg max
ηx

L̂(ηθ, η
∗
x(ηθ, φ), φ),

where the surrogate objective L̂ is defined as

L̂(ηθ, ηx, φ) , Eq(θ)q(x)

[
log

p(θ)p(x | θ) exp{ψ(x; y, φ)}
q(θ)q(x)

]
,

ψ(x; y, φ) , 〈r(y;φ), tx(x)〉,
for some recognition model r(y;φ) parameterized by φ ∈ Rm.

The SVAE objective LSVAE is a lower-bound for the partially-optimized mean field variational
inference objective in the following sense.
Proposition D.2 (The SVAE objective lower-bounds the mean field objective)
The SVAE objective function LSVAE lower-bounds the partially-optimized mean field objective L in
the sense that

max
q(x)
L[ q(θ)q(γ)q(x) ] ≥ max

ηx
L(ηθ, ηγ , ηx) ≥ LSVAE(ηθ, ηγ , φ) ∀φ ∈ Rm,

11



for any choice of function class {r(y;φ)}φ∈Rm in Eq. (23). Furthermore, if there is some φ∗ ∈ Rm
such that

ψ(x; y, φ∗) = Eq(γ) log p(y |x, γ)

then the bound can be made tight in the sense that

max
q(x)
L[ q(θ)q(γ)q(x) ] = max

ηx
L(ηθ, ηγ , ηx) = max

φ
LSVAE(ηθ, ηγ , φ).

Proof. The inequalities follow from the variational principle and the definition of the SVAE objective
LSVAE. In particular, by Lemma C.2 the optimal factor over all possible densities is given by

q∗∗(x) ∝ exp
{
〈Eq(θ)η0

x(θ), tx(x)〉+ Eq(γ) log p(y |x, γ)
}
, (26)

while we restrict the factor q(x) to have a particular exponential family form indexed by parameter ηx,
namely q(x) ∝ exp {〈ηx, tx(x)〉}. In the definition of LSVAE we also restrict the parameter ηx to be
set to η∗x(ηθ, φ), a particular function of ηθ and φ, rather than setting it to the value that maximizes
the mean field objective L. Finally, equality holds when we can set φ to match the optimal ηx and
that choice yields the optimal factor given in Eq. (26).

Proposition D.2 motivates the SVAE optimization problem: by using gradient-based optimization to
maximize LSVAE(ηθ, ηγ , φ) we are maximizing a lower-bound on the model evidence log p(y) and
correspondingly minimizing the KL divergence from our variational family to the target posterior.
Furthermore, it motivates choosing the recognition model function class {r(y;φ)}φ∈Rm to be as rich
as possible.

As we show in the following, choosing η∗x(ηθ, φ) to be a local partial optimizer of the surrogate
objective L̂ provides two significant computational advantages. First, it allows us to provide a
simple expression for an unbiased estimate of the natural gradient ∇̃ηθLSVAE, as we describe next in
Section D.2. Second, it allows η∗x(ηθ, φ) to be computed efficiently by exploiting exponential family
structure, as we show in Section D.4.

D.2 Estimating the natural gradient ∇̃ηθLSVAE

The definition of η∗x in terms of the surrogate objective L̂ enables a simple and computationally
efficient expression for the natural gradient with respect to the conjugate global variational parameters,
∇̃ηθLSVAE(ηθ, ηγ , φ), as we show in the next proposition.

Proposition D.3 (Natural gradient of the SVAE objective)
The natural gradient of the SVAE objective Eq. (24) with respect to the conjugate global variational
parameters ηθ is

∇̃ηθLSVAE(ηθ, ηγ , φ) =
(
η0
θ + Eq∗(x) [(tx(x), 1)]− ηθ

)
+ (∇ηxL(ηθ, ηγ , η

∗
x(ηθ, φ)), 0)

where the first term is the SVI natural gradient from Corollary C.4, using

q∗(x) , exp {〈η∗x(ηθ, φ), tx(x)〉 − logZx(η∗x(ηθ, φ))} ,
and where a stochastic estimate of the second term is computed as part of the backward pass for the
gradient∇φL(ηθ, ηγ , η

∗
x(ηθ, φ)).

