A Properties of $\hat{\theta}_k(t)$ (Section 2)

Conditionnally to the actions A(1) up to A(t - 1), the log-likelihood of the observations $Z(1), \ldots, Z(t-1)$ may be written as

$$\sum_{s=1}^{t-1} \sum_{k=1}^{K} \sum_{l=1}^{L} \mathbb{1}\{A_l(t) = k\} \left[Z_l(t) \log(\kappa_l \theta_k) + (1 - Z_l(t)) \log(1 - \kappa_l \theta_k) \right]$$
$$= \sum_{k=1}^{K} \sum_{l=1}^{L} S_{k,l}(t) \log(\kappa_l \theta_k) + (N_{k,l}(t) - S_{k,l}(t)) \log(1 - \kappa_l \theta_k).$$

Differenciating twice with respect to θ_k and taking the expectation of $(S_{k,l}(t))_l$, contional to $A(1), \ldots, A(t-1)$, yields the expression of $I(\theta_k)$ given in Section 2.

B Proof of Theorem 4

B.1 Proof of Lemma 2

Under the PBM, the conditional expectation of the log-likelihood ratio defined in (4) writes

$$\mathbb{E}_{\theta}[\ell(t)|A(1),\ldots,A(t)] = \mathbb{E}_{\theta}\left[\sum_{s=1}^{t}\sum_{a\in\mathcal{A}}\mathbbm{1}\{A(s)=a\}\sum_{l=1}^{L}\log\frac{p_{a_{l}}(X_{l}(s)Y_{l}(s);\theta)}{p_{a_{l}}(X_{l}(s)Y_{l}(s);\lambda)} \middle| A(1),\ldots,A(t)\right]$$
$$=\sum_{s=1}^{t}\sum_{a\in\mathcal{A}}\mathbbm{1}\{A(s)=a\}\sum_{l=1}^{L}\mathbb{E}\left[\log\frac{p_{a_{l}}(X_{l}(s)Y_{l}(s);\theta)}{p_{a_{l}}(X_{l}(s)Y_{l}(s);\lambda)} \middle| A(s)=a\right]$$
$$=\sum_{a\in\mathcal{A}}N_{a}(t)\sum_{l=1}^{L}\sum_{k=1}^{K}\mathbbm{1}\{a_{l}=k\}d(\kappa_{l}\theta_{k},\kappa_{l}\lambda_{k})$$
$$=\sum_{a\in\mathcal{A}}N_{a}(t)I_{a}(\theta,\lambda),$$

using the notation $I_a(\theta, \lambda) = \sum_{l=1}^{L} \sum_{k=1}^{K} \mathbb{1}\{a_l = k\} d(\kappa_l \theta_k, \kappa_l \lambda_k).$

B.2 Details on the proof of Proposition 3

Lemma 12. Let $\theta = (\theta_1, \ldots, \theta_K)$ and $\lambda = (\lambda_1, \ldots, \lambda_K)$ be two bandit models such that the distributions of all arms in θ and λ are mutually absolutely continuous. Let σ be a stopping time with respect to (\mathcal{F}_t) such that $(\sigma < +\infty)$ a.s. under both models. Let $\mathcal{E} \in \mathcal{F}_{\sigma}$ be an event such that $0 < \mathbb{P}_{\theta}(\mathcal{E}) < 1$. Then one has

$$\sum_{a \in \mathcal{A}} I_a(\theta, \lambda) \mathbb{E}_{\theta}[N_a(\sigma)] \ge d(\mathbb{P}_{\theta}(\mathcal{E}), \mathbb{P}_{\lambda}(\mathcal{E})),$$

where $I_a(\theta, \lambda)$ is the conditional expectation of the log-likelihood ratio for the model of interest.

The proof of this lemma directly follows from the above expressions of the log-likelihood ratio and from the proof of Lemma 1 in Appendix A.1 of [12].

We simply recall the following technical lemma for completeness.

Lemma 13. Let σ be any stopping time with respect to (\mathcal{F}_t) . For every event $A \in \mathcal{F}_{\sigma}$,

$$\mathbb{P}_{\lambda}(A) = \mathbb{E}_{\theta}[\mathbb{1}\{A\} \exp(-\ell(\sigma))].$$

A full proof of Lemma 13 can be found in the Appendix A.3 of [12] (proof of Lemma 15).

B.3 Lower bound proof (Theorem 4)

In order to prove the simplified lower bound of Theorem 4 we basically have two arguments:

- 1. a lower bound on $f(\theta)$ can be obtained by enlarging the feasible set, that is by relaxing some constraints;
- 2. Lemma 15 can be used to lower bound the objective function of the problem.

The constant $f(\theta)$ is defined by

$$f(\theta) = \inf_{c \succeq 0} \sum_{a \neq a^*(\theta)} \Delta_a(\theta) c_a \tag{8}$$

s.t
$$\inf_{\lambda \in B(\theta)} \sum_{a \in \mathcal{A}} I_a(\theta, \lambda) c_a \ge 1.$$
 (9)

We begin by relaxing some constraints: we only allow the change of measure λ to belong to the sets $B_k(\theta) := \{\lambda \in \Theta | \forall j \neq k, \theta_j = \lambda_j \text{ and } \mu^*(\theta) < \mu^*(\lambda)\}$ defined in Section 3:

$$f(\theta) = \inf_{c \succeq 0} \sum_{a \neq a^*(\theta)} \Delta_a(\theta) c_a \tag{10}$$

s.t
$$\forall k \notin a^*(\theta), \ \forall \lambda \in B_k(\theta), \sum_{a \in \mathcal{A}} I_a(\theta, \lambda) c_a \ge 1.$$
 (11)

The K - L constraints (11) only let one parameter move and must be true for any value satisfying the definition of the corresponding set $B_k(\theta)$. In practice, for each k, the parameter λ_k must be set to at least θ_L . Consequently, these constraints may then be rewritten

$$f(\theta) = \inf_{c \succeq 0} \sum_{a \neq a^*(\theta)} \Delta_a(\theta) c_a$$
(12)

$$s.t \ \forall k \notin a^*(\theta), \sum_{a \neq a^*(\theta)} c_a \sum_{l=1}^L \mathbb{1}\{a_l = k\} d(\kappa_l \theta_k, \kappa_l \theta_L) \ge 1.$$
(13)

