
Supplementary material

A Discussion

The topic of estimation of an integral functional of an unknown density from i.i.d. samples is a
classical one in statistics and we tie together a few pertinent topics from the literature in the context
of the results of this manuscript.

A.1 Uniform order statistics and NN distances

The expression for the asymptotic bias in (13) which is independent of the underlying distribution
forms the main result of this paper and crucially depends on Lemma 3.1. Precisely, the lemma
implies that the quantities Si’s in (10) converge in distribution to S̃i’s in (12). There are two parts to
this convergence result: the nearest neighbor distances converge to uniform order statistics and the
directions to those nearest neighbors converge independently to Haar measures on the unit sphere.
The former has been extensively studied, for example see [29] for a survey of results. The latter is a
new result that we state in Lemma 3.1, and proved in Section E. Intuitively, assuming smoothness,
the probability density fX in the neighborhood of a sample Xi (as defined by the distance to the k-th
nearest neighbor) converges to a uniform distribution over a ball (of radius decreasing at the rate
ρk,i = Θ(n−1/d)), as more samples are collected. The nearest neighbor distances and directions
converge to those from the uniform distribution over the ball, and Lemma 3.1 makes this intuition
precise for the nearest m neighbors up to m = O(n1/(2d)−ε) with any arbitrarily small but positive ε.

Only the convergence analysis of the distances, and not the directions, is required for traditional
k-NN based estimators, such as the entropy estimator of [15]. In the seminal paper, [15] introduced
resubstitution entropy estimators of the form Ĥ(X) = −(1/n)

∑n
i=1 log f̂n(Xi) with f̂n(x) =

k/(nCd ρ
d
k,x) (as defined in (4)). This k-NN estimator has a non-vanishing asymptotic bias, which

was computed as Bk,d = (ψ(k)− log(k)) with the digamma function ψ(·) and was suggested to be
manually removed. For k = 1 this was proved in the original paper of [15], which later was extended
in [32, 9] to general k. This mysterious bias term Bk,d = (ψ(k)− log(k)) whose original proofs in
[15, 32, 9] provided little explanation for, can be alternatively proved with both rigor and intuition by
making connections to uniform order statistics. For a special case of k = 1, with extra assumptions
on the support being compact, such an elegant proof is provided in [2, Theorem 7.1] which explicitly
applies the convergence of the nearest neighbor distance to uniform order statistics. Namely,

E[Ĥ(X)] = E
[
− 1

n

n∑
i=1

log
( k

nCd ρdk,Xi

) ]
→ E

[
− log

k f(Xi)∑k
j=1Ej

]
= H(X) + ψ(k)− log(k) ,

where the asymptotic expression follows from Cd n f(x)ρdk,x →
∑k
j=1Ej as shown, for example,

in Lemma 3.1 and we used E[log
∑k
j=1Ej ] = ψ(k), where ψ(k) = is the digamma function

defined as ψ(x) = Γ−1(x)dΓ(x)/dx and for large x it is approximately log(x) up to O(1/x), i.e.
ψ(x) = log x− 1/(2x) + o(1/x). Note that this only requires the convergence of the distance and
not the direction. Inspired by this modern approach, we extend such a connection in Lemma 3.1 to
prove consistency of our estimator.

A.2 Convergence rate of the bias

Establishing the convergence rate of the KL estimator is a challenging problem, and is not quite
resolved despite work over the past three decades. The O(1/n) convergence rate of the variance
is established in [3, 18, 2, 4] under various assumptions. Establishing the convergence rate of the
bias is more challenging. It has been first studied in [10, 11], where root-n consistency is shown in
1-dimension with bounded support and assuming f(x) is bounded below. [36] is the first to prove a
root mean squared error convergence rate of O(1/

√
n) for general densities with unbounded support

in 1-dimension and exponentially decaying tail, such as the Gaussian density. These assumptions
are relaxed in [5], where zeroes and fat tails are allowed in f(x). In general d-dimensions, [8, 33]
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prove bounds on the convergence rate of the bias for finite k = O(1), and [24, 1] for k = Ω(log n).
Establishing the convergence rate for the bias of the proposed local estimator is an interesting open
problem – it is interesting to see if the superior empirical performance of the local estimator is
captured in the asymptotics of rate of convergence of the bias.

It is intuitive that kernel density estimators can capture the structure in the distribution if the distribu-
tion lies on a lower dimensional manifold. This is made precise in [27], which also shows improved
convergence rates for distributions whose support is on low dimensional manifolds. However, the
estimator in [27] critically uses the geodesic distances between the sample points on the manifold.
Given that the proposed estimators fit distributions locally, a concrete question of interest is whether
such an improvement can be achieved without such an explicit knowledge of the geodesic distances,
i.e., whether the local estimators automatically adapt to underlying lower dimensional structures.

A.3 Ensemble estimators

Recent works [34, 25, 26, 1] have proposed ensemble estimators, which use known estimators based
on kernel density estimators and k-NN methods and construct a new estimate by taking the weighted
linear combination of those methods with varying bandwidth or k, respectively. With a proper
choice of the weights, which can be computed analytically by solving a simple linear program, a
boosting of the convergence rate can be achieved. The key property that allows the design of such
ensemble estimators is that the leading terms (in terms of the sample size n) of the bias have a
multiplicative constant that only depends on the unknown distribution. An intuitive explanation for
this phenomenon is provided in [1] in the context of k-NN methods; it is interesting to explore if such
a phenomenon continues in the k-LNN scenario studied in this paper. Such a study would potentially
lead to ensemble-based estimators in the local setting and also naturally allow a careful understanding
of the rate of convergence of the bias term.

B Simulation Results in Section. 3

In Figure 3 (left), we draw 100 samples i.i.d. from two standard Gaussian random variables with
correlation r, and plot resulting mean squared error averaged over 100 instances. The ground truth,
in this case is H(X) = log(2πe) + 0.5 log(1− r2). On the right, we repeat the same simulation for
fixed r = 0.99999 and varying number of samples and m = 7 loge n.
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Figure 3: Degree-2 k-LNN outperforms other state-of-the-art estimators for entropy estimation.