Proof. First we use the chain rule, analogously to Eq. (1), to write the gradient as

∇ηθLSVAE(ηθ, ηγ , φ) =
(
∇2 logZθ(ηθ)

) (
η0
θ + Eq∗(x) [ (txy(x, y), 1) ]− ηθ

)
+ (∇ηθη∗x(ηθ, φ)) (∇ηxL(ηθ, ηγ , η

∗
x(ηθ, φ))) , (27)

where the first term is the same as the SVI gradient derived in Proposition C.3. In the case of SVI,
the second term is zero because η∗x is chosen as a partial optimizer of L, but for the SVAE objective
the second term is nonzero in general, and the remainder of this proof amounts to deriving a simple
expression for it.
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We compute the term ∇ηθη∗x(ηθ, φ) in Eq. (27) in terms of the gradients of the surrogate objective L̂
using the Implicit Function Theorem given in Corollary A.5, which yields

∇ηθη∗x(ηθ, φ) = −∇2
ηθηx
L̂(ηθ, η

∗
x(ηθ, φ), φ)

(
∇2
ηxηxL̂(ηθ, η

∗
x(ηθ, φ), φ)

)−1

. (28)

First, we compute the gradient of L̂ with respect to ηx, writing

∇ηxL̂(ηθ, ηx, φ) = ∇ηx
[
Eq(θ)q(x)

[
log

p(x | θ) exp{ψ(x; y, φ)})
q(x)

]]
= ∇ηx

[
〈Eq(θ)η0

x(θ) + r(y;φ)− ηx, ∇ logZx(ηx)〉+ logZx(ηx)
]

=
(
∇2 logZx(ηx)

) (
Eq(θ)η0

x(θ) + r(y;φ)− ηx
)
. (29)

Thus as a consequence of the first-order stationary condition ∇ηxL̂(ηθ, η
∗
x(ηθ, φ), φ) = 0 and the

fact that∇2 logZx(ηx) is always positive definite for minimal exponential families, we have

Eq(θ)η0
x(θ) + r(y;φ)− η∗x(ηθ, φ) = 0, (30)

which is useful in simplifying the expressions to follow.

Continuing with the calculation of the terms in Eq. (28), we compute∇2
ηxηxL̂ by differentiating the

expression in Eq. (29) again, writing

∇2
ηxηxL̂(ηθ, η

∗
x(ηθ, φ), φ) = −∇2 logZx(η∗x(ηθ, φ)) (31)

+
(
∇3 logZx(η∗x(ηθ, φ))

)(
Eq(θ)η0

x(θ) + r(y;φ)− η∗x(ηθ, φ)
)

= −∇2 logZx(η∗x(ηθ, φ)),

where the last line follows from using the first-order stationary condition Eq. (30). Next, we compute
the other term∇2

ηθηx
L̂ by differentiating Eq. (29) with respect to ηθ to yield

∇2
ηθηx
L̂(ηθ, η

∗
x(ηθ, φ), φ) =

(
∇2 logZθ(ηθ)

)(∇2 logZx(η∗x(ηθ, φ))
0

)
,

where the latter matrix is∇2 logZx(η∗x(ηθ, φ)) padded by a row of zeros.

Plugging these expressions back into Eq. (28) and cancelling, we arrive at

∇ηθη∗x(ηθ, φ) = ∇2 logZθ(ηθ)

(
I
0

)
,

and so we have an expression for the gradient of the SVAE objective as

∇ηθLSVAE(ηθ, ηγ , φ) =
(
∇2 logZθ(ηθ)

) (
η0
θ + Eq∗(x) [ (txy(x, y), 1) ]− ηθ

)
+
(
∇2 logZθ(ηθ)

)
(∇ηxL(ηθ, ηγ , η

∗
x(ηθ, φ)), 0) .

When we compute the natural gradient, the Fisher information matrix factors on the left of each term
cancel, yielding the result in the proposition.

As a consequence of Proposition D.3, the SVAE algorithm is almost as simple as the SVI algorithm,
which applies only to complete-data conjugate models, yet can handle general likelihood densities
p(y |x, γ). In particular, to compute the natural gradient ∇̃ηθLSVAE we only need to compute the
same expected sufficient statistics as in the SVI algorithm plus a correction term that, as we show
next, is already estimated via automatic differentiation as part of estimating the gradient∇φLSVAE.

