A Proof of Theorem 1

Proof. Itis easy to see that by the end of the first iteration of Algorithm 1, 12;1 and 1, lie in the span
of {b;}7_,, while ¢»; and ¢, lie in the span of {a;}]_,. And therefore they remain in these spaces
forallt > 1.

Let us first focus on ¢,. For ¢t > 2, we observe that
60 =T/ |6 =TT 0o/ (6] - |0 ]]) -
Since ||, _,|| = |||l = 1. it is equivalent to using the following updates:

@, TTT¢t—2a b — &/ Dl -

This indicates that, Algorithm 1 runs the standard power iterations on TT " to generate the {¢, };>1
sequence for every two steps.

- _ (TTT)% ¢, e -
(i) Fort = 2,4,..., we have ¢, = W Let M = TT ', whose nonzero eigenvalues are
2
p? > p3 >+ > p? > 0, with corresponding eigenvectors ay, . .., a,. Then, fori =1,...,r,
( TMz¢ )2 ( TM:z¢ )2 (T o )2 T4 \2
(aTgb )2 - a o) a o) (piai d’o) o (ai ¢0)
O S T T T T e Y el gy N
HM%(%H ¢y Mo, > =1 pP7(aj é) 22:1 (%) (ajT(;bO)Q
¢

IN

(TW O 4 WO Y
e () - e ()

2
Th)? 2
< 7(31 ¢0) exp ( i QPZ t) .

P1
~ (af ¢)? Pi

3 M\Hw

(ii) Fort = 1,3,..., we have ¢, = H(TT)QT% Let N = T T, whose nonzero eigenvalues
(TTT) 2 T,

are p3 > p3 > --- > p2 > 0, with corresponding eigenvectors by, ..., b,. Then, fori =1,...,r,

ar ) (@ N

o [xT = e, g Niap, Y 03 (b )2
(bl w,)” ( Pt - f%)
CE A N

Given 6 € (0, 1), define S(6) = {i : p? > (1 — &)p3}. For 01,62 € (0,1), define

T(81,62) == f5 log (u;)]

For all i ¢ S(61), when t > T(81,62), it holds that (a, ¢,)* < &a(a] ¢)? if ¢ is even, and
(a] ¢,)? < da(b 4hy)? if t is odd. In both cases, we have Zies(él)(a;r(i)t)Q >1—9s.

When there exists a postive singular value gap, i.e., p1 — p2 > 0, set 1 = (p? — p3)/p? and thus
S(61) = 1. Futhermore, set 52 = 1 and we obtain (a] ¢,)? > 1 -7

10



The proof for 7, is completely analogous. To obtain the bound on the objective, we have

u/ 3., vi = o/ T, = pi () a1) (W b1) + > i@/ ai) (¥ by)
=2
b, a;

> pi(d) a1)(3h, br) —p1 ) ¥, b;
=2

> pi(l—n) = p Z (¢:ai>2 Z <¢:bi)2

i=2 i=2
2 pr(L=n) = pin = p1(1 —2n),
where we have used the Cauchy-Schwarz inequality in the second inequality. ]

B Proof of Theorem 2

From now on, we distinguish the iterates of our stochastic algorithm (Algorithm 2) from the iterates
of the exact power iterations (Algorithm 1) and denote the latter with asterisks, i.e., u} and v} for
the unnormalized iterates and uj and v} for the normalized iterates. We denote the exact optimum
of f;(u) and g;(v) by u; and v; respectively.

The following lemma bounds the distance between the iterates of inexact and exact power iterations.
Lemma 6. Assume that Algorithm 1 and Algorithm 2 start with the same initialization, i.e., iy = U
and vy = v{j. Then, for ¢ > 1, the unnormalized iterates of Algorithm 2 satisfy

)Sgta

1

1 ~ 1 1
max (HE%Iut - Xz2u;

1
3 3 ok
’Eyyvt = Xgyvy

)

where

o . c (QPl/Pr)t -1
S T T

Furthermore, for ¢ > 1, the normalized iterates of Algorithm 2 satisfy
25,

Pr

1 1
max (Hzgrut _sul

1 1
lzyzyvt - zyzyv;H) <8 =

)

Proof. We focus on the {1, };>0 and {u; }+>0 sequences below; the proof for {v;};>0 and {v;}:>0
is completely analogous.