In Figure 4, we repeat the same simulation for 6 standard Gaussian random variables with
Cov(X1, X2) = Cov(X3, X4) = Cov(X5, X6) = r and Cov(Xi, Xj) = 0 for other pairs (i, j).
On the left, we draw 100 i.i.d. samples with various r. We plot resulting mean squared error averaged
over 100 instances. The ground truth is H(X) = 3 log(2πe) + 1.5 log(1 − r2). On the right, we
repeat the same simulation for fixed r = 0.99999 and varying number of samples and m = 7 loge n.

In Figure 5 (left), we draw 100 samples i.i.d. from a mixture of two joint Gaussian distributions with

zero mean and covariance
(

1 r
r 1

)
and

(
1 −r
−r 1

)
, respectively, and plot resulting average estimate
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(Ĥ
−
H

)2
]

(1− r) where r is correlation

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

100 200 400 800 1500

KL
LNN(p=1)
LNN(p=2)

number of samples n

Figure 4: Degree-2 k-LNN outperforms other state-of-the-art estimators for high-dimensional entropy
estimation.

over 100 instances. Here we plot an upper bound of the ground truth H(X) ≤ log(2) + log(2πe) +
0.5 log(1− r2) for r ≥ 0.9. On the right, we repeat the same simulation for fixed r = 0.99999 and
varying number of samples and m = 7 loge n.
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Figure 5: Degree-2 k-LNN outperforms other state-of-the-art estimators for non-Gaussian entropy
estimation.

C Simulation Results in Section. 5

In Figure 6 (left), we estimate mutual information under the same setting as in Figure 3 (left).
For most regimes of correlation r, both 3LNN and LNN-KSG outperforms other state-of-the-art
estimators. The gap increases with correlation r. On the right, we draw i.i.d. samples from two
random variables X and Y , where X is uniform over [0, 1] and Y = X + U , where U is uniform
over [0, 0.01] independent of X . In the large sample limit, all estimators find the correct mutual
information. The plot show how sensitive the estimates are, in the small sample regime. Both LNN
and LNN-KSG are significantly more robust compared to other approaches.

In Figure 7, we test the mutual information estimators for Y = f(X) + U , where X is uniformly
distributed over [0, 1] and U is uniformly distributed over [0, θ], independent of X , for some noise
level θ. Similar simulation were studied in [7]. We draw 2500 i.i.d. sample points for each relationship.
The plot show that for small noise level θ, i.e., near-functional related random variables, our proposed
estimators Î3LNN and ÎLNN−KSG perform much better than 3KL and KSG estimators. Also our
proposed estimators can handle both linear and nonlinear functional relationships.

In Figure 8, we test our estimators on linear and nonlinear relationships for both low-dimensional
(D = 2) and high-dimensional (D = 5). Here Xi’s are uniformly distributed over [0, 1] and U is
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Figure 6: Proposed ÎLNN−KSG and Î3LNN outperform other state-of-the-art estimators.
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Figure 7: Functional relationship test for mutual information estimators. Proposed ÎLNN−KSG and
Î3LNN outperform other state-of-the-art estimators.

uniformly distributed over [−38/2, 38/2], independently of Xi’s. Similar simulation were studied
in [6]. We can see that our estimators Î3LNN and ÎLNN−KSG converges much faster than Î3KL and
ÎKSG.

D Proof of proposition 2.1

We first prove the derivation of the LLDE with degree p = 2 in Equation (7). The gradient of the
local likelihood evaluated at the maximizer is zero [21], which gives a computational tool for finding
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Figure 8: Estimated Mutual Information of low/high-dimensional relationships

the maximizer:

1

n

n∑
j=1

K(
Xj − x
h

) =

∫
K(

u− x
h

)ea0+a
T
1 (u−x)+(u−x)T a2(u−x)du , (16)

1

n

n∑
j=1

Xj − x
h

K(
Xj − x
h

) =

∫
u− x
h

K(
u− x
h

)ea0+a
T
1 (u−x)+(u−x)T a2(u−x)du , (17)

1

n

n∑
j=1

(Xj − x)(Xj − x)T

h2
K(

Xj − x
h

)

=

∫
(u− x)(u− x)T

h2
K(

u− x
h

)ea0+a
T
1 (u−x)+(u−x)T a2(u−x)du , (18)

where K(x) = exp{−‖x‖2/2} is the Gaussian kernel. Notice that the left-hand side of the equations
are S0/n, S1/n and S2/n, respectively. The RHS can be written in closed forms as:

1

n
S0 = (2π)d/2|M |−1/2ea0+ 1

2a
T
1 M

−1a1 , (19)

1

n
S1 =

1

nh
S0M

−1a1 , (20)

1

n
S2 =

1

nh2
S0(M−1 +M−1a1a

T
1M

−1) , (21)

where M = h−2Id×d − 2a2 assuming h sufficiently small such that M is positive definite. We
want to derive f̂(x) = exp{a0} from the equations. From (20) we get M−1a1 = S1(h/S0).
Together with (21), we get M−1 + M−1a1a

T
1M

−1 = S2(h2/S0). Hence, M−1 = (S2/S0 −
(S1/S0)(S1/S0)T )h2 = h2Σ. Plug them in (19), we obtain the desired expression.
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Analogously, for the derivation of the LLDE with degree p = 1 in Equation (5), we get

1

n
S0 = (2π)d/2hdea0+

h2

2 a
T
1 a1 , (22)

1

n
S1 =

h

n
S0a1 . (23)

This gives a1 = (1/(hS0))S1, and ea0 = (S0/(n(2π)d/2hd)) exp{−0.5‖S1‖2/S2
0}.

