Supplementary material

S.1 Parametrization of noise covariance

We denote the noise of voxel i at time point t by &, and denote the temporal covariance of the noise
time series & as 2, .

Following AR(1) model,

€, =P € 1M, (s-1),
where 7, ,~N(0,07) is the “new” noise.
Then we have ¢—p,€¢_,=7n, .
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Denote B=I-p,P, , where P,=|0 1 0 . Multiplying matrix B to the noise €
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removes the temporal correlation: Be~N (0, fo )

I is the same as an identity matrix except that its (1,1) element is , because the variance of
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the AR(1) noise at any time point without knowing the noise at previous time points is T
L

We also know that Be~N(0,B3, B)
Therefore, B3, B' =01 , 3,=0} B'I(B")"
and

s'=Lp'1'B (s-2)
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I has 1-p? on element (1,1). In other words, I'=1- 09,0, .Hereweuse &, todenote a unit

vector which is 1 at the k-th element and O in other elements.
We expand (s-2):
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The last equality is because P; ¢, is a zero vector, and that P P,=I— ¢,

We can write  D=P{+P, and F=I-6,0,—6,0,

Then D and F are two template matrices which do not depend on any free parameters.
So we can write the inverse covariance matrix as

3.'=0; " [I-pD+p F] (s-3)
We can further denote  A,;=A(p;)=I—p,D+p;F ,s0 3. '=0;’A, (s-4)
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Because |Bl=1 and [["|=1—p , wehave

S.2 Derivation of log likelihood

Following the notation in the article, for voxel i, we reparametrize B,=(s,0,)La,a~N(0,1,) ,
where r is the rank of U=LL" , the shared covariance matrix. The likelihood of observing data Y; is:

p(Y|L, a,s,0,p0) p(a;)
=N(Y;s,0,XLo,p)N(;0,1,)
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In the derivation above,
Wi=S; oiA,-LTXTZ;lY,- and Al:(si2 o L' XTZleXL+I)_1 are the posterior mean and variance of
a; .
By plugging in (s-4), we get
A=(sSL" X" A XL+1)"!
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Marginalizing «; :
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Therefore, the marginal log likelihood is
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If there are multiple runs, the temporal covariance matrix becomes block diagonal matrix, with each
block on the diagonal corresponding to the covariance matrix of one run. Its determinant is the product

of the determinant of each block on the diagonal. Therefore, the term %log(l—piz) becomes

n
% log(1—p;) , where nu, is the number of fMRI runs.
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In our implementation, we parametrize s; with log(s:®), o; with log(o?%), and p; with al:tan(gpi) .In

this way, all free parameters become unbounded and we can use unrestricted gradient based algorithm
to maximize the marginal log likelihood.

S.3 Gradient of the log likelihood

S.3.1 Gradient with respect to o7
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The maximum likelihood estimate of o given other parameters is achieved when the gradient above
equals zero. Therefore,
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So we do not need to pursue gradient descent on o”. This reduces the number of free parameters by
close to one third.



S.3.2 Gradient with respect to log(s?)
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The derivative of A; with respect to p; is:
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The gradient of the marginal log likelihood with respect to p; is :
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S.3.4 Gradient with respect to L
We start with the gradient with respect to the (j, k) element Ly, of L (j < k)
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In the above derivation, we used the properties of Tr[ AB]=Tr[BA] and that a number is the trace of
itself considered as a one-element matrix. {M }jk means the (j,k) element of matrix M.
Notice that the derivative with respect to the (j,k) element L is equal to the (j,k) element of the matrix in
the last equality. Therefore, we can see that the derivative with respect to L in the matrix form is:
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for the lower-triangular part.

S.4 Gaussian Process prior on log(s)

The kernel of the Gaussain Process (GP) we use is the product of a squared exponential kernel defined
on the spatial coordinates and one defined on the mean intensity of each voxel.

We denote Wpce as the matrix of squared spatial distance between voxels, and Winen as the matrix of
squared intensity difference between voxels.