We prove the bound for unnormalized iterates by induction. First, the case for t = 1 holds trivially.
For ¢t > 2, we can bound the error of the unnormalized iterates using the exact solution to f;(u):
1

1 1
HEfmﬁt _ sz : (14)

1 1 1 1
< Hzg%xut - zg%xatH + szxat SRR

For the first term of (14), notice f;(u) is a quadratic function with minimum achieved at u; =
2;81 32y Ve—1. For the approximate solution 1, we have

. B 1 . _ . B 1 T 2
Jul@) = Fil@e) = 5(8 = 0) T (i — 1) = 5 [ Bt - Bhow| <e.

< V2e.

The second term of (14) is concerned with the error due to inexact target in the least squares problem
fi(u) as v¢_q is different from v;_,. We can bound it as

It then follows that H E:%zﬁt — Eéwﬁt

1 1
Hzémat _xzar

1 —1 i —1 *
= Hzf%mzzw Ewyvt—l - szzz;mc z]ﬂb‘yvt—l H
_1 _1 1
355 (i)

1 1
< S~ Shvina | = |

1 1
2V — zgyv;_lH . (5)

11



In view of the update rule of our algorithm and the triangle inequality, we have

1 1
2 2 *
Ygyvio1 — Eyyvhl”
1 1 1 1,
2 <7 2 <7 2 <7 7
< Enyt—l Enyt—l Enyt—l Eyyvtfl
= 1 - 1 + 1 - 1
2 <7 2 <r¥ 2 ¥ 2 <k
1 1 1 1 1 1
— 2 <7 2 < 2 ok
= |2y Vi-1 T — T szyvt—l - EnytAH
2 <7 2 <r¥ *
1 1 1 1 1,
— 2 37 2 37 2 <%
o 3 ot HEnyt 1” B HEnyt_l‘H + o szyv{/—l B znyt_lu
Shvio =i
2 1 1 251
2 5 * -
< 1 ’Eyyvt—l - z]nyt 1H < T . (16)
~ % <r ¥
SgyVia szyvt—IH

1
We now bound HE{;’y{I;Zl H from below. Since ¢ > 2, we have
1 1
EivVi= 251/2;;2;,112‘_2 = (E 2ET b ) (Exzzut 2) =T (Ea%wu:_g) .

1
Now, ¥2,u;_, corresponds to ¢,_, in Algorithm 1, which has unit length and lies in the span of
{ai,...,a,}, so we have

szyv; 1H = ||TT¢t—2H 2 Pr-

Combining (14), (15) and (16) gives

i 3 2p1 2p1/p) ' =1
E:%zu x:vu S . \/Z—
H Lo e pr (2p1/pr) — 1
2P1/p7‘)t -1 -
:¢£< _ 3.
Cpr/p)—1
The bound for normalized iterates follows from (16). ]

Proof of Theorem 2. We prove the theorem by relating the iterates of inexact power iterations to
those of exact power iterations.

Assume the same initialization as in Lemma 6. First observe that
2
(utTEmu*)2 = ((u;f)—r Yut + (u — uf)T Emu*)
> ((UI)T Eaﬁxu ) +2 (( Y ) ( u; — ut m:u*)
T 2
> ((u:) Ezmu*) -2 ‘( i ut - llt ) (E:%wu )‘

> ()" Se)” -

1
mzut Eagxu: (17)

where we have used the fact that H Emut H = H Emut

I$ u
inequality in the last two steps.

2

Applying Theorem 1 with 7' > (% log (%)], we have that ((u})T Emu*> >1-n/2.
1 2

On the other hand, in view of Lemma 6, we have for the specified € value in Algorithm 2 that

H Y2 ur — EEIU*TH < St = n/4. Plugging these two bounds into (17) gives the desired result.

The proof for v is completely analogous. O

12



C SVRG for minimizing f(u)

We provide the pseudo-code of SVRG for solving the least squares problem (6) below.

SVRG for ming f(u) = L 32V, (% uTx - vy + % ||uH2).

Input: Stepsize €.
Initialize u (g € R,
forj=1,2,...,M do
W < U(j—1)
Evaluate the batch gradient V f(wo) = X(XTwo — Y Tv)/N + v, wy
fort=1,2,...,mdo
Randomly pick ¢; from {1,..., N}
wi < wi_1 — & (x5, %] +7.1) (Wit — wo) + V f(wo))
end for
u(;y < w; for randomly chosen t € {1,...,m}.
end for
Output: u(,y) is the approximate solution.