The proof of Proposition D.3 used the necessary condition for unconstrained local optimality to
simplify the expression in Eq. (31). This simplification does not necessarily hold if ηx is constrained;
for example, if the factor q(x) has additional factorization structure that is not present in p(x | θ), that
additional structure can manifest as linear constraints on the natural parameter ηx. In the cases we
consider here and in Section D.4 the factorization structure in the variational family matches that
in the model and so the stationarity conditions apply. Note also that for Gaussian q(x) the same
simplification always applies because third and higher-order cumulants are zero for Gaussians and
hence∇3 logZx(ηx) = 0.
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D.3 Estimating the gradients∇φLSVAE and ∇ηγLSVAE

To compute an unbiased stochastic estimate of the gradients ∇φLSVAE(ηθ, ηγ , φ) and
∇ηγLSVAE(ηθ, ηγ , φ) we use the reparameterization trick [11], which is simply to differentiate
a stochastic estimate of the objective LSVAE(ηθ, ηγ , φ) as a function of φ and ηγ . To isolate the terms
that require this sample-based approximation from those that can be computed directly, we rewrite
the objective as

LSVAE(ηθ, ηγ , φ) = Eq(γ)q∗(x) log p(y |x, γ)−KL(q(θ)q(γ)q∗(x) ‖ p(θ, γ, x)) (32)

where, as before,

q∗(x) , exp {〈η∗x(ηθ, φ), tx(x)〉 − logZx(η∗x(ηθ, φ))}
and so the dependence of the expression in Eq. (32) on φ is through η∗x(ηθ, φ).

Only the first term in Eq. (32) needs to be estimated with the reparameterization trick. Due to the
exponential family structure, the second term in Eq. (32) has a simple expression, as we show in the
following proposition.

Proposition D.4 (Computing KL(q(θ)q(γ)q∗(x) ‖ p(θ, γ, x)))
The KL divergence term in the SVAE objective in Eq. (32) can be computed as

KL(q(θ)q(γ)q∗(x) ‖ p(θ, γ, x)) = KL(q(θ) ‖ p(θ)) + KL(q(γ) ‖ p(γ))

+ logZx(η∗x(ηθ, φ))− 〈r(y;φ), ∇ logZx(η∗x(ηθ, φ))〉,
where the first two terms can be computed with Eq. (5) of Proposition B.7.

Proof. Using basic properties of the KL divergence for factorized densities we have

KL(q(θ)q(γ)q∗(x) ‖ p(θ, γ, x)) = KL(q(θ) ‖ p(θ)) + KL(q(γ) ‖ p(γ))

+ Eq(θ) KL(q∗(x) ‖ p(x | θ)),
and so it remains to compute an expression for the final term. Using Proposition B.7 and the
stationarity condition given in Eq. (30), we have

Eq(θ) KL(q∗(x) ‖ p(x | θ)) = 〈Eq(θ)η0
x(θ)− η∗x(ηθ, φ), ∇ logZx(η∗x(ηθ, φ))〉

+ logZx(η∗x(ηθ, φ))

= logZx(η∗x(ηθ, φ))− 〈r(y;φ), ∇ logZx(η∗x(ηθ, φ))〉.
Adding these terms yields the desired result.

Proposition D.4 gives an explicit formula for computing the KL divergence term involving only
the log partition functions of the variational exponential families and their gradients. When the
variational family is chosen so that these log partition functions can be computed efficiently, the
gradients of this term with respect to φ and ηγ can also be computed efficiently by reverse-mode
automatic differentiation.

We summarize the results of this subsection in the following proposition.

Proposition D.5 (Estimating∇φLSVAE and∇ηγLSVAE)
Let γ̂(ηγ) ∼ q(γ) and x̂(φ) ∼ q∗(x) be samples of q(γ) and q∗(x), respectively. Unbiased estimates
of the gradients∇φLSVAE(ηθ, ηγ , φ) and ∇ηγLSVAE(ηθ, ηγ , φ) are given by

∇φLSVAE(ηθ, ηγ , φ) ≈ ∇φ log p(y | x̂(φ), γ̂(ηγ))−∇φ KL(q(θ)q∗(x) ‖ p(θ, x)),

∇ηγLSVAE(ηθ, ηγ , φ) ≈ ∇ηγ log p(y | x̂(φ), γ̂(ηγ))−∇ηγ KL(q(γ) ‖ p(γ)).

Both of these gradients can be computed by automatically differentiating the Monte Carlo estimate of
LSVAE given by

LSVAE(ηθ, ηγ , φ) ≈ log p(y | x̂(φ), γ̂(ηγ))−KL(q(θ)q(γ)q∗(x) ‖ p(θ, γ, x))

with respect to ηγ and φ, respectively, where the second term can be computed via Proposition D.4.
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D.4 Partially optimizing L̂ using conjugacy structure

In Section D.1 we defined the SVAE objective in terms of a function η∗x(ηθ, φ), which was itself
implicitly defined in terms of first-order stationary conditions for an auxiliary objective L̂(ηθ, ηx, φ).
Here we show how L̂ admits efficient local partial optimization in the same way as the conditionally
conjugate model of Section C.4.