E Proof of Lemma 3.1

Let us introduce some notations first. Define Sd−1 ≡ {x ∈ Rd : ‖x‖ = 1} as the unit
(d − 1)-dimensional sphere and σd−1 as a normalized spherical measure on Sd−1. For any θ =
(θ1, . . . , θm) ∈ (Sd−1)m and x = (x1, . . . , xm) ∈ Rm+ , define θx ≡ (θ1x1, . . . , θmxm) ∈ Rd×m.
For any set B ∈ Rd×m and θ ∈ (Sd−1)m, define Bθ = {x ∈ Rm+ : θx ∈ B}. Let {ξi}mi=1 be i.i.d.
random variables uniformly over Sd−1. Then for any joint random variables (W1, . . . ,Wm) ∈ Rm+
which are independent with {ξi}mi=1, we have

P{(ξ1W1, . . . , ξmWm) ∈ B} =

∫
θ∈(Sd−1)m

P{(W1, . . . ,Wm) ∈ Bθ | θ} d(σd−1)m(θ) .(24)

Let Z = (Z1,i, . . . , Zm,i), ‖Z‖ = (‖Z1,i‖, . . . , ‖Zm,i‖) and let E = (E
1/d
1 , . . . , (

∑m
`=1E`)

1/d),
then ∣∣∣∣∣P{ (cdnf(x))1/dZ ∈ B

}
− P

{(
ξ1E

1/d
1 , . . . , ξm(

m∑
`=1

E`)
1/d

)
∈ B

}∣∣∣∣∣
≤

∣∣∣∣∣P{ (cdnf(x))1/dZ ∈ B
}
−
∫
θ∈(Sd−1)m

P{(E1/d
1 , . . . , (

m∑
`=1

E`)
1/d) ∈ Bθ | θ} d(σd−1)m(θ)

∣∣∣∣∣
≤

∣∣∣∣∣P{ (cdnf(x))1/dZ ∈ B
}
−
∫
θ∈(Sd−1)m

P{(cdnf(x))1/d‖Z‖ ∈ Bθ | θ} d(σd−1)m(θ)

∣∣∣∣∣
+

∫
θ∈(Sd−1)m

∣∣∣P{(cdnf(x))1/d‖Z‖ ∈ Bθ | θ} − P{E ∈ Bθ | θ}
∣∣∣ d(σd−1)m(θ) . (25)

Now consider the first term in (25). We consider two cases separately.

Case 1. If ‖Zm,i‖ ≥ (
√
ncdf(x))−1/d, we show that the tail events happen with a low probability.

Denote B(x, r) = {z : ‖z − x‖ ≤ r} and let p = P{t ∈ B(x, ‖Zm,i‖)} =
∫
B(x,‖Zm,i‖) f(t)dt.

Since f is twice continuously differentiable, we can see that p ≥ 0.5cd‖Zm,i‖df(x) ≥ 0.5/
√
n for

sufficiently large n. Therefore,

P{‖Zm,i‖ ≥ (
√
ncdf(x))−1/d} =

m−1∑
`=0

(
n

`

)
p`(1− p)n−` ≤

m−1∑
`=0

n`
(

1− 1

2
√
n

)(n−`)
≤

m−1∑
`=0

nle−(
√
n−`
√
n)/2 ≤ mnme−(

√
n−m/

√
n)/2 . (26)

Case 2. If ‖Zm,i‖ < (
√
ncdf(x))−1/d, let B = {t : (cdnf(x))1/dt ∈ B and ‖tm‖ <

(
√
ncdf(x))−1/d} and Bθ = {t : (cdnf(x))1/dt ∈ Bθ and tm < (

√
ncdf(x))−1/d}. Note that

P(Z ∈ Ã) = (n!/(n− k)!)

∫
t∈Ã

m∏
j=1

f(x+ tj)PX(|X − x| > |tm|)n−mdt , (27)
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which gives∫
θ∈(Sd−1)m

P{(cdnf(x))1/d‖Z‖ ∈ Bθ, ‖Zm,i‖ < (
√
ncdf(x))−1/d | θ} d(σd−1)m(θ)

P{(cdnf(x))1/dZ ∈ B, ‖Zm,i‖ < (
√
ncdf(x))−1/d}

=

∫
θ∈(Sd−1)m

P{‖Z‖ ∈ Bθ | θ} d(σd−1)m(θ)

P{Z ∈ B}

=

∫
θ∈(Sd−1)m

n!
(n−k)!

( ∫
t∈Bθ

(∏m
j=1 f(x+ θjtj)

)
(P{‖X − x‖ > ‖tm‖} )

n−m
dt
)
d(σd−1)m(θ)

n!
(n−k)!

∫
t∈B

(∏m
j=1 f(x+ tj)

)
(P{‖X − x‖ > ‖tm‖} )

n−m
dt

≤
supθ∈(Sd−1)m supt∈Bθ

∏m
j=1 f(x+ θjtj)

inft∈B
∏m
j=1 f(x+ tj)

≤

(
sup‖t‖≤(

√
ncdf(x))−1/d f(x+ t)

inf‖t‖≤(
√
ncdf(x))−1/d f(x+ t)

)m
, (28)

where the first inequality follows from the fact that
∫
θ∈(Sd−1)m

(
∫
Bθ
g(tm)dt)d(σd−1)m(θ) =∫

B
g(‖tm‖)dt. Since f is continuously differentiable, by mean value theorem, there exists

a, b ∈ B(x, (
√
ncdf(x))−1/d) such that

sup‖t‖≤(
√
ncdf(x))−1/d f(x+ t)

inf‖t‖≤(
√
ncdf(x))−1/d f(x+ t)

=
f(b) + (a− b)T∇f(a)

f(b)
≤ 1 +

2(
√
ncdf(x))−1/d‖∇f(a)‖

f(b)
,(29)

By the assumption, there exists a ball B(x, ε) such that ‖∇f(a)‖ = O(1) and f(a) > 0 for all
a ∈ B(x, ε), so for sufficiently large n such that (

√
ncdf(x))−1/d < ε, there exists some constant

C such that sup‖t‖≤(
√
ncdf(x))−1/d f(x + t) ≤ (1 + Cn−1/(2d)) inf‖t‖≤(

√
ncdf(x))−1/d f(x + t).

