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Abstract

We provide new lower bounds on the regret that must be suffered by adversarial
bandit algorithms. The new results show that recent upper bounds that either (a)
hold with high-probability or (b) depend on the total loss of the best arm or (c)
depend on the quadratic variation of the losses, are close to tight. Besides this we
prove two impossibility results. First, the existence of a single arm that is optimal
in every round cannot improve the regret in the worst case. Second, the regret
cannot scale with the effective range of the losses. In contrast, both results are
possible in the full-information setting.

1 Introduction

We consider the standard K-armed adversarial bandit problem, which is a game played over T
rounds between a learner and an adversary. In every round t ∈ {1, . . . , T} the learner chooses a
probability distribution pt = (pi,t)16i6K over {1, . . . ,K}. The adversary then chooses a loss vector
`t = (`i,t)16i6K ∈ [0, 1]K , which may depend on pt. Finally the learner samples an action from pt
denoted by It ∈ {1, . . . ,K} and observes her own loss `It,t. The learner would like to minimise her
regret, which is the difference between cumulative loss suffered and the loss suffered by the optimal
action in hindsight:

RT (`1:T ) =

T∑
t=1

`It,t − min
16i6K

T∑
t=1

`i,t ,

where `1:T ∈ [0, 1]TK is the sequence of losses chosen by the adversary. A famous strategy is called
Exp3, which satisfies E[RT (`1:T )] = O(

√
KT log(K))) where the expectation is taken over the

randomness in the algorithm and the choices of the adversary [Auer et al., 2002]. There is also a
lower bound showing that for every learner there is an adversary for which the expected regret is
E[RT (`1:T )] = Ω(

√
KT ) [Auer et al., 1995]. If the losses are chosen ahead of time, then the adver-

sary is called oblivious, and in this case there exists a learner for which E[RT (`1:T )] = O(
√
KT )

[Audibert and Bubeck, 2009]. One might think that this is the end of the story, but it is not so. While
the worst-case expected regret is one quantity of interest, there are many situations where a refined
regret guarantee is more informative. Recent research on adversarial bandits has primarily focussed
on these issues, especially the questions of obtaining regret guarantees that hold with high probability
as well as stronger guarantees when the losses are “nice” in some sense. While there are now a wide
range of strategies with upper bounds that depend on various quantities, the literature is missing lower
bounds for many cases, some of which we now provide.

We focus on three classes of lower bound, which are described in detail below. The first addresses the
optimal regret achievable with high probability, where we show there is little room for improvement
over existing strategies. Our other results concern lower bounds that depend on some kind of regularity
in the losses (“nice” data). Specifically we prove lower bounds that replace T in the regret bound
with the loss of the best action (called first-order bounds) and also with the quadratic variation of the
losses (called second-order bounds).
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High-probability bounds Existing strategies Exp3.P [Auer et al., 2002] and Exp3-IX [Neu, 2015a]
are tuned with a confidence parameter δ ∈ (0, 1) and satisfy, for all `1:T ∈ [0, 1]KT ,

P
(
RT (`1:T ) > c

√
KT log(K/δ)

)
6 δ (1)

for some universal constant c > 0. An alternative tuning of Exp-IX or Exp3.P [Bubeck and Cesa-
Bianchi, 2012] leads to a single algorithm for which, for all `1:T ∈ [0, 1]KT ,

∀δ ∈ (0, 1) P

(
RT (`1:T ) > c

√
KT

(√
log(K) +

log(1/δ)√
log(K)

))
6 δ . (2)

The difference is that in (1) the algorithm depends on δ while in (2) it does not. The cost of not
knowing δ is that the log(1/δ) moves outside the square root. In Section 2 we prove two lower
bounds showing that there is little room for improvement in either (1) or (2).