Then, in our GP prior, the random vector log(s)€R™ follows multivariate Gaussian distribution of

log(s)~N (0,7 K) (s-15),
where
1 Ws ace Win en
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n is a small number added to the diagonal of the covariance kernel, in order to guarantee matrix K is



invertible. In our implementation, we set it to 0.0001
lspace and linen are length scales of the squared exponential kernel for spatial distance and intensity
difference, respectively. 7 is the variance of the GP.
This prior on log(s) adds additional term to the posterior of the parameters.
p(L:O-)p:S: r’lspace’linten|Y)OCp(Y|L’G’p’s)P(S|T’lspace’linten)P(T)P(l )P(l
We assume uniform prior for other parameters: L, o and p, because empirically o and p can be
recovered well, and we do not have a good principle to regularize L.
To fit the model, we optimize the joint probability of both the parameters L, g, p and s, and the hyper-
parameters T, lspace aNd linen.
We parametrize lspace and linen With 1og(lspace’) and log(linen’) to keep all parameters unconstrained. In
practice, the optimization of parameters can be instable without regularizing t, e and linen. Therefore,
we introduced weakly informative half-Cauchy prior on these hyper-parameters:
2y, 1 2y, 1 2. 1
(linten)

p(T): T > 5 p(lspace)_ JT l2 2 > - 12 2
T+ YT space+ ylspm inten+ ylm"

The scale parameters y are set with reasonably large values which the user believe covers the plausible

range of 7, lypace and linen. Since the GP is defined for log(s), y. = 5 is a reasonable scale parameter (
e’~150 ). We set y,, and y -~ as half of the maximal distance in space or intensity between all

voxels in the ROI

Therefore, the following term is added to the log of joint probability of all parameters (neglecting

constant terms):
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—% K 'log(s) is added to the gradient with respect to log(s).
T

op(L,s,0,p,1,l I |Y)

space ? "inten
2
T
n, +log(s)T K 'log(s) 1
27 27 r+y:
The positive solution of the above term being equal to zero provides the maximum a posterior estimate
of T given other parameters:
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S.5 Bias introduced by applying standard RSA on raw fMRI data

Instead of building design matrix that reflects hypothetical hemodynamic response, researchers
sometimes take the raw fMRI signal (sometimes after pre-processing such as despiking and detrending)
approximately 6 seconds after an event as the neural response “pattern” to that event. As mentioned in
the main text at the end of Section 2, such approach also suffers from bias. The expected covariance
matrix between such patterns is

(X" X)X X, L UXLX(X"X)'+(Xx" X" X" 2 x(x"x)" (s-23).
Where X, . 1isthe design matrix reflecting the true HRF in fMRI, and X is a design matrix which has

a single-pulse 6 sec after each event. Such a design matrix with single-pulses is an implicit assumption
when treating the raw fMRI data as neural pattern. It is easy to observe that averaging patterns of the
same condition following this approach is equivalent as calculating /3’ with equation (2) but assuming
single-pulse HRF.

The first term in (s-23) is introduced by implicitly assuming an unrealistic HRF. Because of this
assumption, the “patterns” obtained are in fact mixtures of the true neural patterns of adjacent neural
events. Therefore, it alters the correlation between estimated patterns of temporally proximate neural
events. To illustrate this bias, we simulate data which is generated by weighting the true design matrix
reflecting realistic HRF with f's following the covariance structure in Fig 2A, but without adding any
noise. If there were no noise, standard RSA on the estimates of f's would not introduce bias. However,
with this approach on raw simulated data even without noise, we observe structured bias unrelated to
the true covariance matrix shown in Fig S-1, which is due to the first term in (s-23).
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Figure S-1. A bias structure is obtained by applying
o standard RSA on the raw patterns of simulated data
0.00 without noise added.




The second term in (s-23) is introduced because of the autocorrelation structure of fMRI noise, together
with the event timing. To illustrate this bias, we applied the raw pattern approach to preprocessed
resting state fMRI data of 30 participants in the Human Connectome Project (HCP), pretending the
participants took part in the task in Fig 1A. These data have no relation with the task, so there is no
chance of measuring any real neural activity related to the task. However, we observe a similarity
structure with many high correlations, as shown in Fig S-2. This clearly illustrates the bias introduced
by treating raw fMRI data as neural patterns of events.

00 Figure S-2. A bias structure is obtained by applying
o standard RSA on the raw patterns of an unrelated
resting state fMRI dataset.

Data used for the illustration in S.5 were provided by the MGH-USC Human Connectome Project
(HCP; Principal Investigators: Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD).
HCP funding was provided by the National Institute of Dental and Craniofacial Research (NIDCR), the
National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and
Stroke (NINDS). HCP data are disseminated by the Laboratory of Neuro Imaging at the University of
California, Los Angeles.
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