In this section we consider additional structure in the local latent variables. Specifically, as in
Section C.4, we introduce to the notation another set of local latent variables z in addition to the
local latent variables x. However, unlike Section C.4, we still consider general likelihood families
p(y |x, γ).

Let p(z, x | θ) be an exponential family and p(θ) be its corresponding natural exponential family
conjugate prior, writing

p(θ) = exp
{
〈η0
θ , tθ(θ)〉 − logZθ(η

0
θ)
}
, (33)

p(z, x | θ) = exp
{
〈η0
zx(θ), tzx(z, x)〉 − logZzx(η0

zx(θ))
}

= exp {〈tθ(θ), (tzx(z, x), 1)〉}
where we have used tθ(θ) =

(
η0
zx(θ),− logZzx(η0

zx(θ))
)

in Eq. (12). Additionally, let tzx(z, x) be
a multilinear polynomial in the statistics tz(z) and tx(x), and let p(z | θ) and p(x | z, θ) be a conjugate
pair of exponential families, writing

p(z | θ) = exp
{
〈η0
z(θ), tz(z)〉 − logZz(η

0
z(θ))

}
,

p(x | z, θ) = exp
{
〈η0
x(z, θ), tx(x)〉 − logZx(η0

x(z, θ))
}

= exp
{
〈tz(z), η0

x(θ)T(tx(x), 1)〉
}
.

Let p(y |x, γ) be a general family of densities (not necessarily an exponential family) and let p(γ) be
an exponential family prior on its parameters of the form

p(γ) = exp
{
〈η0
γ , tγ(γ)〉 − logZγ(η0

γ)
}
.

The corresponding variational factors are
q(θ) = exp {〈ηθ, tθ(θ)〉 − logZθ(ηθ)} , q(γ) = exp {〈ηγ , tγ(γ)〉 − logZγ(ηγ)} ,
q(z) = exp {〈ηz, tz(z)〉 − logZz(ηz)} , q(x) = exp {〈ηx, tx(x)〉 − logZx(ηx)} .

As in Section D.1, we construct the surrogate objective L̂ to allow us to exploit exponential family
and conjugacy structure. In particular, we construct L̂ to resemble the mean field objective, namely

L(ηθ, ηγ , ηz, ηx) , Eq(θ)q(γ)q(z)q(x)

[
log

p(θ)p(γ)p(z | θ)p(x | z, θ)p(y |x, γ)

q(θ)q(γ)q(z)q(x)

]
,

but in L̂ we replace the log p(y |x, γ) likelihood term, which may be a general family of densities
without much structure, with a more tractable approximation,

L̂(ηθ, ηz, ηx, φ) , Eq(θ)q(z)q(x)

[
log

p(θ)p(z | θ)p(x | z, θ) exp{ψ(x; y, φ)}
q(θ)q(z)q(x)

]
,

where ψ(x; y, φ) is a function on x that resembles a conjugate likelihood for p(x | z, θ),

ψ(x; y, φ) , 〈r(y;φ), tx(x)〉, φ ∈ Rm.

We then define η∗z(ηθ, φ) and η∗x(ηθ, φ) to be local partial optimizers of L̂ given fixed values of the
other parameters ηθ and φ, and in particular they satisfy the first-order necessary optimality conditions

∇ηz L̂(ηθ, η
∗
z(ηθ, φ), η∗x(ηθ, φ), φ) = 0, ∇ηxL̂(ηθ, η

∗
z(ηθ, φ), η∗x(ηθ, φ), φ) = 0.

The SVAE objective is then

LSVAE(ηθ, ηγ , φ) , L(ηθ, ηγ , η
∗
z(ηθ, φ), η∗x(ηθ, φ)). (34)

The structure of the surrogate objective L̂ is chosen so that it resembles the mean field variational
inference objective for the conditionally conjugate model of Section C.4, and as a result we can
use the same block coordinate ascent algorithm to efficiently find partial optimzers η∗z(ηθ, φ) and
η∗x(ηθ, φ).
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Proposition D.6 (Computing η∗z(ηθ, φ) and η∗x(ηθ, φ))
Let the densities p(θ, γ, z, x, y) and q(θ)q(γ)q(z)q(x) and the objectives L, L̂, and LSVAE be as in
Eqs. (33)-(34). The partial optimizers η∗z and η∗x, defined by

η∗z , arg max
ηz

L̂(ηθ, ηz, ηx, φ), η∗x , arg max
ηx

L̂(ηθ, ηz, ηx, φ)

with the other arguments fixed, are are given by

η∗z = Eq(θ)η0
z(θ) + Eq(θ)q(x)η

0
x(θ)T(tx(x), 1), η∗x = Eq(θ)q(z)η0

x(z, θ) + r(y;φ), (35)

and by alternating the expressions in Eq. (35) as updates we can compute η∗z(ηθ, φ) and η∗x(ηθ, φ) as
local partial optimizers of L̂.