First-order bounds An improvement over the worst-case regret bound of O(
√
TK) is the

so-called improvement for small losses. Specifically, there exist strategies (eg., FPL-TRIX by Neu
[2015b] with earlier results by Stoltz [2005], Allenberg et al. [2006], Rakhlin and Sridharan [2013])
such that for all `1:T ∈ [0, 1]KT

E[RT (`1:T )] 6 O
(√

L∗TK log(K) +K log(KT )

)
, with L∗T = min

16i6K

T∑
t=1

`i,t , (3)

where the expectation is with respect to the internal randomisation of the algorithm (the losses are
fixed). This result improves on the O(

√
KT ) bounds since L∗T 6 T is always guaranteed and

sometimes L∗T is much smaller than T . In order to evaluate the optimality of this bound, we first
rewrite it in terms of the small-loss balls Bα,T defined for all α ∈ [0, 1] and T > 1 by

Bα,T ,

{
`1:T ∈ [0, 1]KT :

L∗T
T

6 α

}
. (4)

Corollary 1. The first-order regret bound (3) of Neu [2015b] is equivalent to:

∀α ∈ [0, 1], sup
`1:T∈Bα,T

E[RT (`1:T )] 6 O
(√

αTK log(K) +K log(KT )
)
.

The proof is straightforward. Our main contribution in Section 3 is a lower bound of the order of√
αTK for all α ∈ Ω(log(T )/T ). This minimax lower bound shows that we cannot hope for a better

bound than (3) (up to log factors) if we only know the value of L∗T .

Second-order bounds Another type of improved regret bound was derived by Hazan and Kale
[2011b] and involves a second-order quantity called the quadratic variation:

QT =

T∑
t=1

‖`t − µT ‖22 6
TK

4
, (5)

where µT = 1
T

∑T
t=1 `t is the mean of all loss vectors. (In other words, QT /T is the sum of the

empirical variances of all the K arms). Hazan and Kale [2011b] addressed the general online linear
optimisation setting. In the particular case of adversarialK-armed bandits with an oblivious adversary
(as is the case here), they showed that there exists an efficient algorithm such that for some absolute
constant c > 0 and for all T > 2

∀`1:T ∈ [0, 1]KT , E[RT (`1:T )] 6 c
(
K2
√
QT log T +K1.5 log2 T +K2.5 log T

)
. (6)

As before we can rewrite the regret bound (6) in terms of the small-variation balls Vα,T defined for
all α ∈ [0, 1/4] and T > 1 by

Vα,T ,

{
`1:T ∈ [0, 1]KT :

QT
TK

6 α

}
. (7)

Corollary 2. The second-order regret bound (6) of Hazan and Kale [2011b] is equivalent to:

∀α ∈ [0, 1/4], sup
`1:T∈Vα,T

E[RT (`1:T )] 6 c
(
K2
√
αTK log T +K3/2 log2 T +K5/2 log T

)
.
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The proof is straightforward because the losses are deterministic and fixed in advance by an oblivious
adversary. In Section 4 we provide a lower bound of order

√
αTK that holds whenever α =

Ω(log(T )/T ). This minimax lower bound shows that we cannot hope for a bound better than (7) by
more than a factor of K2

√
log T if we only know the value of QT . Closing the gap is left as an open

question.

Two impossibility results in the bandit setting We also show in Section 4 that, in contrast to
the full-information setting, regret bounds involving the cumulative variance of the algorithm as in
[Cesa-Bianchi et al., 2007] cannot be obtained in the bandit setting. More precisely, we prove that
two consequences that hold true in the full-information case, namely: (i) a regret bound proportional
to the effective range of the losses and (ii) a bounded regret if one arm performs best at all rounds,
must fail in the worst case for every bandit algorithm.

Additional notation and key tools Before the theorems we develop some additional notation and
describe the generic ideas in the proofs. For 1 6 i 6 K let Ni(t) be the number of times action i
has been chosen after round t. All our lower bounds are derived by analysing the regret incurred
by strategies when facing randomised adversaries that choose the losses for all actions from the
same joint distribution in every round (sometimes independently for each action and sometimes not).
Ber(α) denotes the Bernoulli distribution with parameter α ∈ [0, 1]. If P and Q are measures on the
same probability space, then KL(P,Q) is the KL-divergence between them. For a < b we define
clip[a,b](x) = min {b,max {a, x}} and for x, y ∈ R we let x ∨ y = max{x, y}. Our main tools
throughout the analysis are the following information-theoretic lemmas. The first bounds the KL
divergence between the laws of the observed losses/actions for two distributions on the losses.
Lemma 1. Fix a randomised bandit algorithm and two probability distributions Q1 and Q2