Therefore, (28) is upper bounded by (1 + Cn−1/(2d))m. Similarly, (28) is lower bounded by
(1− Cn−1/(2d))m.

For simplicity, let E = {‖Zm,i‖ < (
√
ncdf(x))−1/d}. Then combining the two cases, the first term

in (25) is bounded by:∣∣∣∣∣P{ (cdnf(x))1/dZ ∈ B
}
−
∫
θ∈(Sd−1)m

P{(cdnf(x))1/d‖Z‖ ∈ Bθ | θ} d(σd−1)m(θ)

∣∣∣∣∣
≤ P

{
(cdnf(x))1/dZ ∈ B, EC

}
+

∫
θ∈(Sd−1)m

P{(cdnf(x))1/d‖Z‖ ∈ Bθ, EC | θ} d(σd−1)m(θ)

+

∣∣∣∣∣P{ (cdnf(x))1/dZ ∈ B, E
}
−
∫
θ∈(Sd−1)m

P{(cdnf(x))1/d‖Z‖ ∈ Bθ, E | θ} d(σd−1)m(θ)

∣∣∣∣∣
≤ P{EC}+

∫
θ∈(Sd−1)m

P{EC} d(σd−1)m(θ)

+ P
{

(cdnf(x))1/dZ ∈ B, E
} ∣∣∣∣∣ 1−

∫
θ∈(Sd−1)m

P{(cdnf(x))1/d‖Z‖ ∈ Bθ, E | θ} d(σd−1)m(θ)

P
{

(cdnf(x))1/dZ ∈ B, E
} ∣∣∣∣∣

≤ 2P{EC}+ P
{

(cdnf(x))1/dZ ∈ B, E
}

max{(1 + Cn−1/(2d))m − 1, 1− (1− Cn−1/(2d))m}

≤ 2mnme−(
√
n−m/

√
n)/2 + max{(1 + Cn−1/(2d))m − 1, 1− (1− Cn−1/(2d))m} . (30)

Now consider the second term of (25). We will use Corollary 5.5.5 of [29] to show that this term
vanishes for m = O(log n) and as n grows.
Lemma E.1 (Corollary 5.5.5, [29]). Let Y1, Y2, . . . , Yn be i.i.d. samples from unknown distribution
with pdf f . Let Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n be the order statistics. Assume the density f satisfies
| log f(y)| ≤ Lyδ for 0 < y < y0 and f(y) = 0 for y < 0, where L and δ are constants. Then

dTV

(
n (Y1:n, Y2:n, . . . , Ym:n) ,

(
E1, E1 + E2, . . . ,

m∑
j=1

Ej
) )
≤ C0

(
(m/n)δm1/2 +m/n

)
, (31)
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where C0 > 0 is a constant. E1, . . . , Em are i.i.d standard exponential random variables.

Now for fixed x, consider the distribution of cdf(x)‖X − x‖d denoted by P̃ . Define Y1, Y2, . . . , Yn
drawn i.i.d. from P̃ . We can see that cdf(x)‖Z‖d L= (Y1:n, . . . , Ym:n), where L= denotes equivalence
in distribution. The pdf f̃ of P̃ is given by:

f̃(t) =
d

dt
P{cdf(x)‖X − x‖d ≤ t} =

d

dt

∫
y∈B(x,rt)

f(y)dy . (32)

where rt = (t/(cdf(x)))1/d. Here we have:

drt
dt

=
t1/d−1(cdf(x))−1/d

d
=

1

f(x)dcdr
d−1
t

. (33)

If f is twice continuously differentiable, we have:∣∣∣ f̃(t)− 1
∣∣∣ =

∣∣∣∣∣ ddt
∫
y∈B(x,rt)

f(y)dy − 1

∣∣∣∣∣ =

∣∣∣∣∣ drtdt (
d

drt

∫
y∈B(x,rt)

f(y)dy)− 1

∣∣∣∣∣
=

1

f(x)dcdr
d−1
t

∣∣∣∣∣ d

drt

(∫
y∈B(x,rt)

f(y)dy

)
− f(x)dcdr

d−1
t

∣∣∣∣∣
=

1

f(x)dcdr
d−1
t

∣∣∣∣∣
∫
y∈Sd−1(x,rt)

(f(y)− f(x))dσd−1(y)

∣∣∣∣∣ , (34)

where Sd−1 is the (d − 1)-sphere centered at x with radius rt and σd−1 is the spherical measure.
By mean value theorem, there exists a(y) ∈ B(x, rt) such that f(y) − f(x) = (y − x)T∇f(x) +
(a(y)− x)THf (a(y))(a(y)− x), where a(y) depends on y. Therefore,∣∣∣∣∣

∫
y∈Sd−1(x,rt)

(f(y)− f(x))dσd−1(y)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∫
y∈Sd−1(x,rt)

(y − x)T∇f(x)dσd−1(y)︸ ︷︷ ︸
=0

+

∫
y∈Sd−1(x,rt)

(a(y)− x)THf (a(y))(a(y)− x)dσd−1(y)

∣∣∣∣∣∣∣∣∣
≤

(
sup

a∈B(x,rt)

‖Hf (a)‖ ‖a− x‖2
)
σd−1(Sd−1(x, rt))

≤ dcdr
d+1
t

(
sup

a∈B(x,rt)

‖Hf (a)‖

)
(35)

Since there exists a ball B(x, ε) such that ‖Hf (a)‖ = O(1) for all a ∈ B(x, ε). Therefore, for
sufficiently small t such that rt < ε, we have:∣∣∣ f̃(t)− 1

∣∣∣ ≤ dcdr
d+1
t

(
supa∈B(x,rt) ‖Hf (a)‖

)
f(x)dcdr

d−1
t

=
r2t

(
supa∈B(x,rt) ‖Hf (a)‖

)
f(x)

. (36)