Proposition 14 tells us that coefficients c_a are all zeros except for actions $a \in \mathcal{A}$ which can be written $a = v_{k,l_k}$ where $l_k = \arg \min_{l \leq L} \frac{\Delta_{v_{k,l}}(\theta)}{d(\kappa_l \theta_k, \kappa_l \theta_L)}$. Thus, we obtain the desired lower bound by rewriting (12) as

$$f(\theta) \ge \sum_{k=L+1}^{K} \min_{l \in \{1,...,L\}} \frac{\Delta_{v_{k,l}}(\theta)}{d(\kappa_l \theta_k, \kappa_l \theta_L)}.$$

Proposition 14. Let $c = \{c_a : a \neq a^*\}$ be a solution of the linear problem (LP) in Theorem 4. Coefficients are all zeros except for actions a which can be written as $a = (1, ..., l_k - 1, k, l_k, ..., L - 1) := v_{k,l_k}$ where k > L and $l_k = \arg \min_{l \leq L} \frac{\Delta_{v_{k,l}}(\theta)}{d(\kappa_l \theta_k, \kappa_l \theta_L)}$.

Proof. We denote by $\pi_k(a)$ the position of item $k \in \{1, \ldots, K\}$ in action a (0 if $k \notin a$). Let l_k be the optimal position of item k > L for exploration: $l_k = \arg \min_{l \leq L} \frac{\Delta_{v_{k,l}}(\theta)}{d(\kappa_l \theta_k, \kappa_l \theta_L)}$. Following [6], we show by contradiction that $c_a > 0$ implies that a can be written v_{k,l_k} for a well chosen k > L. Let $\alpha \neq a^*$ be a suboptimal action such that $\forall k > L, \alpha \neq v_{k,l_k}$ and $c_\alpha > 0$. We need to show a contradiction. Let us introduce a new set of coefficients c' defined as follows, for any $a \neq a^*$:

$$c'_{a} = \begin{cases} 0 & \text{if } a = \alpha \\ c_{a} + \frac{d(\kappa_{\pi_{k}(\alpha)}\theta_{k}, \kappa_{\pi_{k}(\alpha)}\theta_{L})}{d(\kappa_{l_{k}}\theta_{k}, \kappa_{l_{k}}\theta_{L})}c_{\alpha} & \text{if } \exists k > L \text{ s.t. } a = v_{k,l_{k}} \text{ and } k \in \alpha \\ c_{a} & \text{otherwise.} \end{cases}$$

According to Lemma 15, these coefficients satisfy the constraints of the LP. We now show that these new coefficients yield a strictly lower value to the optimization problem:

$$c(\theta) - c'(\theta) = c_{\alpha} \Delta_{\alpha}(\theta) - \sum_{k>L:k\in\alpha} \frac{d(\kappa_{\pi_{k}(\alpha)}\theta_{k}, \kappa_{\pi_{k}(\alpha)}\theta_{L})}{d(\kappa_{l_{k}}\theta_{k}, \kappa_{l_{k}}\theta_{L})} c_{\alpha} \Delta_{v_{k,l_{k}}}(\theta)$$
$$> c_{\alpha} \left(\sum_{k>L:k\in\alpha} \Delta_{v_{k,\pi_{k}(\alpha)}}(\theta) - \sum_{k>L:k\in\alpha} \frac{d(\kappa_{\pi_{k}(\alpha)}\theta_{k}, \kappa_{\pi_{k}(\alpha)}\theta_{L})}{d(\kappa_{l_{k}}\theta_{k}, \kappa_{l_{k}}\theta_{L})} \Delta_{v_{k,l_{k}}}(\theta)\right). \quad (14)$$

The strict inequality (14) is shown in Lemma 16. Let k > L be one of the suboptimal arms in α . By definition of l_k , the corresponding term of the sum in equation (14) is positive. Thus, we have that $c(\theta) > c'(\theta)$ and, hence, by contradiction, we showed that $c_a > 0$ iff a can be written $a = v_{k,l_k}$ for some k > L.

Lemma 15. Let c be a vector of coefficients that satisfy constraints (13) of the optimization problem. Then, coefficients c' as defined in Proposition 14 also satisfy the constraints:

$$\forall k \notin a^*(\theta), \sum_{a \neq a^*(\theta)} c'_a \sum_{l=1}^L \mathbb{1}\{a_l = k\} d(\kappa_l \theta_k, \kappa_l \theta_L) \ge 1.$$

Proof. We use the same α as introduced in Proposition 14. Let us fix $k \notin a^*(\theta)$. Let us define

$$L(c) = \sum_{a \neq a^*(\theta)} c_a \sum_{l=1}^{L} \mathbb{1}\{a_l = k\} d(\kappa_l \theta_k, \kappa_l \theta_L).$$

We have

$$L(c') - L(c) = -c_{\alpha} \sum_{l=1}^{L} \mathbb{1}\{\alpha_{l} = k\} d(\kappa_{l}\theta_{k}, \kappa_{l}\theta_{L}) + \sum_{l:\alpha_{l} > L} \frac{d(\kappa_{l}\theta_{k}, \kappa_{l}\theta_{L})}{d(\kappa_{l_{k}}\theta_{k}, \kappa_{l_{k}}\theta_{L})} c_{\alpha} \times \mathbb{1}\{\alpha_{l} = k\} d(\kappa_{l_{k}}\theta_{k}, \kappa_{l_{k}}\theta_{L}).$$

If $k \notin \alpha$, clearly, L(c') - L(c) = 0. Else, $k \in \alpha$ and we note p its position in α : $p = \pi_k(\alpha)$. We rewrite:

$$L(c') - L(c) = c_{\alpha} d(\kappa_p \theta_k, \kappa_p \theta_L) \left(-1 + \frac{d(\kappa_{l_k} \theta_k, \kappa_{l_k} \theta_L)}{d(\kappa_{l_k} \theta_k, \kappa_{l_k} \theta_L)} \right) = 0.$$

Thus, the coefficients c' satisfy the constraints from Proposition 14.