on [0, 1]K . Assume the loss vectors `1, . . . , `T ∈ [0, 1]K are drawn i.i.d. from either Q1 or Q2,
and denote by Qj the joint probability distribution on all sources of randomness when Qj is used
(formally, Qj = Pint ⊗ (Q⊗Tj ), where Pint is the probability distribution used by the algorithm for
its internal randomisation). Let t > 1. Denote by ht = (Is, `Is,s)16s6t−1 the history available
at the beginning of round t, by Q(ht,It)

j the law of (ht, It) under Qj , and by Qj,i the ith marginal
distribution of Qj . Then,

KL
(
Q(ht,It)

1 ,Q(ht,It)
2

)
=

K∑
i=1

EQ1

[
Ni(t− 1)

]
KL
(
Q1,i, Q2,i

)
.

Results of roughly this form are well known and the proof follows immediately from the chain rule
for the relative entropy and the independence of the loss vectors across time (see [Auer et al., 2002]
or Appendix A). One difference is that the losses need not be independent across the arms, which we
heavily exploit in our proofs by using correlated losses. The second key lemma is an alternative to
Pinsker’s inequality that proves useful when the Kullback-Leibler divergence is larger than 2. It has
previously been used for bandit lower bounds (in the stochastic setting) by Bubeck et al. [2013].
Lemma 2 (Lemma 2.6 in Tsybakov 2008). Let P and Q be two probability distributions on the
same measurable space. Then, for every measurable subset A (whose complement we denote by Ac),

P (A) +Q(Ac) >
1

2
exp
(
−KL(P,Q)

)
.

2 Zero-Order High Probability Lower Bounds

We prove two new high-probability lower bounds on the regret of any bandit algorithm. The first
shows that no strategy can enjoy smaller regret than Ω(

√
KT log(1/δ)) with probability at least

1− δ. Upper bounds of this form have been shown for various algorithms including Exp3.P [Auer
et al., 2002] and Exp3-IX [Neu, 2015a]. Although this result is not very surprising, we are not aware
of any existing work on this problem and the proof is less straightforward than one might expect.
An added benefit of our result is that the loss sequences producing large regret have two special
properties. First, the optimal arm is the same in every round and second the range of the losses in
each round is O(

√
K log(1/δ)/T ). These properties will be useful in subsequent analysis.

In the second lower bound we show that any algorithm for which E[RT (`1:T )] = O(
√
KT ) must

necessarily suffer a high probability regret of at least Ω(
√
KT log(1/δ)) for some sequence `1:T .

The important difference relative to the previous result is that strategies with log(1/δ) appearing
inside the square root depend on a specific value of δ, which must be known in advance.
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Theorem 1. Suppose K > 2 and δ ∈ (0, 1/4) and T > 32(K − 1) log(2/δ), then there exists a
sequence of losses `1:T ∈ [0, 1]KT such that

P
(
RT (`1:T ) >

1

27

√
(K − 1)T log(1/(4δ))

)
> δ/2 ,

where the probability is taken with respect to the randomness in the algorithm. Furthermore `1:T

can be chosen in such a way that there exists an i such that for all t it holds that `i,t = minj `j,t and
maxj,k{`j,t − `k,t} 6

√
(K − 1) log(1/(4δ))/T/(4

√
log 2).

Theorem 2. Suppose K > 2, T > 1, and there exists a strategy and constant C > 0 such that
for any `1:T ∈ [0, 1]KT it holds that E[RT (`1:T )] 6 C

√
(K − 1)T . Let δ ∈ (0, 1/4) satisfy√

(K − 1)/T log(1/(4δ)) 6 C and T > 32 log(2/δ). Then there exists `1:T ∈ [0, 1]KT for which

P

(
RT (`1:T ) >

√
(K − 1)T log(1/(4δ))

203C

)
> δ/2 ,

where the probability is taken with respect to the randomness in the algorithm.
Corollary 3. If p ∈ (0, 1) and C > 0, then there does not exist a strategy such
that for all T , K, `1:T ∈ [0, 1]KT and δ ∈ (0, 1) the regret is bounded by

P
(
RT (`1:T ) > C

√
(K − 1)T logp(1/δ)

)
6 δ.