Recall that rt = (t/(cdf(x)))1/d, so there exists L > 0 such that |f̃(t)− 1| ≤ Lt2/d for sufficiently
small t. Hence, | log f̃(t)| ≤ L′t2/d for some L′ > 0 and sufficiently small t. So f̃ satisfies the
condition in Lemma. E.1 with δ = 2/d. Therefore, for any Bθ ⊆ Rm+ , we have:∣∣∣P{(cdnf(x))1/d‖Z‖ ∈ Bθ} − P{E ∈ Bθ}

∣∣∣
≤ dTV

 cdnf(x)‖Z‖d,
(
E1, E1 + E2, . . . ,

m∑
j=1

Ej
)

≤ C0

(
(
m

n
)2/dm1/2 +

m

n

)
. (37)
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Therefore, by combing (30) and (37), we have:∣∣∣∣∣P{ (cdnf(x))1/dZ ∈ B
}
− P

{(
ξ1E

1/d
1 , . . . , ξm(

m∑
l=1

E`)
1/d

)
∈ B

}∣∣∣∣∣
≤ 2mnme−

√
n−m/

√
n

2 + max{(1 + Cn
−1
2d )m − 1, 1− (1− Cn

−1
2d )m}+ C0

(
(
m

n
)

2
dm

1
2 +

m

n

)
,(38)

for any set B ∈ Rd×m. Therefore, the total variation distance
dTV((cdnf(x))1/d(Z1,i, Z2,i, . . . , Zm,i), (ξ1E

1/d
1 , ξ2(E1 + E2)1/d, . . . , ξm(

∑m
`=1E`)

1/d ))
is bounded by the RHS quantity. By taking m = O(log n), the RHS converges to 0 as n goes to
infinity. Therefore, we have the desired statement.

F Proof of Theorem 1

We first compute the asymptotic bias. We define new notations to represent the estimate as

Ĥ
(n)
k =

1

n

n∑
i=1

{
h
(

(cdnf(Xi))
1/dZk,i, S0,i, S1,i, S2,i)

)
− log f(Xi)︸ ︷︷ ︸

≡Hi

}
,

where h : Rd × R× Rd × Rd×d → R is defined as

h(t1, t2, t3, t4) =

d log ‖t1‖+ d log(2π)− log cd − log t2 +
1

2
log

(
det

(
t4
t2
− t3t

T
3

t22

))
+

1

2
tT3 (t4 − t3tT3 )−1t3 .

(39)

Let Hi ≡ h((cdnf(Xi))
1/dZk,i, S0,i, S1,i, S2,i))− log f(Xi). Since the terms H1, H2, . . . ,Hn are

identically distributed, the expected value of Ĥ(n)
k converges to

lim
n→∞

E[Ĥ
(n)
k ] = lim

n→∞
E[H1] = lim

n→∞
EX1

[
E[H1|X1]

]
(40)

Typical approach of dominated convergence theorem cannot be applied to the above limit, since
analyzing E[H1|X1] for finite sample n is challenging. In order to exchange the limit with the
(conditional) expectation, we assume the following Ansatz 1 to be true. As noted in [28] this is
common in the literature on consistency of k-NN estimators, where the same assumptions have been
implicitly made without explicitly stating as such, in existing analyses of entropy estimators including
[15, 9, 18, 39]. This assumption can be avoided for Renyi entropy as in the proof of consistency in
[28] or for sharper results such as the convergence rate of the bias with respect to the sample size but
with more assumptions as in [8, 33, 1].
Ansatz 1. The following exchange of limit holds:

lim
n→∞

E[H1] = EX1

[
lim
n→∞

E[H1|X1]
]
, (41)

Under this ansatz, perhaps surprisingly, we will show that the expectation inside converges to
− log f(X1) plus some bias that is independent of the underlying distribution. Precisely, for almost
every x and given X1 = x,

E[H1|X1 = x] + log f(x) = E
[
h((cdnf(x))1/dZk,i, S0,1, S1,i, S2,i)

]
−→ Bk,d , (42)

as n→∞ where Bk,d is a constant that only depends on k and d, defined in (44). This implies that

EX1

[
lim
n→∞

E[H1|X1]
]

= EX1 [− log f(X1) +Bk,d]

= H(X) +Bk,d . (43)

Together with (40), this finishes the proof of the desired claim.
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We are now left to prove the convergence of (42). We first give a formal definition of the bias Bk,d by
replacing the sample defined quantities by a similar quantities defined from order-statistics, and use
Lemma 3.1 to prove the convergence. Recall that our order-statistics is defined by two sequences of
m i.i.d. random variables: i.i.d. standard exponential random variables E1, . . . , Em and i.i.d. random
variables ξ1, . . . , ξm uniformly distributed over Sd−1. We define

Bk,d ≡ E

h
 ξk

(
k∑
`=1

E`

)1/d

, S̃
(∞)
0 , S̃

(∞)
1 , S̃

(∞)
2

 , (44)

where, as we will show, S̃(∞)
α is the limit of empirical quantity Sα,i defined from samples for each

α ∈ {0, 1, 2}, and we know that (cdnf(x))1/dZk,i converges to ξk(
∑k
`=1E`)

1/d for almost every x
from Lemma 3.1. S(∞) is defined by a convergent random sequence

S̃(m)
α ≡

m∑
j=1

ξ
(α)
j (

∑j
`=1E`)

α/d

(
∑k
`=1E`)

α/d
exp

{
−

(
∑j
`=1E` )2/d

2(
∑k
`=1E` )2/d

}
, (45)

where ξ
(0)
j = 1, ξ(1)j = ξj , ξ

(2)
j = ξjξ

T
j and S̃

(∞)
α = limm→∞ S̃

(m)
α . This limit ex-

ists, since S̃
(m)
0 is non-decreasing in m, and the convergence of S̃

(m)
1 and S̃

(m)
2 follows

from Lemma F.1. We introduce simpler notations for the joint random variables: S̃(m) =

(ξk(
∑k
`=1E`)

1/d, S̃
(m)
0 , S̃

(m)
1 , S̃

(m)
2 ) and S̃(∞) = (ξk(

∑k
`=1E`)

1/d, S̃
(∞)
0 , S̃

(∞)
1 , S̃

(∞)
2 ). Consider-

ing the quantities S(n) = ((cdnf(x))1/dZk,i, S0,i, S1,i, S2,i) defined from samples, we show that
this converges to S̃(∞). Precisely, applying triangular inequality,

dTV(S(n), S̃(∞)) ≤ dTV(S(n), S̃(m)) + dTV(S̃(m), S̃(∞)) , (46)

and we show that both terms converge to zero for any m = Θ(log n). Given that h is continuous and
bounded, this implies that

lim
n→∞

E[H1|X1 = x] = E[ lim
n→∞

h(S(n))− log f(x)|X1 = x]

= − log f(x) + E[h(S̃(∞))] ,

for almost every x, proving (43).