Lemma 16. Let α be as in the proof of Proposition 14.

$$\Delta_{\alpha}(\theta) > \sum_{k > L: k \in \alpha} \Delta_{v_{k,\pi_{k}(\alpha)}}(\theta).$$

Proof. Let k_1, \ldots, k_p be the suboptimal arms in α by increasing position. Let $v(\alpha)$ be the action in \mathcal{A} with lower regret such that it contains all the suboptimal arms of α in the same positions. Thus, $v(\alpha) = (1, \ldots, \pi_{k_1}(\alpha) - 1, k_1, \pi_{k_1}(\alpha), \ldots, \pi_{k_2}(\alpha) - 2, k_2, \pi_{k_2}(\alpha) - 1, \ldots, L - p)$. By definition, one has that $\Delta_{\alpha}(\theta) \geq \Delta_{v(\alpha)}(\theta)$. In the following, we show that $\Delta_{v(\alpha)}(\theta) \geq \sum_{k>L:k\in\alpha} \Delta_{v_{k,\pi_k}(\alpha)}(\theta)$ for p = 2 (that is to say α contains 2 suboptimal arms k_1 and k_2).

For the sake of readability, we write π_i instead of $\pi_{k_i}(\alpha)$ in the following.

$$\begin{split} \Delta_{v(\alpha)}(\theta) &= \sum_{l=1}^{L} \kappa_{l}(\theta_{l} - \theta_{(v_{k_{1},\pi_{1}})_{l}}) + \sum_{l=1}^{L} \kappa_{l}(\theta_{(v_{k_{1},\pi_{1}})_{l}} - \theta_{v(\alpha)_{l}}) \\ &= \Delta_{v_{k_{1},\pi_{1}}}(\theta) + [\kappa_{\pi_{2}}\theta_{\pi_{2}-1} + \ldots + \kappa_{L}\theta_{L-1}] - [\kappa_{\pi_{2}}\theta_{k_{2}} + \kappa_{\pi_{2}+1}\theta_{\pi_{2}-1} + \ldots + \kappa_{L}\theta_{L-2}] \\ &= \Delta_{v_{k_{1},\pi_{1}}}(\theta) + \Delta_{v_{k_{2},\pi_{2}}}(\theta) + [\kappa_{\pi_{2}}(\theta_{\pi_{2}-1} - \theta_{\pi_{2}}) + \ldots + \kappa_{L}(\theta_{L-1} - \theta_{L})] - \\ & [\kappa_{\pi_{2}+1}(\theta_{\pi_{2}-1} - \theta_{\pi_{2}}) + \ldots + \kappa_{L}(\theta_{L-2} - \theta_{L-1})] \\ &= \Delta_{v_{k_{1},\pi_{1}}}(\theta) + \Delta_{v_{k_{2},\pi_{2}}}(\theta) + \mathcal{R}(\theta). \end{split}$$

Thus, one has to show that
$$\mathcal{R}(\theta) = \kappa_{\pi_2}(\theta_{\pi_2-1} - \theta_{\pi_2}) + \kappa_{\pi_2+1}(2\theta_{\pi_2} - \theta_{\pi_2-1} - \theta_{\pi_2+1}) + \ldots + \kappa_L(2\theta_{L-1} - \theta_{L-2} - \theta_L) > 0$$
. In fact, using that $\kappa_l \ge \kappa_{l+1}$ for all $l < L$, we have

$$\begin{aligned} &\mathcal{K}(\theta) \geq \kappa_{\pi_{2}+1}(\theta_{\pi_{2}-1} - \theta_{\pi_{2}} + 2\theta_{\pi_{2}} - \theta_{\pi_{2}-1} - \theta_{\pi_{2}+1}) + \ldots + \kappa_{L}(2\theta_{L-1} - \theta_{L-2} - \theta_{L}) \\ &\geq \kappa_{\pi_{2}+2}(\theta_{\pi_{2}+1} - \theta_{\pi_{2}+2}) + \ldots + \kappa_{L}(2\theta_{L-1} - \theta_{L-2} - \theta_{L}) \\ &\geq \ldots \\ &\geq \kappa_{L}(\theta_{L-1} - \theta_{L}) \\ &> 0. \end{aligned}$$

C Proof of Proposition 8

In this section, we fix an arm $k \in \{1, \ldots, K\}$ and obtain an upper confidence bound for the estimator $\hat{\theta}_k(t) := S_k(t) / \tilde{N}_k(t)$. Let τ_i be the instant of the *i*-th draw of arm k (the τ_i are stopping times w.r.t. \mathcal{F}_t). We introduce the centered sequence of successive observations from arm k

$$\bar{Z}_{k,i} = \sum_{l=1}^{L} \mathbb{1}\{A_l(\tau_i) = k\} (X_l(\tau_i)Y_l(\tau_i) - \theta_k \kappa_l).$$
(15)

Introducing the filtration $\mathcal{G}_i = \mathcal{F}_{\tau_{i+1}-1}$, one has $\mathbb{E}[\bar{Z}_{k,i}|\mathcal{G}_{i-1}] = 0$, and therefore, the sequence

$$M_{k,n} = \sum_{i=1}^{n} \bar{Z}_{k,i}$$

is a martingale with bounded increments, w.r.t. the filtration $(\mathcal{G}_n)_n$. By construction, one has

$$M_{k,N_k(t)} = S_k(t) - \tilde{N}_k(t)\theta_k = \tilde{N}_k(t)(\hat{\theta}_k(t) - \theta_k).$$

We use the so-called peeling technique together with the maximal version of Azuma-Hoeffding's inequality [3]. For any $\gamma > 0$ one has

$$\begin{split} \mathbb{P}\left(M_{k,N_k(t)} < -\sqrt{N_k(t)\delta/2}\right) &\leq \sum_{i=1}^{\frac{\log(t)}{\log(1+\gamma)}} \mathbb{P}\left(M_{k,N_k(t)} < -\sqrt{N_k(t)\delta/2}, N_k(t) \in [(1+\gamma)^{i-1}, (1+\gamma)^i)\right) \\ &\leq \sum_{i=1}^{\frac{\log(t)}{\log(1+\gamma)}} \mathbb{P}\left(\exists i \in \{1, \dots, (1+\gamma)^i\} : \ M_{k,i} < -\sqrt{(1+\gamma)^{i-1}\delta/2}\right) \\ &\leq \sum_{i=1}^{\frac{\log(t)}{\log(1+\gamma)}} \exp\left(-\frac{\delta(1+\gamma)^{i-1}}{(1+\gamma)^i}\right) = \frac{\log(t)}{\log(1+\gamma)} \exp\left(-\frac{\delta}{(1+\gamma)}\right). \end{split}$$