The corollary follows easily by integrating the assumed high-probability bound and applying Theo-
rem 2 for sufficiently large T and small δ. The proof may be found in Appendix E.

Proof of Theorems 1 and 2 Both proofs rely on a carefully selected choice of correlated stochastic
losses described below. Let Z1, Z2, . . . , ZT be a sequence of i.i.d. Gaussian random variables with
mean 1/2 and variance σ2 = 1/(32 log(2)). Let ∆ ∈ [0, 1/30] be a constant that will be chosen
differently in each proof and define K random loss sequences `11:T , . . . , `

K
1:T where

`ji,t =


clip[0,1](Zt −∆) if i = 1

clip[0,1](Zt − 2∆) if i = j 6= 1

clip[0,1](Zt) otherwise .

For 1 6 j 6 K let Qj be the measure on `1:T ∈ [0, 1]KT and I1, . . . , IT when `i,t = `ji,t for all
1 6 i 6 K and 1 6 t 6 T . Informally, Qj is the measure on the sequence of loss vectors and actions
when the learner interacts with the losses sampled from the jth environment defined above.
Lemma 3. Let δ ∈ (0, 1) and suppose ∆ 6 1/30 and T > 32 log(2/δ). Then
Qi
(
RT (`i1:T ) > ∆T/4

)
> Qi (Ni(T ) 6 T/2)− δ/2 and EQi [RT (`i1:T )] > 7∆EQi [T −Ni(T )]/8.

The proof may be found in Appendix D.

Proof of Theorem 1. First we choose the value of ∆ that determines the gaps in the losses by ∆ =√
σ2(K − 1) log(1/(4δ))/(2T ) 6 1/30. By the pigeonhole principle there exists an i > 1 for

which EQ1
[Ni(T )] 6 T/(K− 1). Therefore by Lemmas 2 and 1, and the fact that the KL divergence

between clipped Gaussian distributions is always smaller than without clipping (see Lemma 7 in
Appendix B),

Q1 (N1(T ) 6 T/2) + Qi (N1(T ) > T/2) >
1

2
exp

(
−KL

(
Q(hT ,IT )

1 ,Q(hT ,IT )
i

))
>

1

2
exp

(
−EQ1

[Ni(T )](2∆)2

2σ2

)
>

1

2
exp

(
− 2T∆2

σ2(K − 1)

)
= 2δ .

But by Lemma 3

max
k∈{1,i}

Qk
(
RT (`k1:T ) > T∆/4

)
> max {Q1 (N1(T ) 6 T/2) , Qi (Ni(T ) 6 T/2)} − δ/2

>
1

2
(Q1 (N1(T ) 6 T/2) + Qi (N1(T ) > T/2))− δ/2 > δ/2 .
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Therefore there exists an i ∈ {1, . . . ,K} such that

Qi

(
RT (`i1:T ) >

√
σ2T (K − 1)

32
log

(
1

4δ

))
= Qi

(
RT (`i1:T ) > T∆/4

)
> δ/2 .

The result is completed by substituting the value of σ2 = 1/(32 log(2)) and by noting that
maxj,k{`j,t − `k,t} 6 2∆ 6

√
(K − 1) log(1/(4δ))/T/(4

√
log 2) Qi-almost surely.