D Initial suboptimality of warm-starts in Algorithm 2

At time step ¢, we initialize the least squares problem f;(u) with the unnormalized iterate G;_1
from the previous time step. We now bound the suboptimality of this initialization. Observe that the

minimum of f;(u) is achieved by u; = E;;Ezyvt,l, and that
- _ 1, . T - _ 1wt -~ L
ft(llt—l) - ft(ut) = 5(“:&—1 - llt) Eacx(ut—l - llt) = 5 szzut—l — iUy

Applying the triangle inequality, we have for ¢t = 1 that

2

1 1 1 kS 1
1 1
14 HngyvoH <147 HzgyvoH =1+p <2

1 1
where we have used facts that H Yy H = HEjyvo H = 1 due to the initial normalizations.
And we have for t > 2 that
1 1 1 1 1 1
[Stea - S| < Sk - Shao | + [ Shao - st
1 1
< V2e+ szgngmlzwyvt72 - Eg%wEI_;EIth,1 H
1 1
= V2 + HT (Bivvie = Sivir) H
1 1
< Ve + Tl |[Siyviz — Siyvee |
<V2e+2p1 <V2+2

1 1
where we have used the fact that H 2y Vi—2 H = H 2y Vi—1 H = 1 in the last inequality.

Therefore, for all ¢ > 1, the ration between initial suboptimality and required accuracy is

(1) = fi(y) N g

€ €

13



E The shift-and-invert preconditioning (SI) algorithm for CCA

Our shift-and-invert preconditioning (SI) meta-algorithm is detailed in Algorithm 3.

Algorithm 3 The shift-and-invert preconditioning meta-algorithm for CCA.

Input: Data matrices X, Y, regularization parameters (5,7, ), an estimate Afor A = p1 — P2
Initialize @1y € R%, v, € R%

g (—flo/\/ﬁgzwzﬁo, Vo <—\70/\/\70TEW\70
// Phase I: shift-and-invert preconditioning for eigenvectors of M
s+ 0, >\(O) +—14+A
repeat
s+ s+1
fort =(s—1)m;+1,...,smy do
Optimize the least squares problem

)‘(s—l)zzm *Emy :| |: u

. B N
min fy(u,v) = 5 [u'v'] [ 2, A0Sy ||V

T T
e :| —u Erm:ut—l -V 2yyvt—l

and output an approximate solution (@, v;) satisfying h; (0, v;) < miny y he(u, v) + €.

Normalization: [ 3: ] «— \f[ } /\/ut 2oUt + V{ By Vy

end for
Optimize the least squares problem
1 A -1 by -3 M o ou.
min ls w) = *WT (s—1) FHzx ry W — WT zx Usmy
w ) 2 [ _E;ry Als—1) gy Xy Vsm,

and output an approximate solution wy satisfying ls(wy) < miny ls(w) + €.

Ay g - C A Ay — B
%[uzmvim]{ oo }ws—wem
Eyy
until A(S) < A
Af) < A
fort =smy+1,smy +2,...,sm1 +msy do

Optimize the least squares problem

: B N A(f)Em —3ay u T T
min hy(u,v) = 5 [u v ] [ 5T A5y v |—u YpaWo1 —V By viq

u,v Ty
and output an approximate solution (1, V) satisfying h; (0, v;) < miny v Ay (u, v) + €.

Normalization: [ 3t } [ u ] / \/ u; X0y +Vt Yy Vi
t

end for
// Phase II: Final normalization

T < smq + ma, ﬁ(—uT/q/u—TrEmuT, V< vp/ v—TrEyva
Output: (1, V) is the approximate solution to CCA.

F Proof of Theorem 4

The proof of Theorem 4 closely follows that of [16, Theorem 4.2]. And we will need a few lemmas
on the convergence of inexact power iterations.

