Algorithm 1 COEVOLUTIONARY LATENT FEATURE PROCESSES

1: Input: Events \mathcal{T} , learning rate ξ . Output: η , X2: Choose to initialize η^0 , X^0 , Z_1^0 , Z_2^0 3: for k = 1 to MaxIter do 4: Compute $X^k = (X^{k-1} - \xi \nabla_X f(X^{k-1}, \eta^{k-1}, Z_1^{k-1}, Z_2^{k-1}))_+$ 5: Compute $\eta^k = (\eta^{k-1} - \xi \nabla_\eta f(X^{k-1}, \eta^{k-1}, Z_1^{k-1}, Z_2^{k-1}))_+$ 6: Find (u_1, v_1) as top singular vector pairs of $-\nabla_{Z_1} f(X^k, \eta^k, Z_1^{k-1}, Z_2^{k-1})$ 7: Find (u_2, v_2) as top singular vector pairs of $-\nabla_{Z_2} f(X^k, \eta^k, Z_1^{k-1}, Z_2^{k-1})$ 8: Set $\delta_k = \frac{2}{k+1}$ and find θ_k^i by solving $\theta_k^i = \operatorname{argmin}_{\theta \ge 0} h^i(\theta_k^i)$ for $i \in \{1, 2\}$. 9: $Z_1^k = (1 - \delta_k) Z_1^{k-1} + \delta_k \theta_k^1 u_1 v_1^\top$, $Z_2^k = (1 - \delta_k) Z_2^{k-1} + \delta_k \theta_k^2 u_2 v_2^\top$ 10: end for

A Generalized Conditional Gradient Algorithm

In this section, we provide details on the latest generalized conditional gradient descent algorithm proposed in [9]. We first provide an alternative formulation of the objective function, and then present the general algorithm.

A.1 Alternative Formulation

Directly solving the objective (7) is difficult since the nonnegative constraints are entangled with the non-smooth nuclear norm penalty. To address this challenge, we use a simple penalty method. Specifically, given $\rho > 0$, we arrive at the next formulation (8) by introducing two auxiliary variables Z_1 and Z_2 with some penalty function, such as the squared Frobenius norm.

$$\min_{\boldsymbol{\eta} \ge 0, \boldsymbol{X} \ge 0, \boldsymbol{Z}_1, \boldsymbol{Z}_2} \ell(\boldsymbol{\eta}, \boldsymbol{X}) + \gamma \| \boldsymbol{X} - \boldsymbol{X}^\top \|_F^2 + \alpha \| \boldsymbol{Z}_1 \|_* + \beta \| \boldsymbol{Z}_2 \|_* + \rho \| \boldsymbol{\eta} - \boldsymbol{Z}_1 \|_F^2 + \rho \| \boldsymbol{X} - \boldsymbol{Z}_2 \|_F^2$$
(8)

The new formulation (8) allows us to handle the non-negativity constraints and nuclear norm regularization terms separately.

A.2 Alternating Updates between Proximal Graident and Conditional Gradient

Now, we present Algorithm 1 that can solve (8) efficiently. For notation simplicity, we first set

$$f(\eta, X, Z_1, Z_2) = \ell(\eta, X) + \gamma \|X - X^{\top}\|_F^2 + \rho \|\eta - Z_1\|_F^2 + \rho \|X - Z_2\|_F^2$$

At each iteration, we apply cheap projection gradient for block $\{\eta, X\}$ and cheap linear minimization for block $\{Z_1, Z_2\}$. Specifically, the algorithm consists of two main alternating subroutines:

Proximal Gradient. When updating $\{\eta, X\}$, we directly compute the associated proximal operator, which in our case, reduces to the simple projection as follows,

$$egin{aligned} &oldsymbol{X}^k = ig(oldsymbol{X}^{k-1} - \xi
abla_{oldsymbol{X}} f(oldsymbol{X}^{k-1},oldsymbol{\eta}^{k-1},oldsymbol{Z}_1^{k-1},oldsymbol{Z}_2^{k-1})ig)_+ \ &oldsymbol{\eta}^k = ig(oldsymbol{\eta}^{k-1} - \xi
abla_{oldsymbol{\eta}} f(oldsymbol{X}^{k-1},oldsymbol{\eta}^{k-1},oldsymbol{Z}_1^{k-1},oldsymbol{Z}_2^{k-1})ig)_+ \ &oldsymbol{t}$$
 to the mention coordinates to zero.

where $(\cdot)_+$ simply sets the negative coordinates to zero.

Conditional Gradient. When updating $\{Z_1, Z_2\}$, we use the conditional gradient algorithm that successively linearizes f and finds a descent direction by solving:

$$\boldsymbol{Y}_{1}^{k} = \operatorname*{argmin}_{\|\boldsymbol{Y}\|_{*} \leqslant 1} \left\langle \boldsymbol{Y}, \nabla_{\boldsymbol{Z}_{1}} f(\boldsymbol{X}^{k}, \boldsymbol{\eta}^{k}, \boldsymbol{Z}_{1}^{k-1}, \boldsymbol{Z}_{2}^{k-1}) \right\rangle$$
(9)

and then takes the convex combination $Z_1^k = (1 - \delta_k)Z_1^{k-1} + \delta_k \theta_k Y_1^k$ with a suitable step size η_k and scaling factor θ_k . The minimizer of (9) is the outer product of the top singular vector pair of $-\nabla_{Z_1} f(X^k, \eta^k, Z_1^{k-1}, Z_2^{k-1})$, which can be computed efficiently in linear time using Lanczos algorithm [8]. Next we perform a line search to find $\theta_k = \operatorname{argmin}_{\theta \ge 0} h^1(\theta_k)$, where $h^1(\theta_k) = f(Z_1^k) + \alpha \delta_k \theta_k$. Here $h^1(\theta_k)$ is the upper bound of the objective function at Z_1^k , and one can compute θ_k efficiently in close form. Similarly, one can repeat the same procedure for computing Z_2^k , and we use $h^2(\theta_k)$ to denote the linear search function for Z_2^k .