Proof of Theorem 2. By the assumption on δ we have ∆ = 7σ2

16C

√
K−1
T log

(
1
4δ

)
6 1/30. Suppose

for all i > 1 that
EQ1

[Ni(T )] >
σ2

2∆2
log

(
1

4δ

)
. (8)

Then by the assumption in the theorem statement and the second part of Lemma 3 we have

C
√

(K − 1)T > EQ1
[RT (`11:T )] >

7∆

8
EQ1

[
K∑
i=2

Ni(T )

]
>

7σ2(K − 1)

16∆
log

1

4δ
= C

√
(K − 1)T ,

which is a contradiction. Therefore there exists an i > 1 for which Eq. (8) does not hold. Then by the
same argument as the previous proof it follows that

max
k∈{1,i}

Qk
(
RT (`k1:T ) >

7σ2

4 · 16C

√
(K − 1)T log

1

4δ

)
= max
k∈{1,i}

Qk
(
RT (`k1:T ) > T∆/4

)
> δ/2 .

The result is completed by substituting the value of σ2 = 1/(32 log(2)).

Remark 1. It is possible to derive similar high-probability regret bounds with non-correlated losses.
However the correlation makes the results cleaner (we do not need an additional concentration
argument to locate the optimal arm) and it is key to derive Corollaries 4 and 5 in Section 4.

3 First-Order Lower Bound

First-order upper bounds provide improvement over minimax bounds when the loss of the optimal
action is small. Recall from Corollary 1 that first-order bounds can be rewritten in terms of the
small-loss balls Bα,T defined in (4). Theorem 3 below provides a new lower bound of order

√
L∗TK,

which matches the best existing upper bounds up to logarithmic factors. As is standard for minimax
results this does not imply a lower bound on every loss sequence `1:T . Instead it shows that we cannot
hope for a better bound if we only know the value of L∗T .
Theorem 3. Let K > 2, T > K ∨ 118, and α ∈ [(c log(32T ) ∨ (K/2))/T, 1/2], where c = 64/9.
Then for any randomised bandit algorithm sup`1:T∈Bα,T E[RT (`1:T )] >

√
αTK/27, where the

expectation is taken with respect to the internal randomisation of the algorithm.

Our proof is inspired by that of Auer et al. [2002, Theorem 5.1]. The key difference is that we take
Bernoulli distributions with parameter close to α instead of 1/2. This way the best cumulative loss
L∗T is ensured to be concentrated around αT , and the regret lower bound

√
αTK ≈

√
α(1− α)TK

can be seen to involve the variance α(1− α)T of the binomial distribution with parameters α and T .

First we state the stochastic construction of the losses and prove a general lemma that allows us
to prove Theorem 3 and will also be useful in Section 4 to a derive a lower bound in terms of the
quadratic variation. Let ε ∈ [0, 1− α] be fixed and define K probability distributions (Qj)Kj=1 on
[0, 1]KT such that under Qj the following hold:

• All random losses `i,t for 1 6 i 6 K and 1 6 t 6 T are independent.
• `i,t is sampled from a Bernoulli distribution with parameter α+ε if i 6= j, or with parameter
α if i = j.

Lemma 4. Let α ∈ (0, 1),K > 2, and T > K/(4(1−α)). Consider the probability distributions Qj
on [0, 1]KT defined above with ε = (1/2)

√
α(1− α)K/T , and set Q̄ = 1

K

∑K
j=1 Qj . Then for

any randomised bandit algorithm E[RT (`1:T )] >
√
α(1− α)TK/8, where the expectation is with

respect to both the internal randomisation of the algorithm and the random loss sequence `1:T which
is drawn from Q̄.

5



The assumption T > K/(4(1− α)) above ensures that ε 6 1− α, so that the Qj are well defined.

Proof of Lemma 4. We lower bound the regret by the pseudo-regret for each distribution Qj :

EQj

[
T∑
t=1

`It,t − min
16i6K

T∑
t=1

`i,t

]
> EQj

[
T∑
t=1

`It,t

]
− min

16i6K
EQj

[
T∑
t=1

`i,t

]

=

T∑
t=1

EQj
[
α+ ε− ε1{It=j}

]
− Tα = Tε

(
1− 1

T

T∑
t=1

Qj(It = j)