Choosing $\gamma = 1/(\delta - 1)$, gives

$$\mathbb{P}\left(\hat{\theta}_k(t) - \theta_k < -\frac{\sqrt{N_k(t)\delta/2}}{\tilde{N}_k(t)}\right) \le \delta e \log(t) e^{-\delta}.$$

D Regret analysis for PBM-UCB (Theorem 9)

We proceed as Kveton et al. (2015) [15]. We start by considering separately rounds when one of the confidence intervals is violated. We denote by $B_{t,k} = \sqrt{N_k(t)(1+\epsilon)\log t/2}/\tilde{N}_k(t)$ the PBM-UCB exploration bonus and by $B_{t,k}^+ = \sqrt{N_k(t)(1+\epsilon)\log T/2}/\tilde{N}_k(t)$ an upper bound of this bonus (for $t \leq T$). We define the event $E_t = \{\exists k \in A(t) : |\hat{\theta}_k(t) - \theta_k| > B_{t,k}\}$. Then, the regret can be decomposed into

$$R(T) = \sum_{t=1}^{T} \Delta_{A(t)} \mathbb{1}_{E_t} + \Delta_{A(t)} \mathbb{1}_{\bar{E}_t}.$$

and, similarly to [15] (Appendix A.1), the first term of this sum can be bounded from above in expectation by a constant $C_0(\epsilon)$ that does not depend on T using Proposition 8. So, it remains to bound the regret suffered even when confidence intervals are respected, that is the sum on the r.h.s of

$$\mathbb{E}[R(T)] < C_0(\epsilon) + \mathbb{E}[\sum_{t=1}^T \Delta_{A(t)} \mathbb{1}\{\bar{E}_t, \Delta_{A(t)} > 0\}].$$

It can be done using techniques from [7, 15]. We start by defining events F_t , G_t , H_t in order to decompose the part of the regret at stake. Then, we show an equivalent of Lemma 2 of [15] for our case and finally we refer to the proof of Theorem 3 in Appendix A.3 of [15].

For each round $t \ge 1$, we define the set of arms $S_t = \{1 \le l \le L : N_{A_l(t)}(t) \le \frac{8(1+\epsilon)\log T(\sum_{s=1}^L \kappa_s)^2}{\kappa_L^2 \Delta_{A(t)}^2}\}$ and the related events

$$\kappa_L^2 \Delta_A^2$$

- $F_t = \{\Delta_{A(t)} > 0, \ \Delta_{A(t)} \le 2 \sum_{l=1}^L \kappa_l B_{t,A_l(t)}^+ \};$
- $G_t = \{ |S_t| \ge l \};$
- $H_t = \{|S_t| < l, \exists k \in A(t), N_k(t) \le \frac{8(1+\epsilon)\log T(\sum_{s=1}^l \kappa_s)^2}{\kappa_L^2 \Delta_{A(t)}^2}\}$, where the constraint on $N_k(t)$ only differs from the first one by its numerator which is smaller than the previous one, leading to an even stronger constraint.

Fact 17. According to Lemma 1 in [15], the following inequality is still valid with our own definition of F_t :

$$\sum_{t=1}^{T} \Delta_{A(t)} \mathbb{1}\{\bar{E}_t, \Delta_{A(t)} > 0\} \le \sum_{t=1}^{T} \Delta_{A(t)} \mathbb{1}\{F_t\}.$$

Proof. Invoking Lemma 1 from [15] needs to be justified as our setting is quite different. Taking action A(t) means that

$$\sum_{l=1}^{L} \kappa_l U_{A_l(t)}(t) \ge \sum_{l=1}^{L} \kappa_l U_l(t).$$

Under event \overline{E}_t , all UCB's are above the true parameter θ_k so we have

$$\sum_{l=1}^L \kappa_l(\theta_{A_l(t)} + 2B_{t,A_l(t)}) \ge \sum_{l=1}^L \kappa_l(\theta_l + B_{t,l}) \ge \sum_{l=1}^L \kappa_l \theta_l.$$

Rearranging the terms above and using $B_{t,l(t)} \leq B_{t,l(t)}^+$, we obtain

$$\sum_{l=1}^{L} \kappa_{l} B_{t,A_{l}(t)}^{+} \ge 2 \sum_{l=1}^{L} \kappa_{l} B_{t,A_{l}(t)} \ge \Delta_{A(t)}.$$

We now have to prove an equivalent of Lemma 2 in [7] that would allow us to split the right-hand side above in two parts. Let us show that $F_t \subset (G_t \cup H_t)$ by showing its contrapositive: if F_t is true then we cannot have $(\bar{G}_t \cap \bar{H}_t)$. Assume both of these events are true. Then, we have

$$\begin{split} \Delta_{A(t)} &\stackrel{F_{t}}{\leq} 2 \sum_{l=1}^{L} \kappa_{l} B_{t,A_{l}(t)}^{+} \\ &\leq 2 \sum_{l=1}^{L} \kappa_{l} \sqrt{\frac{N_{A_{l}(t)}(t)}{\tilde{N}_{A_{l}(t)}(t)}} \sqrt{\frac{(1+\epsilon)\log(T)}{2\tilde{N}_{A_{l}(t)}(t)}} \\ &= 2 \sum_{l=1}^{L} \kappa_{l} \frac{N_{A_{l}(t)}(t)}{\tilde{N}_{A_{l}(t)}(t)} \sqrt{\frac{(1+\epsilon)\log(T)}{2N_{A_{l}(t)}(t)}} \end{split}$$

$$\leq \frac{\sqrt{2(1+\epsilon)\log T}}{\kappa_L} \sum_{l=1}^L \frac{\kappa_l}{\sqrt{N_{A_l(t)}(t)}}$$

