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1 Proofs

Proof of Lemma 1: Using the definition of Dsim, we can write:

Dsim =

m∑
t=1

σt(A
T
t ỹt)− ψ∗(ỹm+1)

=

m∑
t=1

〈Atx̃t, ỹt〉 − ψ∗(ỹm+1)

≤
m∑
t=1

(ψ(

t∑
s=1

Asx̃s)− ψ(

t−1∑
s=1

Asx̃s))− ψ∗(ỹm+1)

= ψ(

m∑
s=1

Asx̃s)− ψ(0)− ψ∗(ỹm+1),

where in the inequality follows from concavity of ψ, and the last line results from the sum telescoping.
Similarly, we can bound Dseq:

Dseq =

m∑
t=1

σt(A
T
t ŷt)− ψ∗(ŷm+1) (1)

=

m∑
t=1

〈Atx̂t, ŷt〉 − ψ∗(ŷm+1)

=

m∑
t=1

〈Atx̂t, ŷt − ŷt+1〉+

m∑
t=1

〈Atx̂t, ŷt+1〉 − ψ∗(ŷm+1)

≤
m∑
t=1

〈Atx̂t, ŷt − ŷt+1〉+

m∑
t=1

(ψ(

t∑
s=1

Asx̂s)− ψ(

t−1∑
s=1

Asx̂s))− ψ∗(ŷm+1)

=

m∑
t=1

〈Atx̂t, ŷt − ŷt+1〉+ ψ(

m∑
s=1

Asx̂s)− ψ(0)− ψ∗(ŷm+1).
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Figure 1: An example of y(u) (solid blue) and ȳ(u) (dashed red).

When ψ is differentiable with Lipschitz gradient, we can use the following inequality that is equivalent
to Lipschitz continuity of the gradient:

ψ(u′) ≥ ψ(u) + 〈∇ψ(u), u′ − u〉 − 1

2µ
‖u− u′‖2 u, u′ ∈ K,

to get

Dseq =

m∑
t=1

σt(A
T
t ŷt)− ψ∗(ŷm+1) (2)

=

m∑
t=1

〈Atx̂t, ŷt〉 − ψ∗(ŷm+1)

≤
m∑
t=1

1

2µ
‖Atx̂t‖2 +

m∑
t=1

(ψ(

t∑
s=1

Asx̂s)− ψ(

t−1∑
s=1

Asx̂s))− ψ∗(ŷm+1)

=

m∑
t=1

1

2µ
‖Atx̂t‖2 + ψ(

m∑
s=1

Asx̂s)− ψ(0)− ψ∗(ŷm+1).

�

Proof of Lemma 2: Let (y, β) be a feasible solution for problem (8). Note that y ≥ 0 since
dom ψ∗ ⊂ R+ by the fact that ψ is non-decreasing. Let ȳ(u) = infs≤u y(s). Note that ȳ is
continuous. Define

β(u) =

∫ u

s=0
y(s) ds− ψ∗(y(u))

ψ(u)
, β̄(u) =

∫ u

s=0
ȳ(s) ds− ψ∗(ȳ(u))

ψ(u)
,

with the definition modified with the right limit at u = 0. For any u such that ȳ(u) = y(u), we have:

β(u) =

∫ u

s=0
y(s) ds− ψ∗(y(u))

ψ(u)
≥
∫ u

s=0
ȳ(s) ds− ψ∗(y(u))

ψ(u)
= β̄(u).

Now, we consider the set {u | ȳ(u) 6= y(u)}. By the definition of ȳ, we have ȳ(0) = y(0). Since
both functions are continuous, the set {u | ȳ(u) 6= y(u)} is an open subset of R and hence can be
written as a countable union of disjoint open intervals. Specifically, we can define the end points of
the intervals as:

a0 = b0 = 0,

ai = inf{u > bi−1 | y(u) > ȳ(u)}, ∀i ∈ {1, 2, . . .}
bi = inf{u > ai | y(u) = ȳ(u)}, ∀i ∈ {1, 2, . . .}.

then {u | ȳ(u) 6= y(u)} =
⋃

i∈{1,2,...}(ai, bi).(See Figure 1)

For any i ∈ {1, 2, . . .}, we show that β(u) ≥ β̄(u) on (ai, bi). If ai = ∞, then bi = ∞, so we
assume that ai < ∞. By the definition of ai and bi, ȳ(u) is constant on (ai, bi). Also, we have
y(ai) = ȳ(ai). Similarly, we have y(bi) = ȳ(bi) whenever bi <∞.
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Since ȳ(u) ≤ y(u) for all u and y(ai) = ȳ(ai), we have
β(ai) ≥ β̄(ai). (3)