)
, (9)

where the first equality follows because EQj [`It,t] = EQj [EQj [`It,t|`1:t−1, It]] = EQj [α + ε −
ε1{It=j}] since under Qj , the conditional distribution of `t given (`1:t−1, It) is simply ⊗Ki=1B(α+
ε − ε1{i=j}). To bound (9) from below, note that by Pinsker’s inequality we have for all t ∈
{1, . . . , T} and j ∈ {1, . . . ,K}, Qj(It = j) 6 Q0(It = j) + (KL(QIt0 ,Q

It
j )/2)1/2, where Q0 =

Ber(α + ε)⊗KT is the joint probability distribution that makes all the `i,t i.i.d. Ber(α + ε), and
QIt0 and QItj denote the laws of It under Q0 and Qj respectively. Plugging the last inequality above
into (9), averaging over j = 1, . . . ,K and using the concavity of the square root yields

EQ̄

[
T∑
t=1

`It,t − min
16i6K

T∑
t=1

`i,t

]
> Tε

1− 1

K
−

√√√√ 1

2T

T∑
t=1

1

K

K∑
j=1

KL
(
QIt0 ,Q

It
j

) , (10)

where we recall that Q̄ = 1
K

∑K
j=1 Qj . The rest of the proof is devoted to upper-bounding

KL(QIt0 ,Q
It
j ). Denote by ht = (Is, `Is,s)16s6t−1 the history available at the beginning of round t.

From Lemma 1

KL
(
QIt0 ,Q

It
j

)
6 KL

(
Q(ht,It)

0 ,Q(ht,It)
j

)
= EQ0

[
Nj(t− 1)

]
KL
(
B(α+ ε),B(α)

)
6 EQ0

[
Nj(t− 1)

] ε2

α(1− α)
, (11)

where the last inequality follows by upper bounding the KL divergence by the χ2 divergence (see
Appendix B). Averaging (11) over j ∈ {1, . . . ,K} and t ∈ {1, . . . , T} and noting that

∑T
t=1(t−1) 6

T 2/2 we get

1

T

T∑
t=1

1

K

K∑
j=1

KL
(
QIt0 ,Q

It
j

)
6

1

T

T∑
t=1

(t− 1)ε2

Kα(1− α)
6

Tε2

2Kα(1− α)
.

Plugging the above inequality into (10) and using the definition of ε = (1/2)
√
α(1− α)K/T yields

EQ̄

[
T∑
t=1

`It,t − min
16i6K

T∑
t=1

`i,t

]
> Tε

(
1− 1

K
− 1

4

)
>

1

8

√
α(1− α)TK .

Proof of Theorem 3. We show that there exists a loss sequence `1:T ∈ [0, 1]KT such that L∗T 6 αT
and E[RT (`1:T )] > (1/27)

√
αTK. Lemma 4 above provides such kind of lower bound, but without

the guarantee on L∗T . For this purpose we will use Lemma 4 with a smaller value of α (namely, α/2)
and combine it with Bernstein’s inequality to prove that L∗T 6 Tα with high probability.

Part 1: Applying Lemma 4 with α/2 (note that T > K > K/(4(1 − α/2)) by assumption on T )
and noting that maxj EQj [RT (`1:T )] > EQ̄[RT (`1:T )] we get that for some j ∈ {1, . . . ,K} the
probability distribution Qj defined with ε = (1/2)

√
(α/2)(1− α/2)K/T satisfies

EQj [RT (`1:T )] >
1

8

√
α

2

(
1− α

2

)
TK >

1

32

√
6αTK (12)

since α 6 1/2 by assumption.

Part 2: Next we prove that Qj(L∗T > Tα) 6
1

32T
. (13)
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To this end, first note that L∗T 6
∑T
t=1 `j,t. Second, note that under Qj , the `j,t, t > 1, are i.i.d.

Ber(α/2). We can thus use Bernstein’s inequality: applying Theorem 2.10 (and a remark on p.38)
of Boucheron et al. [2013] with Xt = `j,t − α/2 6 1 = b, with v = T (α/2)(1 − α/2), and with
c = b/3 = 1/3), we get that, for all δ ∈ (0, 1), with Qj-probability at least 1− δ,

L∗T 6
T∑
t=1

`j,t 6
Tα

2
+

√
2T

α

2

(
1− α

2

)
log

1

δ
+

1

3
log

1

δ

6
Tα

2
+

(
1 +

1

3

)√
Tα log

1

δ
6
Tα

2
+
Tα

2
= Tα , (14)

where the second last inequality is true whenever Tα > log(1/δ) and that last is true whenever
Tα > (8/3)2 log(1/δ) = c log(1/δ). By assumption on α, these two conditions are satisfied for
δ = 1/(32T ), which concludes the proof of (13).