14



F.1 Auxiliary lemmas

Define the condition number of M, as

oy e o1(My) _ 35 _ Atm
' O'd(MA) 1 )\7/)1’

A+p1
and the inverse relative spectral gap of M, as
1
5 = o1(My) _ —p1 _ A=
o1(My) —02(My) 52— 52, pi—p

The first lemma states the convergence of exact power iterations, paralleling [16, Theorem A.1].
Lemma 7 (Convergence of exact power iterations). Fix a > 0. For the exact power iterations on
M., where

ﬁ;k - )\2193 _Emy ! 27-1 u’{_l
vi -3 AXyy Xy Vi |’

Yy
[“t* ] « 2{ a }/\/(ﬁ*)TE @+ (¥, 9, for t=1,...,m
Vz‘ {}z‘ t xTxr Ut t yy vt A ?
and i/ == 1 ((uf) " Zppu* + (VS)TEyyv*)2 > 0, we have

e (crude regime)

1 1
()=, (vi) T4, M

it

Yiauy 1 > (1—a)-01(My)

1
a 1
2 iy

fort > [Llog (;ﬁa

e (accurate regime)

() TE e + (v)) TZyv) > 10

e

for ¢t > (% log (;L}oz)—l

The second lemma bounds the distances between the iterates of inexact and exact power itera-
tions, paralleling [16, Lemma 4.1]. Recall that the (G, v¢) in Algorithm 3 satisfies h; (0, v;) <
ming v h¢(u, v) + € Let (7, v;) be the exact minimum of /. Then we have

he(0g, Vi) — he(ag, ve)

[(ﬁt - flt)T (Ve — ‘_’t)T]

22, 2, 1 @ -y
~3,, ATy, Vi — Vi

N~ N~ N

N _ - _ A - W —1a
T T Tz Ty t t
[(Ut —o) (=) ] { _E:Iy AXyy } { Vi = Vi }

1

o [ 1 AL T
[(Ut —) B3 (Ve 7vt)T2y2y} { -TT A }

25y (Vi — Vi)

Y2 (a; — ) ]

1r1,. B i B 1 _
:5 [(ut — ut)TE,%x (Vt — Vt)TEyQyi| M)\l

1
2. (, — 1 -
go(l —0) | ¢ (18)
By (Ve — Vi)

Lemma 8 (Power iterations with inexact matrix-vector multiplications). Consider the inexact power

iterations on M, where

(Qg, V) satisfies (18),

[“t}eﬁ[g:]/\/ajzmﬁﬁvjzyycfh for t=1,...,m.

Vi

15



Compare these iterates with those of the exact power iterations described in Lemma 7 using the
same initialization iy = g, vo = V{. Then, for ¢ > 0, the unnormalized iterates satisfy

1 E—
1| = ] S L[ mew ] g
V2 | Bz | V2| 22
where
. - (2ky)' -1
Ry = M,) € ———,
vi= VorMy)- € 5
while the normalized iterates satisfy
1 1 -
1 E%mut 1 Eaztzuz <R, := 2Rt
J— 1 —— 1 ~ AR e — .
V2| Bzve | V2| Sgve oa(My)

The third lemma states the convergence of inexact power iterations, paralleling [16, Theorem 4.1].
Lemma 9 (Convergence of inexact power iterations). Fix v > 0. Consider the inexact power
iterations described in Lemma 8.

e (crude regime) Let t; = [2 log(;}aﬁ. Fix T > tj, and set &(T) =

2 2
a”0q4(My) 2rx—1
Giry ((2m)T—1 . Then we have

1 1 1 2:%;1:
5 [ugzgm, V;E;y] M, | 2T ] > (1= a)-o1(M,).
Eﬁva
e (accurate regime) Let to = [%1@; (u?a)]' Fix T > ty, and set &(T)

2
a?.04(My) 2k)—1
Girex Gr )T 1) Then we have

1
1 (u—'T—Emu* + V;Zyyv*)2 >1—a.
For brevity, let us define the following short-hands:
1 [ =k, L[ st 1 [ =k,
re = —= 1 ) e = —= 1 ) re = —= 1 )
V2 | 229, V2 | 22, V2 | 22,9,
L1 [ s .1 [ s L1 [ s
ry=—r2 L ) ry == 1 ) r=-—-—r- 1 .
V2| 22,97 V2 | s2v; V2| 32t
All these vectors are in R? and have length 1.
Observe that the matrix-vector multiplication (8) is equivalent to
1 1 — 1 1
E?Tﬁt 237- Azzm *Ery ! E%T 2£mut_1
o | O RS 1N > 3 1 )
XgyVi gy Yy vy gy XgyVia
and
1 —1 1
2121 [ /\Eww _Ewy ] 257;
1 T
gy ey Ay gy
1 _1 _1 -1
2112 |: /\ELJE _Ely :| 21‘:32
= _1 T 1
Zyyé Yo, AXyy Eyy%
—1
E;f |: Azww _Ew :| 2;1%
= _1 T st
Eyyé 3o, ANy Eyyé
_1 _1 -1
B AL —Xpi Bgy By
- _1 _1
—3yF 2], el AL