= $\frac{\sqrt{2(1+\epsilon)\log T}}{\kappa_L} \left(\sum_{l \notin S_t} \frac{\kappa_l}{\sqrt{N_{A_l(t)}(t)}} + \sum_{l \in S_t} \frac{\kappa_l}{\sqrt{N_{A_l(t)}(t)}} \right)$
 $(\bar{G}_t \cap \bar{H}_t) \xrightarrow{\sqrt{2(1+\epsilon)\log T}} \frac{\kappa_L \Delta_{A(t)}}{\kappa_L} \left(\frac{\sum_{l \notin S_t} \kappa_l}{\sum_{s=1}^L \kappa_s} + \frac{\sum_{l \in S_t} \kappa_l}{\sum_{s=1}^l \kappa_s} \right)$
 $\leq \Delta_{A(t)}$

which is a contradiction. The end of the proof proceeds exactly as in the end of the proof of Theorem 6 in of [7]: events G_t and H_t are split into subevents corresponding to rounds where each specific suboptimal arm of the list is in S_t or verifies the condition of H_t . We define

$$G_{k,t} = G_t \cap \{k \in A(t), N_k(t) \le \frac{8(1+\epsilon)\log T\left(\sum_{s=1}^L \kappa_s\right)^2}{\kappa_L^2 \Delta_{A(t)}^2} \},$$
$$H_{k,t} = H_t \cap \{k \in A(t), N_k(t) \le \frac{8(1+\epsilon)\log T\left(\sum_{s=1}^l \kappa_s\right)^2}{\kappa_L^2 \Delta_{A(t)}^2} \}.$$

The way we defined these subevents allows to write the two following bounds :

$$\sum_{k=1}^{K} \mathbb{1}\{G_{k,t}\} = \mathbb{1}\{G_t\} \sum_{k=1}^{K} \mathbb{1}\{k \in S_t\} \ge l\mathbb{1}\{G_t\}$$

so $\mathbbm{1}\{G_t\} \leq \sum_k \mathbbm{1}\{G_{k,t}\}/l.$ And,

$$1{H_t} \le \sum_{k=1}^{K} 1{H_{k,t}}.$$

We can now bound the regret using these two results:

$$\begin{split} \sum_{t=1}^{T} \Delta_{A(t)}(\mathbb{1}\{G_t\} + \mathbb{1}\{H_t\}) &\leq \sum_{t=1}^{T} \sum_{k=1}^{K} \frac{\Delta_{A(t)}}{l} \mathbb{1}\{G_{k,t}\} + \sum_{t=1}^{T} \sum_{k=1}^{K} \Delta_{A(t)} \mathbb{1}\{H_{k,t}\} \\ &= \sum_{t=1}^{T} \sum_{k=1}^{K} \frac{\Delta_{A(t)}}{l} \mathbb{1}\{G_{k,t}, A(t) \neq a^*\} + \sum_{t=1}^{T} \sum_{k=1}^{K} \Delta_{A(t)} \mathbb{1}\{H_{k,t}, A(t) \neq a^*\}. \end{split}$$

For each arm k, there is a finite number $C_k := |\mathcal{A}_k|$ of actions in \mathcal{A} containing k; we order them such that the corresponding gaps are in decreasing order $\Delta_{k,1} \ge \ldots \ge \Delta_{k,C_k} > 0$. So we decompose each sum above on the different actions A(t) possible:

$$\dots \leq \sum_{t=1}^{T} \sum_{k=1}^{K} \sum_{a \in \mathcal{A}_{k}} \frac{\Delta_{k,a}}{l} \mathbb{1}\{G_{k,t}, A(t) = a\} + \sum_{t=1}^{T} \sum_{k=1}^{K} \sum_{a \in \mathcal{A}_{k}} \Delta_{k,a} \mathbb{1}\{H_{k,t}, A(t) = a\}.$$

The two sums on the right hand side look alike. For arm k fixed, events $G_{k,t}$ and $H_{k,t}$ imply almost the same condition on $N_k(t)$, only $H_{k,t}$ is stronger because the bounding term is smaller. We now rely on a technical result by [7] that allows to bound each sum.

Lemma 18. ([7], Lemma 2 in Appendix B.4) Let k be a fixed item and $|A_k| \ge 1$, C > 0, we have

$$\sum_{t=1}^T \sum_{a \in \mathcal{A}_k} \mathbb{1}\{k \in A(t), N_k(t) \le C/\Delta_{k,a}^2, A(t) = a\}\Delta_{k,a} \le \frac{2C}{\Delta_{\min,k}}$$

where $\Delta_{\min,k}$ is the smallest gap among all suboptimal actions containing arm k. In particular, when $k \notin a^*$ the smallest gap is $\Delta_{\min,k} = \kappa_L(\theta_L - \theta_k)$. While, when $k \in a^*$ it is less obvious what the minimal gap is, however it corresponds the second best action A_2 containing only optimal arms: $\Delta_{\min,k} = \Delta_{A_2}$.

So, bounding each sum with the above lemma, we obtain

$$\sum_{t=1}^{T} \Delta_{A(t)}(\mathbb{1}\{G_t\} + \mathbb{1}\{H_t\}) \leq \frac{16(1+\epsilon)\log T}{\kappa_L^2} \underbrace{\left(\frac{\left(\sum_{s=1}^{L} \kappa_s\right)^2}{l} + \left(\sum_{s=1}^{l} \kappa_s\right)^2\right)}_{G(l;\kappa)} \left(\frac{L}{\Delta_{A_2}} + \sum_{k \notin a^*} \frac{1}{\kappa_L(\theta_L - \theta_k)}\right).$$

This bound can be optimized by minimizing $C(l; \kappa)$ over l.

E Regret analysis for PBM-PIE (Theorem 11)

The proof follows the decomposition of [6]. For all $t \ge 1$, we denote $f(t, \epsilon) = (1 + \epsilon) \log t$.