Conclusion: We show by contradiction that there exists a loss sequence `1:T ∈ [0, 1]KT such that
L∗T 6 αT and

E[RT (`1:T )] >
1

64

√
6αTK , (15)

where the expectation is with respect to the internal randomisation of the algorithm. Imagine for
a second that (15) were false for every loss sequence `1:T ∈ [0, 1]KT satisfying L∗T 6 αT . Then
we would have 1{L∗

T6αT}EQj [RT (`1:T )|`1:T ] 6 (1/64)
√

6αTK almost surely (since the internal
source of randomness of the bandit algorithm is independent of `1:T ). Therefore by the tower rule for
the first expectation on the r.h.s. below, we would get

EQj [RT (`1:T )] = EQj

[
RT (`1:T )1{L∗

T6αT}

]
+ EQj

[
RT (`1:T )1{L∗

T>αT}

]
6

1

64

√
6αTK + T ·Qj(L∗T > Tα) 6

1

64

√
6αTK +

1

32
<

1

32

√
6αTK (16)

where (16) follows from (13) and by noting that 1/32 < (1/64)
√

6αTK since α > K/(2T ) >
4/(6T ) > 4/(6TK). Comparing (16) and (12) we get a contradiction, which proves that there exists
a loss sequence `1:T ∈ [0, 1]KT satisfying both L∗T 6 αT and (15). We conclude the proof by
noting that

√
6/64 > 1/27. Finally, the condition T > K ∨ 118 is sufficient to make the interval[

(c log(32T ) ∨ (K/2))/T, 1
2

]
non empty.

4 Second-Order Lower Bounds

We start by giving a lower bound on the regret in terms of the quadratic variation that is close to
existing upper bounds except in the dependence on the number of arms. Afterwards we prove that
bandit strategies cannot adapt to losses that lie in a small range or the existence of an action that is
always optimal.

Lower bound in terms of quadratic variation We prove a lower bound of Ω(
√
αTK) over any

small-variation ball Vα,T (as defined by (7)) for all α = Ω(log(T )/T ). This minimax lower bound
matches the upper bound of Corollary 2 up to a multiplicative factor of K2

√
log(T ). Closing this

gap is left as an open question, but we conjecture that the upper bound is loose (see also the COLT
open problem by Hazan and Kale [2011a]).
Theorem 4. Let K > 2, T > (32K) ∨ 601, and α ∈ [(2c1 log(T ) ∨ 8K)/T, 1/4],
where c1 = (4/9)2(3

√
5 + 1)2 6 12. Then for any randomised bandit algorithm,

sup`1:T∈Vα,T E[RT (`1:T )] >
√
αTK/25, where the expectation is taken with respect to the internal

randomisation of the algorithm.

The proof is very similar to that of Theorem 3; it also follows from Lemma 4 and Bernstein’s
inequality. It is postponed to Appendix C.

Impossibility results In the full-information setting (where the entire loss vector is observed after
each round) Cesa-Bianchi et al. [2007, Theorem 6] designed a carefully tuned exponential weighting
algorithm for which the regret depends on the variation of the algorithm and the range of the losses:

∀`1:T ∈ RKT , E[RT (`1:T )] 6 4
√
VT logK + 4ET logK + 6ET , (17)
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where the expectation is taken with respect to the internal randomisation of the algorithm
and ET = max16t6T max16i,j6K |`i,t − `j,t| denotes the effective range of the losses and
VT =

∑T
t=1 VarIt∼pt(`It,t) denotes the cumulative variance of the algorithm (in each round t the

expert’s action It is drawn at random from the weight vector pt). The bound in (17) is not closed-form
because VT depends on the algorithm, but has several interesting consequences:

1. If for all t the losses `i,t lie in an unknown interval [at, at + ρ] with a small width ρ > 0, then
VarIt∼pt(`It,t) 6 ρ2/4, so that VT 6 Tρ2/4. Hence

E[RT (`1:T )] 6 2ρ
√
T logK + 4ρ logK + 6ρ .