16



Then the updates for exact power iterations can be written as
rpeMorg oy, rp e /ElL 0 =1
and the updates for inexact power iterations can be written as

f'tzM)\I't,h I't<—f't/||f‘t||, tzl,

Note we have according to (18) that

P 1 - 1 -
€>(f: — rt)TMAI(rt —Ty) > 0qg(My Yl - rtH m Ty — rt||2
or equivalently
It; — ]| < /o1(My) - e (19)
Proof of Lemma 7. Recall that the eigenvectors of M are:
1 1 1 1
AL = > Ao = > > g1 = > A= ,
YT X S N D WP D S
with corresponding eigenvectors
oo Lfa] 1 fa SN U B I U
1 — —ﬁ b1 ) 2—\@ b2 )y dfl—ﬁ _b2 y ©d — 5 _b1 .
By the update rule of exact power iterations, it holds that for = 1,. .., d that
2 2
e OTMIR)' (@IMAr)® | (ielw) (eln)
t) = - T )T M2 ot 7= N2 5
Mgl (0TMES S A ()T s, (M) (e )

B A1 14

S-S

i

T.%)2 )
7( 1) - exp (—2)\1 — X t) .
i

p- N

IN

Given ¢ € (0, 1), define S(0) = {i : \; > (1 — 0) A1 }. For 41,02 € (0, 1), define

1
T = 1 .
(1.00) = Ty 108 (= )1
For all i ¢ S(d1), when t > T(61,02), it holds that (e r})? < da(e/ r)2, and thus in particular
Yies(as2) (€ rt) > 1—10,.

Part one (crude regime) of the lemma now follows by noticing that, by setting 6; = d2 = & we have
that for ¢ > T (%, %), it holds that

() TM,yr} = Z/\ ert > Z (1—5))\1(e rt) 2(1_%>2/\12(1—a))\1.

i1€S(a/2)

For the second part (accurate regime) of the lemma, note that S (%) = {1}. Thus for all
t>T (Al A2 ) it holds that (e] r})? > 1 — a.
O

17



Proof of Lemma 8. We prove the bound for unnormalized iterates by induction. The case for t = 1
holds trivially. For ¢ > 2, we can bound the error of the unnormalized iterates using the exact

solution to Ay:
[T — T || < ([T — 14| + [[7e — 5] - (20)
The second term of (20) is concerned with the error due to inexact target in the least squares problem

ue_ - u; .
hi(u,v) as [ Vt ! ] is different from { Vt*_l } . We can bound this term as
t—1

t—1
7 = #711 = Moy = Moy | < Mo - [fre = vy |
=0o1(My) - [[re—1 — 74| - (1)

In view of the update rule of our algorithm and the triangle inequality, we have

*
Hrtfl —rHH

<l el

B o= o e s

ey Ei = Bl e s =52

g el < =
Fort > 2, we have F;_; = M,\rj_, and ||rj || = 1, and thus

||I~‘;k71H 2 O’d(M)\).
Combining (20), (21) and (22) gives

|F: — 7| < /o1 (My) - €4 263Ry_1 = Ry.

The bound for normalized iterates follows from (22). ]

Proof of Lemma 9. For the first item (crude regime), observe that
r; Myr, = (r}) "M,r} + ((rf)TMAr: — r:MArt) , (23)
and that

1 1 T 1 1
|(r7) "M (r}) — v/ Mary | = ‘(Mir}" + Mirt) (Mjr;k - Mfrt)

1 1
< HMf\rZ‘ + Mjr,

1 1
M - M

< [

1
v} + | HM;
<M (g (] =+ [feel]) ey — re]
=201 (My) - [lr} — 1] .

Our choices of T and é make sure that (rj.) "M,r3. > (1 — ) - 01(M,) by Lemma 7 and that
% —rp|| < Rr = a/4 by Lemma 8. Continuing from (23), we have

r;MArT > (1 — %) co1(M,y) — & o1(My) = (1 —a) - o1 (My).