E.1 Controlling leaders and estimations

Define $\eta_0 = \min_{k \in \{1,...,L-1\}} (\theta_k - \theta_{k+1})/2$ and let $\eta < \eta_0$. We define the following set of rounds $A = \{t \ge 1 : \mathcal{L}(t) \neq (1,...,L)\}.$

Our goal is to upper bound the expected size of A. Let us introduce the following sets of rounds:

$$B = \{t \ge 1 : \exists k \in \mathcal{L}(t), |\theta_k(t) - \theta_k| \ge \eta\},\$$

$$C = \{t \ge 1 : \exists k \le L, U_k(t) \le \theta_k\},\$$

$$D = \{t \ge 1 : t \in A \setminus (B \cup C), \exists k \le L, k \notin \mathcal{L}(t), |\hat{\theta}_k(t) - \theta_k| \ge \eta\}.$$

We first show that $A \subset (B \cup C \cup D)$. Let $t \in A \setminus (B \cup C)$. Let $k, k' \in \mathcal{L}(t)$ such that k < k'. Since $t \notin B$, we have that $|\hat{\theta}_k(t) - \theta_k| \leq \eta$ and $|\hat{\theta}_{k'}(t) - \theta_{k'}| \leq \eta$. Since $\eta \leq (\theta_k - \theta_{k'})/2$, we conclude that $\hat{\theta}_k(t) \geq \hat{\theta}_{k'}(t)$. This proves that $(\mathcal{L}_1(t), \ldots, \mathcal{L}_L(t)$ is an increasing sequence. We have that $\mathcal{L}_L(t) > L$ otherwise $\mathcal{L}(t) = (1, \ldots, L)$ which is a contradiction because $t \in A$. Since $\mathcal{L}_L(t) > L$, there exists $k \leq L$ such that $k \notin \mathcal{L}(t)$. We show by contradiction that $|\hat{\theta}_k(t) - \theta_k| \geq \eta$. Assume that $|\hat{\theta}_k(t) - \theta_k| \leq \eta$. We also have that $\hat{\theta}_{\mathcal{L}_L(t)}(t) - \theta_{\mathcal{L}_L(t)} \leq \eta$ because $\mathcal{L}_L(t) \in \mathcal{L}(t)$ and $t \notin B$. Thus, $\hat{\theta}_k(t) > \hat{\theta}_{\mathcal{L}_L(t)}(t)$. We have a contradiction because this would imply that $k \in \mathcal{L}(t)$. Finally we have proven that if $t \in A \setminus (B \cup C)$, then $t \in D$ so $A \subset (B \cup C \cup D)$.

By a union bound, we obtain

$$\mathbb{E}[|A|] \le [|B|] + [|C|] + [|D|]$$

In the following, we upper bound each set of rounds individually.

Controlling $\mathbb{E}[|B|]$: We decompose $B = \bigcup_{k=1}^{K} (B_{k,1} \cup B_{k,2})$ where

$$B_{k,1} = \{t \ge 1 : k \in \mathcal{L}(t), \mathcal{L}_L(t) \neq k, |\hat{\theta}_k(t) - \theta_k| \ge \eta\}$$

$$B_{k,2} = \{t \ge 1 : k \in \mathcal{L}(t), \mathcal{L}_L(t) = k, |\hat{\theta}_k(t) - \theta_k| \ge \eta\}$$

Let $t \in B_{k,1}$: $k \in A(t)$ so $\mathbb{E}[k \in A(t)|t \in B_{k,1}] = 1$. Furthermore, for all t, $\mathbb{1}\{t \in B_{k,1}\}$ is \mathcal{F}_{t-1} measurable. Then we can apply Lemma 22 (with $H = B_{k,1}$ and c = 1).

$$\mathbb{E}[|B_{k,1}|] \le 2(2 + \kappa_L^{-2}\eta^{-2})$$

Let $t \in B_{k,2}$: $k \in \mathcal{B}(t)$ but because of the randomization of the algorithm, $k \in A(t)$ with probability $\overline{1/2}$, i.e. $\mathbb{E}[k \in A(t)|t \in B_{k,2}] \ge 1/2$. We get

$$\mathbb{E}[|B_{k,2}|] \le 4(4 + \kappa_L^{-2}\eta^{-2})$$

By union bound over k, we get $\mathbb{E}[|B|] \leq 2K(10 + 3\kappa_L^{-2}\eta^{-2}).$

Controlling $\mathbb{E}[|C|]$: We decompose $C = \bigcup_{k=1}^{L} C_k$ where $C_k = \{t \ge 1 : U_k(t) \le \theta_k\}$ We first require to prove Proposition 10.

Proof. Theorem 2 of [17] implies that

$$\mathbb{P}\left(\sum_{l=1}^{L} N_{k,l}(t) d(\frac{S_{k,l}(t)}{N_{k,l}(t)}, \kappa_l \theta_k) \ge \delta\right) \le e^{-\delta} \left(\frac{\lceil \delta \log(t) \rceil \delta}{L}\right)^L e^{L+1}$$

The function $\Phi: x \to \sum_{l=1}^{L} N_{k,l}(t) d\left(\frac{S_{k,l}(t)}{N_{k,l}(t)}, \kappa_l x\right)$ is convex and non-decreasing on $[\theta_k^{min}(t), 1]$; the convexity is easily checked and $\theta_k^{min}(t)$ is defined as the minimum of this convex function. By definition, we have, either, $U_k(t, \delta) = 1$ and then $U_k(t, \delta) > \theta_k$, or, $U_k(t, \delta) < 1$ and $\Phi(U_k(t, \delta)) = \delta$, consequently

$$\mathbb{P}\left(U_k(t,\delta) < \theta_k\right) = \mathbb{P}\left(\Phi(U_k(t,\delta)) \le \Phi(\theta_k)\right) = \mathbb{P}\left(\delta \le \Phi(\theta_k)\right).$$

Remember that $U_k(t) = U_k(t, (1 + \epsilon) \log(t)) = U_k(t, f(t, \epsilon))$. Thus, applying Proposition 10, we obtain for arm k,

$$\mathbb{E}[|C_k|] \le \sum_{t=1}^{\infty} \mathbb{P}(U_k(t) \le \theta_k) \le \lceil e^{L+1} \rceil + \frac{e^{L+1}}{L^L} \sum_{t=\lceil e^{L+1} \rceil+1}^{\infty} \frac{(2+\epsilon)^{2L} (\log t)^{3L}}{t^{1+\epsilon}} \le C_3(\epsilon),$$

for some constant $C_3(\epsilon)$.