The convergence of the first term follows from Lemma 3.1. Precisely, consider the function gm :
Rd×m → Rd × R× Rd × Rd×d defined as:

gm(t1, t2, . . . , tm) =

 tk,

m∑
j=1

exp{− ‖tj‖
2

2‖tk‖2
},

m∑
j=1

tj
‖tk‖

exp{− ‖tj‖
2

2‖tk‖2
},

m∑
j=1

tjt
T
j

‖tk‖2
exp{− ‖tj‖

2

2‖tk‖2
}

 , (47)

such that S(n) = gm
(

(cdnf(x))1/d (Z1,i, Z2,i, . . . , Zm,i )
)

, which follows from the
definition of S(n) = ((cdnf(x))1/dZk,i, S0,i, S1,i, S2,i) in (10). Similarly, S̃(m) =

gm

(
ξ1E

1/d
1 , ξ2(E1 + E2)1/d, . . . ξm(

∑m
`=1E`)

1/d
)

. Since gm is continuous, so for any set

A ∈ Rd × R × Rd × Rd×d, there exists a set Ã ∈ Rd×m such that gm(Ã) = A. So for any
x such that there exists ε > 0 such that f(a) > 0, ‖∇f(a)‖ = O(1) and ‖Hf (a)‖ = O(1) for any
‖a− x‖ < ε, we have:

dTV(S(n), S̃(m))

= sup
A

∣∣∣∣∣P{gm ( (cdnf(x))
1
dZ1,i, . . . , (cdnf(x))

1
dZm,i

)
∈ A

}
− P{gm( ξ1E

1
d
1 , . . . ξm(

m∑
l=1

E`)
1
d ) ∈ A}

∣∣∣∣∣
≤ sup
Ã∈Rd×m

∣∣∣∣∣P{( (cdnf(x))1/dZ1,i, . . . , (cdnf(x))1/dZm,i

)
∈ Ã

}
− P{( ξ1E1/d

1 , . . . ξm(

m∑
`=1

E`)
1/d ) ∈ Ã}

∣∣∣∣∣
= dTV

((
(cdnf(x))1/dZ1,i, . . . , (cdnf(x))1/dZm,i

)
,

(
ξ1E

1/d
1 , . . . ξm(

m∑
`=1

E`)
1/d

))
n→∞−→ 0 , (48)
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where the last inequality follows from Lemma 3.1. By the assumption that f has open support and
‖∇f‖ and ‖Hf‖ is bounded almost everywhere, this convergence holds for almost every x.

For the second term in (46), let T̃ (m)
α = S̃

(∞)
α − S̃(m)

α and we claim that T̃ (m)
α converges to 0 in

distribution by the following lemma.

Lemma F.1. Assume m→∞ as n→∞ and k ≥ 3 , then

lim
n→∞

E‖ T̃ (m)
α ‖ = 0 (49)

for any α ∈ {0, 1, 2}. Hence (T̃
(m)
0 , T̃

(m)
1 , T̃

(m)
2 ) converges to (0, 0, 0) in distribution.

This implies that (S̃
(m)
0 , S̃

(m)
1 , S̃

(m)
2 ) converges to (S̃

(∞)
0 , S̃

(∞)
1 , S̃

(∞)
2 ) in distribution, i.e.,

dTV(S̃(m), S̃(∞))
n→∞−→ 0 , (50)

Combine (48) and (50) in (46), this implies the desired claim.

We next prove the upper bound on the variance, following the technique from [2, Section 7.3]. For
the usage of Efron-Stein inequality, we need a second set of i.i.d. samples {X ′1, X ′2, . . . , X ′n}. For
simplicity, denote Ĥ = Ĥ

(n)
kLNN (X) be the kLNN estimate base on original sample {X1, . . . , Xn}

and Ĥ(i) be the kLNN estimate based on {X1, . . . , Xi−1, X
′
i, Xi+1, . . . Xn}. Then Efron-Stein

theorem states that

Var
[
Ĥ
]
≤ 2

n∑
j=1

E
[(
Ĥ − Ĥ(j)

)2 ]
. (51)

Recall that

Ĥ =
1

n

n∑
i=1

{
h
(

(cdnf(Xi))
1/dZk,i, S0,i, S1,i, S2,i)

)
− log f(Xi)︸ ︷︷ ︸

≡Hi

}
,

where h : Rd × R× Rd × Rd×d → R is defined as

h(t1, t2, t3, t4) =

d log ‖t1‖+ d log(2π)− log cd − log t2 +
1

2
log

(
det

(
t4
t2
− t3t

T
3

t22

))
+

1

2
tT3 (t4 − t3tT3 )−1t3 .