If bi <∞, similarly by the fact that y(bi) = ȳ(ai) = ȳ(bi), we have
β(bi) ≥ β̄(bi). (4)

Now we consider the case where bi = ∞. In this case we have ȳ(u) = ȳ(ai) on (ai, ∞). We
consider two cases based on the asymptotic behavior of ψ. If limu→∞ ψ(u) = +∞ (ψ is unbounded),
then we have

lim sup
u→∞

β(u) = lim sup
u→∞

∫ u

s=0
y(s) ds

ψ(u)
≥ lim sup

u→∞

∫ u

s=0
ȳ(ai) ds

ψ(u)
= lim

u→∞
β̄(u). (5)

Here we used the fact that −ψ∗(y(u)) is bounded. This follows from the fact ψ∗ is monotone thus:
−ψ∗(y(u)) ≤ −ψ∗(ȳ(ai)),

and −ψ∗(ȳ(ai)) <∞ because if −ψ∗(ȳ(ai)) =∞, then β(ai) ≥ β̄(ai) =∞ which contradicts the
feasibility of (y, β).

Now consider the case when limu→∞ ψ(u) = M for some positive constant M . In this case,
−ψ∗ ≤ M . We claim that y(ai) = 0 and lim inft→∞ y(u) = 0. Suppose lim infu→∞ y(u) > 0,
then lim supu→∞ β(u) = ∞ since the numerator in the definition of β tends to infinity while
the denominator is bounded. But this contradicts feasibility of (y, β). On the other hand, by the
definition of ai and bi we should have y(ai) = ȳ(ai) ≤ lim infu→∞ y(u). Combining this with
the fact that ȳ(ai) ∈ dom ψ∗ ⊂ R+, we conclude that y(ai) = 0. Using that y(ai) = 0 and
lim infu→∞ y(u) = 0, we get:

lim sup
u→∞

β(u) = lim sup
u→∞

∫ u

s=0
y(s) ds− ψ∗(y(u))

ψ(u)

≥ lim
u→∞

∫ u

s=0
y(s) ds− ψ∗(0)

M

≥
∫ ai

s=0
ȳ(s) ds− ψ∗(0)

M
= lim

u→∞
β̄(u), (6)

where in the last inequality we used the fact that ȳ(u) = 0 for u ≥ ai.
Let ψ′ be the right derivative of ψ. Since ψ is concave, ψ′ is non-increasing. Therefore, the interval
(ai, bi) can be written as (ai, u

′] ∪ [u′, bi) such that ψ′(u) ≥ ȳ(ai) on (ai, u
′] and ψ′(u) ≤ ȳ(ai) on

[u′, bi). Since ψ′(u) ≥ ȳ(ai) on (ai, u
′] we have:∫ u

ai

ȳ(s) ds =

∫ u

ai

ȳ(ai) ds

≤
∫ u

ai

ψ′(s) ds = ψ(u)− ψ(ai),

for all u ∈ (ai, u
′]. This yields:

β̄(ai) =

∫ ai

s=0
ȳ(s) ds− ψ∗(ȳ(ai))

ψ(u)

≥
∫ ai

s=0
ȳ(s) ds+

∫ u

ai
ȳ(s) ds− ψ∗(ȳ(ai))

ψ(ai) + ψ(u)− ψ(ai)
= β̄(u).

for all u ∈ (ai, u
′]. Here we used the fact that if c1 ≥ c2 > 0 and d2 ≥ d1 ≥ 0, then

c1
c2
≥ c1 + d1
c2 + d2

.

Similarly, we have β̄(bi) ≥ β̄(u) for any u ∈ [u′, bi). Combining this with (3),(4),(5), and (6), we
get:

sup
ai≤u≤bi

β̄(u) = max(β̄(ai), β̄(bi))

≤ max(β(ai), β(bi)) ≤ sup
ai≤u≤bi

β(u).
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We conclude that β̄(u) ≤ β(u) for all t ≥ 0 hence (ȳ, β) is a feasible solution for the problem.

Proof of Theorem 2: Let (y, β) be a feasible solution for problem (8). By Lemma 2, we can assume
that y is non-increasing. First, note that y ≥ 0 since dom ψ∗ = [0, ∞). Define ȳ(u) = y(u) for
u ≤ u′ and ȳ(u) = 0 for u > u′. We show that (ȳ, β) is also a feasible solution for (8) modulo the
continuity condition. Define

β(u) =

∫ u

s=0
y(s) ds− ψ∗(y(u))

ψ(u)
, β̄(u) =

∫ u

s=0
ȳ(s) ds− ψ∗(ȳ(u))

ψ(u)
.