[rf — x|

2
For the second item (accurate regime), observe that
* * * * * 2 * * 2 *
(e )% = () e+ (re =) '0%) " > () ") = 2, —xf- (24)

Our choices of T" and € make sure that ((I“*T)Tr*)2 > 1— § by Lemma 7 and that ||}, — rp|| <

Rp = «/4 by Lemma 8. Continuing from (24), we have
T2 2%,
(P 21-5-J=1-a

18



F.2 Iteration complexity of Algorithm 3

Observe that, the for loops within the repeat-until loop, as well as the final for loop in Algorithm 3
are running inexact power iterations on M , and M, for m; and ms inexact matrix-vector mul-
tiplication respectively. And the convergence of inexact power iterations is provided by Lemma 8.

For each iteration of the repeat-until loop, we work in the crude regime and only require rg,,, to
give a constant multiple estimate of M . The lemma below shows an important property of A
which is used to locate )\( > and the number of iterations needed to reach )\( -

Lemma 10 (Iteration complexity of the repeat-until loop in Algorithm 3). Suppose that A e
~\mi—1
[c1A, c2A] where o < 1. Set m; = [8log (%)] and € < g (1%) in Algorithm 3.
Then for all s > 1 it holds that
1
3 (A6-1) = p1) S As S A1) = 1,

upon exiting this loop, the A(y) satisfies

| >
w
>

prt+—<Ap<p1+—7, (25)

and the number of iterations run by the repeat-until loop is log (i)

Proof. Let @ be an upper bound of all o (M, ) used in the repeat-until loop, i.e.,
G >01(My,), s=1,2,....
And suppose for now that throughout the loop, € satisfies

Fe< L\ Meon) (Mg“‘”) . (26)

Set o = i in Lemma 8 (crude regime), and with our choice of m; and

2
M 2k, — 1
¢ < ZM) o , 27)
102455, \ (26a,,)  —1
we have
3
r;rmlMA(sfl)rSml > Zo'l(M)\(s—l))' (28)
In view of the definition of the vector w in Algorithm 3, and following the same argument in (18),
we have
Zs .
\ﬁ - MA(S—I)I‘S"nl < \/ 91 (MA(sq)) "€
b
where z, = T 1| ws.
iy
Then for every iteration of the repeat-until loop, it holds that

1 Eww
5 [u;rmlv;rml} |: Eyy :| W

T Zs \ _ T T Zs
_rsm1 (\/i) - rsmlMA(sfl)rSml +rsm1 (\/5 - M)\(sl)rsml)

T - T / -
€ [rsmlMA(sfl)rSml - Jl(M)\(sfn) 6 rsmlM)\(sfl)r&?ml +4/01 (MA(S—U) "€

T — T —
S [r MA(kDrSml — \Vaé, rsmlM,\(sfl)r'sml + \/cre} ,

smq

19



where we have used the Cauchy-Schwarz inequality in the second step.

In view of (26) and (28), it follows that

1
5 [uZmlvsTmJ |: Ew'c » ] Wy — VoE
vy

T —

€ [I‘smlMA<S,1>I‘sm1 — 2V0e, I';rmlM>\(371)rsm1
1

€ §UI(M>\(571))7 UI(M)\(Sfl)) .

By the definition of Ay in Algorithm 3 and the fact that o1 (M /\(5_1)) = , we have

I S
A(s—1)—P1

1 1 1
As =5~ € { (As—1) = P1) s As—1) — ,01] . (29
2 1 [T T D27 — 2
2 [usmlvsmq] Sy Ws — Vo€
And as a result,
A 1 As—1) + p1
Moy = A~ 5 2 A — 5 ey =) = ——5——

and thus by induction (note (o) > p1) we have A(5) > p1 throughout the repeat-until loop.
From (29) we also obtain

S

As) = P1 = As—1) — P1 — 5

1 3
< As—1) —P1— 1 (As=1) —p1) = 1 (As=1) = p1) -

To sum up, A,y approaches p; from above and the gap between A, and p; reduces at the geometric
rate of §. Thus after at most t3 = [log; , (ﬁ)] ~0 <log (%)) iterations, we reach a ()

such that A,y — p1 < 4. And in view of (29), the repeat-until loop exits in the next iteration.

Hence, the overall number of iterations is at most t3 + 1 = O (%)

We now analyze A(y) and derive the interval it lies in. Note that Ay < A and A f-1 > A by the
exiting condition. In view of (29), we have

A A 3A
)‘(f)_pl:)‘(ffl)_Pl—TfSQAf—Tf:7f§

3A
2 2

On the other hand,

A 1 1
Ap =1 =Ag-n == S 2 M == 5 (g =) = 5 gy — ). G0)

If f = 1, then by our choice of () we have that A(y) — p1 > A. Otherwise, by unfolding (30) one

more time, we have that

A
4

>

pb“>x

1
A =pz g Ao —p) 2

Thus in both case, we have that )\(f) —p1 > % holds.