(52)

Similarly, we can write Ĥ(j) = 1
n

∑n
i=1H

(j)
i for any j ∈ {1, . . . , n}. Therefore, the difference of

Ĥ and Ĥ(j) can be bounded by:

Ĥ − Ĥ(j) =
1

n

n∑
i=1

(
Hi −H(j)

i

)
. (53)

Notice that Hi only depends on Xi and its m nearest neighbors, so Hi −H(j)
i = 0 if none of Xj and

X ′j are in m nearest neighbor of Xi. If we denote Zi,j = I{Xj is in m nearest neighbor of Xi}, then

Hi = H
(j)
i if Zi,j+Zi,j′ = 0. According to [2, Lemma 20.6], sinceX has a density, with probability

one,
∑n
i=1 Zi,j ≤ mγd, where γd is the minimal number of cones of angle π/6 that can cover Rd,

which only depends on d. Similarly,
∑n
i=1 Zi,j′ ≤ mγd. If we denote S = {i : Zi,j + Zi,j′ > 0},

the cardinality of S satisfy |S| ≤ 2mγd. Therefore, we have Ĥ − Ĥ(j) = 1
n

∑
i∈S

(
Hi −H(j)

i

)
.
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By Cauchy-Schwarz inequality, we have

E
[(
Ĥ − Ĥ(j)

)2 ]
= E

 1

n2

(∑
i∈S

(
Hi −H(j)

i

))2


≤ E

[
|S|
n2

∑
i∈S

(
Hi −H(j)

i

)2 ]

=
|S|
n2

∑
i∈S

E
[(

Hi −H(j)
i

)2 ]
≤ 2|S|

n2

∑
i∈S

(
E
[
H2
i

]
+ E

[
(H

(j)
i )2

] )
. (54)

Notice that Hi’s and H(j)
i ’s are identically distributed, so we are left to compute E

[
H2

1

]
. Condition-

ing on X1 = x, similarly to (42), we have

E
[

(H1 + log f(x))2|X1 = x
]

= E
[
h2((cdnf(x))1/dZk,i, S0,1, S1,i, S2,i)

]
−→ B

(2)
k,d , (55)

as n→∞, where B(2)
k,d ≡ E

[
h2
(
ξk

(∑k
`=1E`

)1/d
, S̃

(∞)
0 , S̃

(∞)
1 , S̃

(∞)
2

)]
. Therefore,

E
[
H2

1 |X1 = x
]

= B
(2)
k,d − 2 log f(x)E [H1|X1 = x ]− (log f(x))2

= B
(2)
k,d − 2 log f(x)Bk,d + (log f(x))2 . (56)

Take expectation over X1, we obtain:

E[H2
1 ] = EX1

[
lim
n→∞

E
[
H2

1 |X1

] ]
= EX1

[
B

(2)
k,d − 2 log f(X1)Bk,d + (log f(X1))2

]
= B

(2)
k,d + 2H(X)Bk,d +

∫
f(x)(log f(x))2dx < +∞ , (57)

where the last inequality comes from the assumption that
∫
f(x)(log f(x))2dx < +∞. Combining

with (51) and (54), we have

Var
[
Ĥ
]
≤ 2

n∑
j=1

E
[(
Ĥ − Ĥ(j)

)2 ]
≤ 4|S|

n

∑
i∈S

(
E
[
H2
i

]
+ E

[
(H

(j)
i )2

] )
≤ 8|S|2C2

n
≤ 32m2γ2dC2

n
, (58)

where C2 is the upper bound for E[H2
1 ]. Take m = O(log n) then the proof is complete.

F.1 Proof of Lemma F.1

Firstly, since |ξi| = 1, we can upper bound the expectation of E‖ T̃ (m)
α,i ‖ by:

E‖ T̃ (m)
α,i ‖ = E

∥∥∥ ∞∑
j=m+1

ξ
(α)
j (

∑j
`=1E`)

α/d

(
∑k
`=1E`)

α/d
exp{−

(
∑j
`=1E` )2/d

2(
∑k
`=1E` )2/d

}
∥∥∥

≤
∞∑

j=m+1

E
∥∥∥ ξ(α)j (

∑j
`=1E`)

α/d

(
∑k
`=1E`)

α/d
exp{−

(
∑j
`=1E` )2/d

2(
∑k
`=1E` )2/d

}
∥∥∥

=

∞∑
j=m+1

E
∣∣∣ (
∑j
`=1E`)

α/d

(
∑k
`=1E` )α/d

exp{−
(
∑j
`=1E` )2/d

2(
∑k
`=1E` )2/d

}
∣∣∣ . (59)

Notice that the expression is a function of (
∑j
`=1E`/

∑k
`=1E`)

1/d ≡ Rj for j > m, we will identify
the distribution of Rj first. For any fixed j ≥ k, let Tk =

∑k
`=1E` and Tj−k =

∑j
`=k+1E`, such
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that Rj = ((Tk + Tj−k)/Tk)1/d. Notice that Tk is the summation of k i.i.d. standard exponential
random variables, so Tk ∼ Erlang (k, 1). Similarly, Tj−k ∼ Erlang (j − k, 1). Also Tk and Tj−k
are independent. Recall that the pdf of Erlang (k, λ) is given by fk,λ(x) = λkxk−1e−λx/(k − 1)!
for x ≥ 0. Therefore, the CDF of Rj is given by:

FRj (t) = P{Rj ≤ t} = P{(Tk + Tj−k
Tk

)1/d ≤ t} = P{Tj−k
Tk
≤ td − 1}

=

∫
x≥0

xk−1e−x

(k − 1)!

(∫ (td−1)x

y=0

yj−k−1e−y

(j − k − 1)!
dy

)
dx

=

∫
x≥0

xk−1e−x

(k − 1)!

(
1−

j−k−1∑
`=0

1

`!
x`(td − 1)`e−x(t

d−1)

)
dx

= 1−
j−k−1∑
`=0

(∫
x≥0

xk−1e−x

(k − 1)!

1

`!
x`(td − 1)`e−x(t

d−1)dx

)

= 1−
j−k−1∑
`=0

(
(td − 1)`

(k − 1)!`!

