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1 Proofs

Proof of Lemma 1: Using the definition of Dy;,,,, we can write:
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where in the inequality follows from concavity of v, and the last line results from the sum telescoping.
Similarly, we can bound Dyeq:
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Figure 1: An example of y(u) (solid blue) and 7(u) (dashed red).

When ) is differentiable with Lipschitz gradient, we can use the following inequality that is equivalent
to Lipschitz continuity of the gradient:

B(') > Plu) + (V) o — ) — — Ju— | wu €K,
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to get
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Proof of Lemma 2: Let (y,3) be a feasible solution for problem (8). Note that y > 0 since
dom ¥* C R, by the fact that ¢ is non-decreasing. Let §(u) = infs<, y(s). Note that § is

continuous. Define
o) — Joloy(s) ds — ™ (y(u)) 5(u) = Jolo9(s) ds — ¢*(g(u))

with the definition modified with the right limit at w = 0. For any w such that (u) = y(u), we have:

_ oy ds = (y(w) [l 9(s) ds — v (y(w))
P(u) - P(u)

Now, we consider the set {u | §(u) # y(u)}. By the definition of 7, we have §(0) = y(0). Since
both functions are continuous, the set {u | (u) # y(u)} is an open subset of R and hence can be
written as a countable union of disjoint open intervals. Specifically, we can define the end points of
the intervals as:

B(u) = B(u).

apg = b() = O,
a; = inf{u>b;_1 |y(u) >gy(u)}, Vie{l,2,...}
by =inf{u > a; | y(u) =y(uw)}, Vie{l,2,...}.
then {u | (u) # y(u)} = U,eq1 0,1 (@i, bi).(See Figure(l)
For any i € {1,2,...}, we show that 3(u) > B(u) on (a;, b;). If a; = oo, then b; = 00, so we

assume that a; < oco. By the definition of a; and b;, §(u) is constant on (a;, b;). Also, we have
y(a;) = g(a;). Similarly, we have y(b;) = 5(b;) whenever b; < cc.



Since g(u) < y(u) for all u and y(a;) = §(a;), we have

Blai) = Blai). 3)
If b; < oo, similarly by the fact that y(b;) = y(a;) = 3(b;), we have
Bbi) = B(b). @)

Now we consider the case where b, = oco. In this case we have y(u) = y(a;) on (a;, c0). We
consider two cases based on the asymptotic behavior of . If lim,,_,~, ¥ (u) = 400 (¢ is unbounded),
then we have
u U —
s) ds a;) ds _
lim sup B(u) = lim sup fs:()# > lim sup ‘[SZOL = lim S(u). (5)

Here we used the fact that —¢* (y(u)) is bounded. This follows from the fact ¢)* is monotone thus:
" (y(w) < —¢*(g(ai)),

and —*(g(a;)) < oo because if —* (g(a;)) = oo, then B(a;) > B(a;) = oo which contradicts the
feasibility of (y, 8).

Now consider the case when lim, ., ¥(u) = M for some positive constant M. In this case,
—* < M. We claim that y(a;) = 0 and liminf; . y(u) = 0. Suppose liminf, . y(u) > 0,
then limsup,,_, ., B(u) = oo since the numerator in the definition of 3 tends to infinity while
the denominator is bounded. But this contradicts feasibility of (y, 3). On the other hand, by the
definition of a; and b; we should have y(a;) = g(a;) < liminf, . y(u). Combining this with
the fact that §(a;) € dom ¥* C R4, we conclude that y(a;) = 0. Using that y(a;) = 0 and
liminf, . y(u) = 0, we get:

Jo—oy(s) ds — ¥ (y(w))

lim sup B(u) = lim sup

U—00 U—> 00 w(u)
Sy = ULELNC
Jloals) ds =t )
> 0 M = UILII;O B(u), ©

where in the last inequality we used the fact that §(u) = 0 for u > a;.

Let 1)’ be the right derivative of . Since 1) is concave, ¢’ is non-increasing. Therefore, the interval
(a;, b;) can be written as (a;, u'] U [/, b;) such that ¢’ (u) > g(a;) on (a;,w'] and ¢’ (u) < g(a;) on
[w',b;). Since ¢/ (u) > g(a;) on (a;, u'] we have:

[ oteras = [ atan as

< [ 0(s) ds = wla) - via)
for all u € (a;, v']. This yields:
[ g(s) ds — v (g(an)
o= o)
Jolou(s) ds+ [, g(s) ds — " (g(ai))
S 9 e o ) -
for all u € (a;, u']. Here we used the fact that if ¢; > ¢y > 0 and dg > d; > 0, then
Cc1 c1+dy
ca  ca+ds

Similarly, we have 3(b;) > B(u) for any u € [u/,b;). Combining this with (3),[),(), and (G), we
get:

sup  B(u) = max(B(ai), (b))
< max(B(a:), B(b:)) < sup  B(w).

a; <u<b;



We conclude that 3(u) < B(u) for all £ > 0 hence (7, 3) is a feasible solution for the problem.