It remains to give an explicit bound on € based on the two requirements (26) and (27). Since the )\(s)

values are monotonically non-increasing and lower-bounded by p; + %, we have

1 4
m;%mx Ul(MA(S)) = Jl(MA(”) = m < Z =0,
and
min 0'1(M)\ ):UI(MA ): ! = Nl
s © @O Xoy—=p1 1+A—p
>;>1+(1—62)A>1+1_C2AZ:0’
T 14+ eA-A " - Co =

20



where the first inequality holds since by definition of A it follows that p; = ps + A > A.

Therefore, for the assumption (26) to hold, we just need

(0)2_(1+1;;25)22 LA

= = = > €. (31
= 1 1
8V 64- % 64- 3 256
We now derive a lower bound of the right hand side of (27). Notice
As) + 2 9
fagy = oL TP 495 < 1425 < (32)
As) = P1 As) — 1 A
On the other hand,
1 1 1
oq(M > o4(M = = — > —.
M) 2 0d(Mi)) Aoy+tp 14+A+p 3

As a result, we have

2 9 2 17 2
Ud(M)\(s)) < 2/@\(5) —1 ) - 1 QZ -1 - A
1024k, 2y, )" =1 T 3084-2 ( g)ml B = s (LS)”“
o \(282,) x\ (22 1) 30842 (%
1 A my1—1
YA BT : 33
= 3084 (18) (33)
Our final bound on € chooses the smaller of (31) and (33). O

For the final for loop of Algorithm 3, we work in the accurate regime of power iterations.
Lemma 11 (Iteration complexity of the final for loop in Algorithm 3). Suppose that Ae [c1A, co A

mo—1
where ¢y < 1. Set mg = [g log (}j}%)-\ and € < f% (%) ’ in Algorithm 3. Then the (ur, vr)

output by Phase I satisfies

1 ) \ n?
Z(u;Emu +vyE,,v)E>1 - o1 (34)
Proof. Notice when A = p1 + ¢(p1 — p2), we have
1
o1(M - A— +c(p1 — -
5(M,) = o 1)(_ A)(M = TR _Pz _n (Pl_ p2) — p2 et
o1 (VI 02 VL) Sp1  A—p2 P1 — P2 P1 — P2
In view of (25), Ay — p1 < 3A < 32 A < 3A, and thus 6(My ) < 3.
Seta = 2721 in Lemma 8 (accurate regime), and with our choice of my and
2
4
< n 'Zd(M/\(f)) < 2"@\mm_? 1 ) , 35)
647 - Ky (262,) " =1

we are guaranteed to obtained the desired alignment.

We now give a lower bound of the right hand side of (35). First,

1 1
oq(M = >
(M) Ao~ prt3A+p

Recall that we have proved in (32) that k), < % Following a derivation similar to that of (33),
we have

4 2 ~ mo—1
n- O—d(M)\(f)) 2[€>‘(.f) -1 > 7774 é (36)
647 - kx5 (2’“@)) f-1) T AAIs

and this explains the € we set in the lemma. O

1
> —.
!

21



Proof of Theorem 4. As shown in Lemma 11, the repeat-until loop runs O (log (%)) ~

O (log (%)) iterations, and inside each iteration, we run m; approximate matrix-vector multipli-
cations. On the other hand, the final for loop runs ms approximate matrix-vector multiplications.
By the definitions of m; and my, the total number of invocations of approximate matrix-vector
multiplications/least squares problems is

my - log <i> +mg ~ O <log <i) log (i) +log (;72» ~ O(1).

G Proof of Theorem 5

Proof. Notice that the eigenvectors of M form an orthonormal bases of R% ™% Thus when (34)

3 = 3
holds, i.e., the alignment between szuT and Eﬁwu is large, the alignments be-
XyVr X, v
1
tween EﬁIuT and other eigenvectors have to be small. In particular, the alignment bewteen
Siyvr
% 17 2 *
Ezf UT | and the tailing eigenvector Emju has to be small:
3iyvr =5, v*
7>
(up 0" — v X, vi)? < G (37)
From (37) and (34), we have respectively
n * * n

|u1T—§]mu’k | + IV—TFEny*

2nfi-f22(0-)

where we have used the fact that /1 — 2z > 1 — /x for 2 € [0, 1] in the second inequality.