Controlling $\mathbb{E}[|D|]$: Decompose D as $D = \bigcup_{k=1}^{L} D_k$ where $D_k = \{t \ge 1 : t \in A \setminus (B \cup C), k \notin \mathcal{L}(t), |\hat{\theta}_k(t) - \theta_k| \ge \eta\}.$

For a given $k \leq L$, D_k is the set of rounds at which k is not one of the leaders, and is not accurately estimated. Let $t \in D_k$. Since $k \notin \mathcal{L}(t)$, we must have $\mathcal{L}_L(t) > L$. In turn, since $t \notin B$, we have $|\hat{\theta}_{\mathcal{L}_L(t)}(t) - \theta_{\mathcal{L}_L(t)}| \leq \eta$, so that

$$\hat{\theta}_{\mathcal{L}_L(t)} \le \theta_{\mathcal{L}_L(t)} + \eta \le \theta_L + \eta \le (\theta_L + \theta_{L+1})/2$$

Furthermore, since $t \notin C$ and $1 \leq k \leq L$, we have $U_k(t) \geq \theta_k \geq \theta_L \geq (\theta_L + \theta_{L+1})/2 \geq \hat{\theta}_{\mathcal{L}_L(t)}$. This implies that $k \in \mathcal{B}(t)$ thus $\mathbb{E}[k \in A(t)|t \in D_k] \geq 1/(2K)$. We apply Lemma 22 with $H \equiv D_k$ and c = 1/(2K) to get

$$\mathbb{E}[|D|] \le \sum_{k=1}^{L} \mathbb{E}[|D_k|] \le 4K(4K + \kappa_L^{-2}\eta^{-2}).$$

E.2 Regret decomposition

We decompose the regret by distinguishing rounds in $A \cup B$ and other rounds. More specifically, we introduce the following sets of rounds for arm k > L:

$$E_k = \{ t \ge 1 : t \notin (B \cup C \cup D), \mathcal{L}(t) = a^*, A(t) = v_{k,L} \}$$

The set of instants at which a suboptimal action is selected now can be expressed as follows $\{t \ge 1 : A(t) \neq a^*\} \subset (B \cup C \cup D) \cup (\bigcup_{k=L+1} E_k).$

Using a union bound, we obtain the upper bound

$$\mathbb{E}[R(T)] \le \left(\sum_{l=1}^{L} \kappa_l\right) \mathbb{E}[|B \cup C \cup D|] + \sum_{k=L+1}^{K} \Delta_{v_{k,L}}(\theta) \mathbb{E}[|E_k|].$$

From previous boundaries, putting it all together, there exist $C_1(\eta)$ and $C_3(\epsilon)$, such that

$$\left(\sum_{l=1}^{L} \kappa_l\right) \left(\mathbb{E}[|B|] + \mathbb{E}[|C|] + \mathbb{E}[|D|]\right) \le C_1(\eta) + C_3(\epsilon)$$

At this step, it suffices to bound events E_k for all k > L.

E.3 Bounding event E_k

We proceed similarly to [10]. Let us fix an arm k > L. Let $t \in E_k$: arm k is pulled in position L, so by construction of the algorithm, we have that $k \in \mathcal{B}(t)$ and thus $U_k(t) \ge \hat{\theta}_{\mathcal{L}_L(t)}(t)$. We first show that this implies that $U_k(t) \ge \theta_L - \eta$. Since $t \in E_k$, we know that $\mathcal{L}_L(t) = L$, and since $t \notin B$, $|\hat{\theta}_L(t) - \theta_L| \le \eta$. This leads to

$$U_k(t) \ge \hat{\theta}_{\mathcal{L}_L(t)}(t) = \hat{\theta}_L(t) \ge \theta_L - \eta.$$

Recall that $N_{k,L}(t)$ is the number of times arm k was played in position L. By denoting $d^+(x, y) = \mathbb{1}\{x < y\}d(x, y)$, we have that

$$N_{k,L}(t)d^{+}(S_{k,L}(t)/N_{k,L}(t),\kappa_{L}(\theta_{L}-\eta)) \leq N_{k,L}(t)d^{+}(S_{k,L}(t)/N_{k,L}(t),\kappa_{L}U_{k}(t))$$
$$\leq \sum_{l=1}^{L}N_{k,l}(t)d^{+}(S_{k,l}(t)/N_{k,l}(t),\kappa_{l}U_{k}(t)) \leq f(t,\epsilon).$$

This implies that $\mathbb{1}\{t \in E_k\} \leq \mathbb{1}\{N_{k,L}(t)d^+(S_{k,L}(t)/N_{k,L}(t),\kappa_L(\theta_L-\eta)) \leq f(t,\epsilon)\}.$

Lemma 19. ([10], Lemma 7) Denoting by $\hat{\nu}_{k,s}^L$ the empirical mean of the first s samples of $Z_{k,L}$, we have

$$\sum_{t=1}^{T} \mathbb{1}\{A(t) = v_{k,L}, N_{k,L}(t)d^{+}(S_{k,L}(t)/N_{k,L}(t), \kappa_{L}(\theta_{L} - \eta)) \leq f(t,\epsilon)\}$$
$$\leq \sum_{s=1}^{T} \mathbb{1}\{sd^{+}(\hat{\nu}_{k,s}^{L}, \kappa_{L}(\theta_{L} - \eta)) \leq f(T,\epsilon)\}.$$

We apply Lemma 19 which is a direct translation of Lemma 7 from [10] to our problem. This yields

$$|E_k| \le \sum_{s=1}^T \mathbb{1}\{sd^+(\hat{\nu}_{k,s}^L, \kappa_L(\theta_L - \eta)) \le f(T, \epsilon)\}.$$

Let $\gamma > 0$. We define $K_T = \frac{(1+\gamma)f(T,\epsilon)}{d^+(\kappa_L\theta_k,\kappa_L(\theta_L-\eta))}$. We now rewrite the last inequality splitting the sum in two parts.

$$\sum_{s=1}^{T} \mathbb{P}(sd^{+}(\hat{\nu}_{k,s}^{L},\kappa_{L}(\theta_{L}-\eta)) \leq f(T,\epsilon)) \leq K_{T} + \sum_{s=K_{T}+1}^{\infty} \mathbb{P}(K_{T}d^{+}(\hat{\nu}_{k,s}^{L},\kappa_{L}(\theta_{L}-\eta)) \leq f(T,\epsilon))$$
$$\leq K_{T} + \sum_{s=K_{T}+1}^{\infty} \mathbb{P}(d^{+}(\hat{\nu}_{k,s}^{L},\kappa_{L}(\theta_{L}-\eta)) \leq d(\kappa_{L}\theta_{k},\kappa_{L}(\theta_{L}-\eta))/(1+\gamma))$$
$$\leq K_{T} + \frac{C_{2}(\gamma,\eta)}{T^{\beta(\gamma,\eta)}},$$

where last inequality comes from Lemma 20. Fixing $\gamma < \epsilon$, we obtain the desired result, which concludes the proof.

