
A Proof of Theorem 3.1

In order to prove Theorem 3.1, it suffices to show that for any k 2 [i, j � 1], P(ak|S) = e

�✓ · P(ak+1|S).
For a fixed k, let A = {� : ak �� aj , 8aj 2 S\{ak}} and B = {� : ak+1 �� aj , 8aj 2 S\{ak+1}}. Let
f : A ! B be the function which switches the position of ak and ak+1. Note that it is a bijection from A to B.
Consequently, we can write

P(ak|S) =
X

�2A

e

�✓·d(�,w)

 (✓)

and P(ak+1|S) =
X

�2A

e

�✓·d(f(�),w)

 (✓)

.

We next show that for all � 2 A, d(f(�), w) = d(�, w)+1, which in turn implies the desired result. Because S
is a contiguous set, ak and ak+1 are consecutive items in w. This implies that in any fixed �, any disagreement
between ak and some aj with aj 6= ak+1 will induce a disagreement between ak+1 and aj in f(�). Similarly,
any disagreement between ak+1 and some aj with aj 6= ak in � will induce a disagreement between ak and aj

in f(�). Consequently, the only additional disagreement in f(�) comes from the disagreement between ak and
ak+1 after being switched. This implies that for all � 2 A, d(f(�), w) = d(�, w) + 1 and concludes the proof.

B Proof of Theorem 3.2 (continued)

In this section, we prove that for a fixed R,
P

�2h(R) e
�✓.C3(�) is equal to

 (|G|�m0, ✓) ·  (|S|+m0, ✓) ·
e

�✓·(k�1�
P`�1

m=1 rm)

1 + · · ·+ e

�✓·(|S|+m0�1)
·

MY

m=1

 (|Gm|, ✓)
 (rm, ✓) ·  (|G|m � rm, ✓)

.

We use a similar approach than in the first part of the proof. Let � be the set of ( ˜G1, . . . ,
˜

GM ) ✓ (G1, . . . , GM )

such that | ˜Gm| = rm for all m 2 [M ]. For all � = (

˜

G1, . . . ,
˜

GM ) 2 �, let t(�) be the set of permutations �
which satisfy the following two conditions:

• � 2 h(R).

• for all m 2 [M ], the subset of products from Gm which is preferred to ak is exactly ˜

Gm.

With this notation, we can write
X

�2h(R)

e

�✓.C3(�)
=

X

�2�

X

�2t(�)

e

�✓·(D1(�)+D2(�)+
P

m2[M] D3(�,m))
,

where,

• D1(�) is the sum of disagreements ⇠(�, i, j) over pairs of products (i, j) such that either i = k and
ak �� aj or ak �� ai and ak �� aj .

• D2(�) is the sum of disagreements ⇠(�, i, j) over pairs of products (i, j) such that ai �� ak and
aj �� ak.

• for all m 2 [M ], D3(�,m) is the sum of disagreements ⇠(�, i, j) over pairs of products (i, j) such
that ai 2 ˜

Gm and aj 2 Gm\ ˜Gm.

Using the definition of D1(�) and D2(�) together with Theorem 3.1, we have thatP
�2t(�) e

�✓·(D1(�)+D2(�)+
P

m2[M] D3(�,m)) is equal to

 (|G|�m0, ✓) ·  (|S|+m0, ✓) ·
e

�✓·(k�1�
P`�1

m=1 rm)

1 + · · ·+ e

�✓·(|S|+m0�1)
·

X

�2t(�)

e

�✓·
P

m2[M] D3(�,m))
.

To complete the proof, it remains to compute
P

�2�

P
�2t(�) e

�✓·
P

m2[M] D3(�,m). Using the definition of the
normalization constant, we have for all m 2 [M ],

 (|Gm|, ✓) =  (rm, ✓) ·  (|Gm|� rm, ✓) ·
X

�2�

X

�2t(�)

e

�✓·D3(�,m)
,

which implies that

X

�2�

X

�2t(�)

e

�✓·
P

m2[M] D3(�,m)
=

MY

m=1

 (|Gm|, ✓)
 (rm, ✓) ·  (|Gm|� rm, ✓)

,

and concludes the proof.
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C Proof of Theorem 5.1

Let x = (x1, . . . , xn) be a feasible binary vector to the IP and let S = {ai : xi = 1}. Note that there is a one to
one correspondence between feasible vector x to the IP and feasible assortment S such that a1 2 S and aq 2 S.
In particular, xi = 1 if i 2 S and xi = 0 otherwise. Consequently, we can rewrite the IP as

max

S✓U
aq2S

max

X

i,s

ri · ⇡(i, s, n)

s.t. ⇡(i, s, k + 1) = (1� wk+1,s) · ⇡(i, s, k) + yi,s,k+1, 8i, s, 8k � 2

⇡(k + 1, s, k + 1) = zs,k+1, 8s, 8k � 2

0  yi,s,k  1l[ak+1 /2 S] · �k+1,s�1 · ⇡(i, s� 1, k � 1), 8i, s, 8k � 2

0  zs,k  1l[ak+1 2 S] · pk+1,s ·
nX

`=s

k�1X

i=1

⇡(i, `, k � 1), 8s, 8k � 2

⇡(1, 1, 1) = 1

Note that it is always optimal to set yi,s,k and zs,k at their upper bound because all the coefficients in the
objective function are non-negative. The correctness of Algorithm 1 then shows that the IP is an equivalent
formulation of (2).
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