Averaging the above two inequalities gives

Ui
47

|v;2yyv*} >1- iy

|u;2mu*| >1— 1

Finally,
(u}Emu*)Q (V;Eyy"*)2

T T
uszxllT VTEnyT

M. 1 1 >
> (1— - +
( 4) (u}—EmuT v;fzyva

n\? 4
(-1
4 u}—EmuT + v; YyyVr

"
>2(1—f):2—
> 5 "

where we have used the fact that %—i—i > ny in the first inequality, and (10) in the second inequality.

Then the theorem follows from the fact that (4" £,,u*)? and (v X,,v*)? canbe at most 1. [

(ﬁTEwa*)z + (‘A"szyV*)Q =

H Condition number of /; for SVRG

Lemma 12. Throughout Algorithm 3, the condition number of h; for SVRG is at most %Cf-@, where

2 2
mavs mae ([l Ly )

min (Umin(zxx)7 Urnin(zyy)) '

22



Proof. The gradient Lipschitz constant of h¢(u, v) is bounded by the largest eigenvalue (in absolute
value) of its Hessian®

QQ _ [ )\xixa—_ —xiy_;l_'— }
—yix;  Ayiy; |’

and the largest eigenvalue is defined as

i ﬁzz\[gl £]1Q) [ g H st gl + leyl? =
g. R g Ry 8y
We have
B=|\g,x:i)” + Ag, yi)* — 2(g, x:)(g, ¥i)|
< AMgrxi)? + Mg, vi) +2 g xi| g, vil
< Mg, xi)® + Mg, yi)* + (8. %)% + (g, ¥i)
=(A+1) ((g8rxi)*+ (8, ¥:))
< O+ 1) (el il + g Ivil1*))
2
< O Dymax (il vl

where we have used the Cauchy-Schwarz inequality and the constraint in the third and the last
inequality respectively.

)\Jrl

It only remains to bound . Note that we have shown in Lemma 10 that A > p; + 2 throughout

Algorithm 3, and thus

A1 1+p 2 4
14+ —E <l <142=<
A=p A=p A=p A~

9 < 9/61.
- A

l> \

I More details of the experiments

The statistics of these datasets are summaized in Table 2. These datasets have also been used by [3, 4]
for demonstrating their stochastic CCA algorithms.

Table 2: Brief summary of datasets.

Datasets Description dy dy N
Mediamill Image and its labels 100 | 120 | 30,000
JW11 Acoustic and articulation measurements | 273 | 112 | 30,000
MNIST Left and right halves of images 392 | 392 | 60,000

We now provide additional details for the experiments. For s-AppGrad, both gradient and normal-
ization steps are estimated with mini-batchs of 100 samples (the authors of [3] suggest that the
mini-batch size shall be at least the same magnitude as the dimensionality of the CCA projection).
For SI-VR and SI-AVR, within the repeat-until loop, we apply SVRG with M = 2 epochs to ap-
proximately find the top eigenvector wg, and SVRG with M = 2 epochs to approximately calculate
its top eigenvalue of M (o) @s WSTM Aoy Ws- We exit the repeat-until loop when A < 0.06. After-
wards, for the fixed A ), we apply SVRG to solve every least squares problems with M = 4 epochs.
Each epoch of SVRG includes a batch gradient evaluation and m = N stochastic gradient steps.
We set the step size according to the smoothness for each least squares solver, i.e., m for

GD/AGD in AppGrad/s-AppGrad/CCALin, and m for SVRG/ASVRG in our algorithms.

$We omit the regularization terms, which are typically very small, to have concise expressions.

23



J Other related work

Recent years have witnessed continuous efforts to scale up fundamental methods such as principal
component analysis (PCA) and partial least squares with stochastic/online updates [22, 23, 24, 25,
5, 16, 17]. But as pointed out by [23], the CCA objective is more challenging due to the constraints.

[26] proposed an adaptive CCA algorithm with efficient online updates based on matrix manifolds
defined by the constraints. However, the goal of their algorithm is anomaly detection for streaming
data with a varying distribution, rather than to optimize the CCA objective on a given dataset. Similar
to our algorithms, the stochastic CCA algorithms of [3, 4] are motivated by the ALS formulation.
[5] proposed a stochastic algorithm based on the Lagrangian formulation of the objective (1). None
of these online/stochastic algorithms have rigorous global convergence guarantee.

24