Proof. These updates follow immediately from Lemma C.2. Note in particular that the stationary
conditions∇ηz L̂ = 0 and∇ηxL̂ = 0 yield the each expression in Eq. (35), respectively.

The other properties developed in Propositions D.2, D.3, and D.5 also hold true for this model because
it is a special case in which we have separated out the local variables, denoted x in earlier sections,
into two groups, denoted z and x here, to match the exponential family structure in p(z | θ) and
p(x | z, θ), and performed unconstrained optimization in each of the variational parameters. However,
the expression for the natural gradient is slightly simpler for this model than the corresponding
version of Proposition D.3. For completeness, we restate Proposition D.3 using the notation of this
section.
Proposition D.7 (Natural gradient of the SVAE objective)
The natural gradient of the SVAE objective Eq. (34) with respect to the conjugate global variational
parameters ηθ is

∇̃ηθLSVAE(ηθ, ηγ , φ) =
(
η0
θ + Eq∗(z)q∗(x) [(tzx(z, x), 1)]− ηθ

)
+ (∇ηxL(ηθ, ηγ , η

∗
z(ηθ, φ), η∗x(ηθ, φ)), 0) .

Proof. Note that the optimality condition satisfied by η∗z , namely

∇ηz L̂(ηθ, η
∗
z(ηθ, φ), η∗x(ηθ, φ), φ) = ∇ηzEq(θ)q(z)q(x)

[
log

p(z | θ)p(x | z, θ)
q(z)

]
= 0,

also implies that it is stationary for L,

∇ηzL(ηθ, ηγ , η
∗
z(ηθ, φ), η∗x(ηθ, φ)) = ∇ηzEq(θ)q(z)q(x)

[
log

p(z | θ)p(x | z, θ)
q(z)

]
= 0,

and so by Proposition A.3 the term involving ∇ηzL does not appear in the chain rule expansion for
the gradient ∇ηzLSVAE(ηθ, ηγ , φ). The remainder of the proof follows that of Proposition D.3.

E Experiment details and expanded figures

For the synthetic 1D dot video data, we trained an LDS SVAE on 80 random image sequences each of
length 50, using one sequence per update, and show the model’s future predictions given a prefix of a
longer sequence. We used MLP image and recognition models each with one hidden layer of 50 units
and a latent state space of dimension 8. The middle and bottom panels of Fig. 1 show the model’s
predictions and sampled latent state trajectories, respectively, with the predictions conditioned on the
data up to the vertical red line. The model is able both to represent the image accurately and to make
long-term predictions while modeling uncertainty.

See also videos of training a warped mixture and training a nonlinear LDS.
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(a) Predictions after 200 training steps. (b) Predictions after 1100 training steps.

Figure 1: Predictions from an LDS SVAE fit to 1D dot image data at two stages of training. The
top panel shows an example sequence with time on the horizontal axis. The middle panel shows the
noiseless predictions given data up to the vertical line, while the bottom panel shows the latent states.
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(a) Comparing natural (blue) and standard (orange) gradient
updates. The X’s mark early termination due to indefiniteness.

(b) Random 2D subspace of MLP obser-
vation model fit to mouse data.

Figure 2: Panel (a) compares natural and standard gradient updates and Panel (b) shows a random 2D
subspace in the image manifold coordinates learned by fitting a VAE to mouse depth video data.

Figure 3: Examples of predictions from an LDS SVAE fit to depth video. In each panel, the top row is
a sampled prediction from the LDS SVAE and the bottom row is real data. To the left of the line, the
model is conditioned on the corresponding data frames and hence generates denoised versions of the
same images. To the right of the line, the model is not conditioned on the data, thus illustrating the
model’s predictions. The frame sequences are temporally subsampled to reduce their length, showing
one of every four video frames.
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(a) Beginning a rear

(b) Grooming

(c) Extension into running

(d) Fall from rear

Figure 4: Examples of behavior states inferred from depth video. For each state, four example frame
sequences are shown, including frames during which the given state was most probable according to
the variational distribution on the hidden state sequence. Each frame sequence is padded on both
sides, with a square in the lower-right of a frame depicting that the state was active in that frame. The
frame sequences are temporally subsampled to reduce their length, showing one of every four video
frames. Examples were chosen to have durations close to the median duration for that state.
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