Proof of Theorem 2: Let (y, §) be a feasible solution for problem (8). By Lemma we can assume
that y is non-increasing. First, note that y > 0 since dom * = [0, c0). Define §(u) = y(u) for
u < v and g(u) = 0 for u > u'. We show that (g, §) is also a feasible solution for (§) modulo the
continuity condition. Define

[ y(s) ds — ™ (y(u))

Jomo 9(s) ds — ¢* ((w))
P(u) ’ '

o= 90

Blu) =

By the definition of ¥, for all u, we have:

| sz [ ats) s ™
0 0

and B(u) = B(u) for u € [0, u']. Since y(u) is non-increasing and y(u)
We claim that lim,,_, y(u) = 0. To see this note that if lim,, o y(u) >

> 0, limy 00 y(u) exists.
0, then
u
lim y(s) ds = oo,
u—oo [._o

which contradicts the fact that 5(u) < 3 for all u. For all u > v/, now we have:

u>u’
L Sy 5s) ds — v (0)
N b(u')
where the first equality follows from the fact that lim,,_, y(u) = 0, and in the last inequality, we

used (7). Since y(u) = 0 for u > u’, B(u) is constant on [u’ co). Therefore, sup,,s.,, B(u) = S(u').
Combining this with the previous inequality we get: B

sup B(u) > sup B(u).

u>u' u>u’

= B(u,)7

Therefore, we conclude that 3(u) < 3 for all u. Thus (7, 3) is also a feasible solution for (§) modulo
the continuity condition. Note that (u) may not be continuous at u’. However, we can find a
sequence of continuous functions z(/) that converge pointwise to y and z(i)(u) = 0 for all ¢ and
u > u'. To do so we consider a sequence of real number ¢; — 0. We define (¥ (u) = g(u) for
u €0, u —e)Uu', 00). On [u — €, u'] we define 2(!) (u) to be a linear function that take values
y(u’ — ¢€) and 0 on the endpoints. Define

L 20 (s) ds — (20 ()
Bro = sup o)

By upper semi-continuity of ¢*, 3, converges to [3.

Let 3* be the optimal solution for problem (§). By the definition, there exits a feasible sequence
(y\9), 319)) such that 5) converges to 5*. Let 5) (u) = ) (u) for t < ' and §U)(u) = 0 for
t > u'. Note that 5(7) (u) may not be continuous at «’. However, we can find a sequence of continuous
functions (219 B, ) as in above. Now j3,(;;) converges to 3*.
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2 Distance from [, norm ball

In this section we prove that the function:
G(u) = —di(u, Bp)
satisfies Assumption



For any u € R, there exists & € B), such that d; (u, B,) = ||u — @/|,. the subdifferential of distance
function ik

adl(uaBp) =0 ||'LL - ﬂ”l N NBp(ﬂ)a

where Np, (u) = {£ | ({,v —u) >0, Yv € B,} is the normal cone of B, at u. In fact d; (u, B,) =
lu — all; if and only if O [|[u — u|l, N Np,(u) # @. When u € intB,, 4 = v and dd; (u, B,) = {0}.
In order to find Od; (u, B,) when u ¢ intB,, we first find @ in this case. For any r > 0, define
uAr € RY tobe:

(uA7r); = min(u;,r)  Vi.

Note that [[u A 0], = 0 and [lu A (max; u;)|[, = |lull, > 1. Since [[u A 7|, is a continuous function
of 7, by the intermediate value theorem, there exists r, € (0, max; u;] such that [ju A7y, = 1.
Now @ = u A r. To see this note that:

1
9w —all, N Ng, (@) = { p_l(u/\ru)o(pl)} for 7, < maxuy; (8)

u

0||lu—all; " Np,(u) = { (uAT,)°P D 0< 2 < 1} for r, =maxu;;  (9)

—1
rh

where °?=1) denotes element-wise exponentiation. Now if ' < u, then r,, < r,, since ||u’ A THp >
[[u" A 7|, for all . Thus by (8) and (9), there exists y € dd (u, By) such that y > ddy (v, By).

"For convex function we use d to denote subdifferential.
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