Lemma 20. For each $\gamma > 0$, there exists $C_2(\gamma, \eta) > 0$ and $\beta(\gamma, \eta) > 0$ such that

$$\sum_{s=K_T+1}^{\infty} \mathbb{P}\left(d^+(\hat{\nu}_{k,s}^L,\kappa_L(\theta_L-\eta)) \le \frac{d(\kappa_L\theta_k,\kappa_L(\theta_L-\eta)}{1+\gamma}\right) \le \frac{C_2(\gamma,\eta)}{T^{\beta(\gamma,\eta)}}.$$

Proof. If $d^+(\hat{\nu}_{k,s}^L, \kappa_L(\theta_L - \eta)) \leq \frac{d(\kappa_L \theta_k, \kappa_L(\theta_L - \eta))}{1 + \gamma}$, then there exists some $r(\gamma, \eta) \in (\theta_k, \theta_L - \eta)$ such that $\hat{\nu}_{k,s}^L > \kappa_L r(\gamma, \eta)$ and

$$d(\kappa_L r(\gamma, \eta), \kappa_L(\theta_L - \eta)) = \frac{d(\kappa_L \theta_k, \kappa_L(\theta_L - \eta))}{1 + \gamma}.$$

Hence,

$$\mathbb{P}\left(d^{+}(\hat{\nu}_{k,s},\kappa_{L}\theta_{L}) < \frac{d(\kappa_{L}\theta_{k},\kappa_{L}\theta_{L})}{1+\gamma}\right) \leq \mathbb{P}\left(d(\hat{\nu}_{k,s},\kappa_{L}\theta_{k}) > d(\kappa_{L}r(\gamma,\eta),\kappa_{L}\theta_{k}), \hat{\nu}_{k,s} > \kappa_{L}\theta_{k}\right) \\
\leq \mathbb{P}(\hat{\nu}_{k,s} > \kappa_{L}r(\gamma,\eta)) \leq \exp(-sd(\kappa_{L}r(\gamma,\eta),\kappa_{L}\theta_{k})).$$

We obtain,

$$\sum_{t=K_T}^{\infty} \mathbb{P}\left(d^+(\hat{\nu}_{k,s},\kappa_L\theta_L) < \frac{d(\kappa_L\theta_k,\kappa_L\theta_L)}{1+\gamma}\right) \le \frac{\exp(-K_Td(\kappa_Lr(\gamma,\eta),\kappa_L\theta_k))}{1-\exp(-d(\kappa_Lr(\gamma,\eta),\kappa_L\theta_k))} \le \frac{C_2(\gamma,\eta)}{T^{\beta(\gamma,\eta)}},$$

or well chosen $C_2(\gamma,\eta)$ and $\beta(\gamma,\eta)$.

for well chosen $C_2(\gamma, \eta)$ and $\beta(\gamma, \eta)$.

I

In this section, we recall two necessary concentration lemmas directly adapted from Lemma 4 and 5 in Appendix A of [6]. Although more involved from a probabilistic point of view, these results are simpler to establish than proposition 8 as their adaptation to the case of the PBM relies on a crude lower bound for $N_k(t)$, which is sufficient for proving Theorem 11...

Lemma 21. For $k \in \{1, ..., K\}$ consider the martingale $M_{k,n} = \sum_{i=1}^{n} \overline{Z}_{k,i}$, where $\overline{Z}_{k,i}$ is defined in (15). Consider Φ a stopping time such that either $N_k(\Phi) \ge s$ or $\Phi = T + 1$. Then

$$P[|M_{k,N_k(\Phi)}| \ge N_k(\Phi)\eta, N_k(\Phi) \ge s] \le 2\exp(-2s\eta^2).$$
(16)

As a consequence,

$$\mathbb{P}[|\hat{\theta}_k(\Phi) - \theta_k| \ge \eta, \ \Phi \le T] \le 2\exp(-2s\kappa_L^2\eta^2).$$
(17)

Proof. The first result is a direct application of Lemma 4 of [6] as $(Z_l(t))_t$ with $Z_l(t) = X_l(t)Y_l(t)$ is an independent sequence of [0, 1]-valued variables.

For the second inequality, we use the fact that $\tilde{N}_k(t) \ge \kappa_L N_k(t)$. Hence,

$$\mathbb{P}[|\hat{\theta}_k(\Phi) - \theta_k| \ge \eta, \, \Phi \le T] \le \mathbb{P}\left[\frac{|M_{k,N_k(\Phi)}|}{\kappa_L N_k(\Phi)} \ge \eta, \, \Phi \le T\right].$$

which is upper bounded using (16).

Lemma 22. Fix c > 0 and $k \in \{1, \ldots, K\}$. Consider a random set of rounds $H \subset \mathbb{N}$, such that, for all t, $\mathbb{1}{t \in H}$ is \mathcal{F}_{t-1} measurable and such that for all $t \in H$, $\{k \in \mathcal{B}(t)\}$ is true. Further assume, for all t, one has $\mathbb{E}[\mathbb{1}\{k \in A(t)\} | t \in H] \ge c > 0$. We define τ_s a stopping time such that $\sum_{t=1}^{\tau_s} \mathbb{1}\{t \in H\} \ge s$. Consider the random set $\Lambda = \{\tau_s : s \ge 1\}$. Then, for all k,

$$\sum_{t \ge 0} \mathbb{P}[t \in \Lambda, |\hat{\theta}_k(t) - \theta_k| \ge \eta] \le 2c^{-1}(2c^{-1} + \kappa_L^{-2}\eta^{-2})$$

The proof of this lemma follows that of Lemma 5 in [6] using the same lower bound for $N_k(t)$ as above.