By the definition of ȳ, for all u, we have:∫ u

0

y(s) ds ≥
∫ u

0

ȳ(s) ds, (7)

and β(u) = β̄(u) for u ∈ [0, u′]. Since y(u) is non-increasing and y(u) ≥ 0, limu→∞ y(u) exists.
We claim that limu→∞ y(u) = 0. To see this note that if limu→∞ y(u) > 0, then

lim
u→∞

∫ u

s=0

y(s) ds =∞,

which contradicts the fact that β(u) ≤ β for all u. For all u ≥ u′, now we have:

sup
u≥u′

β(u) ≥ lim
u→∞

β(u) =
limu→∞

∫ u

s=0
y(s) ds− ψ∗(0)

ψ(u′)

≥
∫ u′

s=0
ȳ(s) ds− ψ∗(0)

ψ(u′)
= β̄(u′),

where the first equality follows from the fact that limu→∞ y(u) = 0, and in the last inequality, we
used (7). Since ȳ(u) = 0 for u > u′, β̄(u) is constant on [u′ ∞). Therefore, supu≥u′ β̄(u) = β̄(u′).
Combining this with the previous inequality we get:

sup
u≥u′

β(u) ≥ sup
u≥u′

β̄(u).

Therefore, we conclude that β̄(u) ≤ β for all u. Thus (ȳ, β) is also a feasible solution for (8) modulo
the continuity condition. Note that ȳ(u) may not be continuous at u′. However, we can find a
sequence of continuous functions z(j) that converge pointwise to y and z(i)(u) = 0 for all i and
u ≥ u′. To do so we consider a sequence of real number εi → 0. We define z(i)(u) = ȳ(u) for
u ∈ [0, u′ − εi)∪ [u′, ∞). On [u′ − εi, u′] we define z(i)(u) to be a linear function that take values
y(u′ − ε) and 0 on the endpoints. Define

βz(i) = sup
u>0

∫ u

s=0
z(i)(s) ds− ψ∗(z(i)(u))

ψ(u)
.

By upper semi-continuity of ψ∗, βz(i) converges to β̄.

Let β∗ be the optimal solution for problem (8). By the definition, there exits a feasible sequence
(y(j), β(j)) such that β(j) converges to β∗. Let ȳ(j)(u) = y(j)(u) for t ≤ u′ and ȳ(j)(u) = 0 for
t > u′. Note that ȳ(j)(u) may not be continuous at u′. However, we can find a sequence of continuous
functions (z(ji), βz(ji)) as in above. Now βz(jj) converges to β∗.

�

2 Distance from lp norm ball

In this section we prove that the function:

G(u) = −d1(u,Bp)

satisfies Assumption 1.
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For any u ∈ Rn
+, there exists ū ∈ Bp such that d1(u,Bp) = ‖u− ū‖1. the subdifferential of distance

function is1:

∂d1(u,Bp) = ∂ ‖u− ū‖1 ∩NBp(ū),

where NBp
(u) = {ξ | 〈ξ, v − u〉 ≥ 0, ∀v ∈ Bp} is the normal cone of Bp at u. In fact d1(u,Bp) =

‖u− ū‖1 if and only if ∂ ‖u− ū‖1 ∩NBp
(ū) 6= ∅. When u ∈ intBp, ū = u and ∂d1(u,Bp) = {0}.

In order to find ∂d1(u,Bp) when u /∈ intBp, we first find ū in this case. For any r ≥ 0, define
u ∧ r ∈ Rn

+ to be:

(u ∧ r)i = min(ui, r) ∀i.

Note that ‖u ∧ 0‖p = 0 and ‖u ∧ (maxi ui)‖p = ‖u‖p ≥ 1. Since ‖u ∧ r‖p is a continuous function
of r, by the intermediate value theorem, there exists ru ∈ (0,maxi ui] such that ‖u ∧ ru‖p = 1.
Now ū = u ∧ r. To see this note that:

∂ ‖u− ū‖1 ∩NBp(ū) =

{
1

rp−1u

(u ∧ ru)◦(p−1)
}

for ru < max
i
ui; (8)

∂ ‖u− ū‖1 ∩NBp
(ū) =

{
z

rp−1u

(u ∧ ru)◦(p−1) | 0 ≤ z ≤ 1

}
for ru = max

i
ui; (9)

where ◦(p−1) denotes element-wise exponentiation. Now if u′ ≤ u, then ru′ ≤ ru since ‖u′ ∧ r‖p ≥
‖u′ ∧ r‖p for all r. Thus by (8) and (9), there exists y ∈ ∂d1(u,Bp) such that y ≥ ∂d1(u′,Bp).

1For convex function we use ∂ to denote subdifferential.
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