∫
x≥0

xk−1+`e−xt
d

dx

)

= 1−
j−k−1∑
`=0

(td − 1)`

(k − 1)!`!
(k − 1 + `)! t−d(k−1+`)

= 1−
j−k−1∑
`=0

(
k − 1 + `

`

)
t−d(k−1)(1− t−d)` , (60)

for t ∈ [1,+∞). Given the CDF of Rj , each term in (66) is upper bounded by:

E
∣∣∣ (
∑j
`=1E`)

α/d

(
∑k
`=1E` )α/d

exp{−
(
∑j
`=1E` )2/d

2(
∑k
`=1E` )2/d

}
∣∣∣ = ERj

∣∣∣ tαe−t2 ∣∣∣ ≤ ERj
[
t2e−t

2
]

=

∫ ∞
t=1

t2e−t
2

dFRj (t) = t2e−t
2

FRj (t)
∣∣∣∞
1
−
∫ ∞
t=1

FRj (t)d(t2e−t
2

)

= −
∫ ∞
t=1

(2te−t
2

− 2t3e−t
2

)FRj (t)dt =

∫ ∞
t=1

2t(t2 − 1)e−t
2

FRj (t)dt . (61)

Therefore, in order to establish an upper bound for (66), we need an upper bound for FRj (t). Here
we will consider two cases depending on t. If t > (j/2k)1/d, we just use the trivial upper bound
FRj (t) < 1. If 1 ≤ t ≤ (j/2k)1/d, since td ≥ 1, we have:

FRj (t) = 1−
j−k−1∑
`=0

(
k − 1 + `

`

)
t−d(k−1)(1− t−d)` ≤ 1−

j−k−1∑
`=0

(
k − 1 + `

`

)
t−dk(1− t−d)` . (62)

Notice that
(
k−1+`
`

)
t−dk(1 − t−d)` is the pmf of negative binomial distribution NB(k, 1 − t−d).

Therefore, FRj (t) ≤ P{X ≥ j − k}, where X ∼ NB(k, 1− t−d). The mean and variance of X are
given by E[X] = (1− t−d)k/(1− (1− t−d)) = (td − 1)k and Var(X) = (1− t−d)k/(1− (1−
t−d))2 = (t2d − td)k. Therefore, by Chebyshev inequality, the tail probability is upper bounded by:

P{X ≥ j − k} ≤ Var(X)

(j − k − E[X])2
=

(t2d − td)k
(j − k − (td − 1)k)2

=
(t2d − td)k
(j − tdk)2

≤ 4t2dk/j2 , (63)
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here we use the fact that t ≤ (j/2k)1/d so j − tdk > j/2. Therefore, FRj (t) ≤ 4t2dk/j2 for
t > (j/2k)1/d. Combine the two cases and plug into (61), we obtain:

E
∣∣∣ (
∑j
`=1E`)

α/d

(
∑k
`=1E` )α/d

exp{−
(
∑j
`=1E` )2/d

2(
∑k
`=1E` )2/d

}
∣∣∣ =

∫ ∞
t=1

2t(t2 − 1)e−t
2

FRj (t)dt

≤
∫ (j/2k)1/d

t=1

2t(t2 − 1)e−t
2 4t2dk

j2
dt+

∫ ∞
(j/2k)1/d

2t(t2 − 1)e−t
2

dt

≤ 8k

j2

∫ ∞
t=1

t2d+3e−t
2

dt+ 2

∫ ∞
(j/2k)1/d

t3e−t
2

dt

≤ 8kCd
j2

+ 2

(
−1

2
e−t

2

(t2 + 1)
∣∣∣∞
(j/2k)1/d

)
=

8kCd
j2

+ e−(j/2k)
2/d

((
j

2k
)2/d + 1) , (64)

where Cd =
∫∞
t=1

t2d+3e−t
2

dt is a constant only depend on d. Therefore, we can see that

E
∣∣∣ (
∑j
`=1E`)

α/d

(
∑k
`=1E` )α/d

exp{−
(
∑j
`=1E` )2/d

2(
∑k
`=1E` )2/d

}
∣∣∣ = O(1/j2). (65)

So

E‖ T̃ (m)
α,i ‖ ≤

∞∑
j=m+1

E
∣∣∣ (
∑j
`=1E`)

α/d

(
∑k
`=1E` )α/d

exp{−
(
∑j
`=1E` )2/d

2(
∑k
`=1E` )2/d

}
∣∣∣→ 0 . (66)

given m→∞ as n→∞.

G Proof of Theorem 2

The proposed estimator is a solution to a maximization problem â = arg maxa LXi(fa,Xi). From
[21] we know that the maximizer is a fixed point of a series of non-linear equations of the form∑

j 6=i

(Xj −Xi)
⊗α

ραk,i
K
(Xj −Xi

ρk,i

)
= nρdk,i e

a0

∫
(u−Xi)

⊗α

ραk,i
K
(u−Xi

ρk,i

)
e〈u−x,a1〉+···+ap[(u−x),··· ,(u−x)]

1

ρdk,i
du

for all α ∈ [p] where the superscript ⊗α indicates the α-th order tensor product. From the proof
of Theorem 1, specifically (48) and (50), we know that the left-hand side converges to a value that
only depends on k, d and K. Let’s denote it by Sα(k) ∈ Rdα . We make a change of variables
ã0 = a0 + d log ρk,i + log n and ãα = aα/ρ

α
k,i for α 6= 0. Then, in the limit of growing n, the above

equations can be rewritten as

Sα(k, d,K) = eã0Fα(d,K, ã1, . . . , ãp) , (67)

for some function Fα. Notice that the dependence on the underlying distribution vanishes in the
limit, and the fixed point ã only depends on k, p, d, and K. The desired claim follows from
the fact that the estimate is limn→∞ f̂n(Xi) = limn→∞ eâ0 = limn→∞Ak,d,p,K/(nρ

d
k,i) =

f(Xi)Ak,d,p,KCd limn 1/(Cdnρ
d
k,if(Xi)) = f(Xi)Ak,d,p,KCd/

∑k
`=1E`, and plugging in the en-

tropy estimator Ĥ(X)→ EXi [− log f(Xi)] +Bk,d,p,K .

In the case of the KL estimator, it happens that S0 = k and F0(d) = Cd such that eã0 = k/Cd,
eâ0 = f(Xi)k/(Cdρ

d
k,if(Xi)n) and Bk,d,p,K = − log k + E[log(

∑k
`=1E`)] = − log k + φ(k).
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