Therefore, though the algorithm by Cesa-Bianchi et al. [2007, Section 4.2] does not use the prior
knowledge of at or ρ, it is able to incur a regret that scales linearly in the effective range ρ.

2. If all the losses `i,t are nonnegative, then by Corollary 3 of [Cesa-Bianchi et al., 2007] the
second-order bound (17) implies the first-order bound

E[RT (`1:T )] 6 4

√
L∗T

(
MT −

L∗T
T

)
logK + 39MT max{1, logK} , (18)

where MT = max16t6T max16i6K `i,t .
3. If there exists an arm i∗ that is optimal at every round t (i.e., `i∗,t = mini `i,t for all t > 1), then

any translation-invariant algorithm with regret guarantees as in (18) above suffers a bounded
regret. This is the case for the fully automatic algorithm of Cesa-Bianchi et al. [2007, Theorem 6]
mentioned above. Then by the translation invariance of the algorithm all losses `i,t appearing in
the regret bound can be replaced with the translated losses `i,t − `i∗,t > 0, so that a bound of
the same form as (18) implies a regret bound of O(logK).

4. Assume that the loss vectors `t are i.i.d. with a unique optimal arm in expectation (i.e., there
exists i∗ such that E[`i∗,1] < E[`i,1] for all i 6= i∗). Then using the Hoeffding-Azuma inequality
we can show that the algorithm of Cesa-Bianchi et al. [2007, Section 4.2] has with high
probability a bounded cumulative variance VT , and therefore (by (17)) incurs a bounded regret,
in the same spirit as in de Rooij et al. [2014], Gaillard et al. [2014].

We already know that point 2 has a counterpart in the bandit setting. If one is prepared to ignore
logarithmic terms, then point 4 also has an analogue in the bandit setting due to the existence
of logarithmic regret guarantees for stochastic bandits [Lai and Robbins, 1985]. The following
corollaries show that in the bandit setting it is not possible to design algorithms to exploit the range
of the losses or the existence of an arm that is always optimal. We use Theorem 1 as a general tool
but the bounds can be improved to

√
TK/30 by analysing the expected regret directly (similar to

Lemma 4).
Corollary 4. Let K > 2, T > 32(K − 1) log(14) and ρ > 0.22

√
(K − 1)/T . Then for any ran-

domised bandit algorithm, sup`1,...,`T∈Cρ E[RT (`1:T )] >
√
T (K − 1)/504, where the expectation

is with respect to the randomness in the algorithm, and Cρ ,
{
x ∈ [0, 1]K : maxi,j |xi − xj | 6 ρ

}
.

Corollary 5. Let K > 2 and T > 32(K − 1) log(14). Then, for any randomised bandit algorithm,
there is a loss sequence `1:T ∈ [0, 1]KT such that there exists an arm i∗ that is optimal at every
round t (i.e., `i∗,t = mini `i,t for all t > 1), but E[RT (`1:T )] >

√
T (K − 1)/504, where the

expectation is with respect to the randomness in the algorithm.

Proof of Corollaries 4 and 5. Both results follow from Theorem 1 by choosing δ = 0.15. Therefore
there exists an `1:T such that P{RT (`1:T ) >

√
(K − 1)T log(1/(4 · 0.15)/27} > 0.15/2, which

implies (since RT (`1:T ) > 0 here) that E[RT (`1:T )] >
√

(K − 1)T/504. Finally note that `1:T ∈
Cρ since ρ >

√
(K − 1) log(1/(4δ))/T/(4

√
log 2) and there exists an i such that `i,t 6 `j,t for all

j and t.
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A Proof of Lemma 1

The proof is well known (eg., Auer et al. [2002]). We only write it for the convenience of the reader.
Recall that ht =

(
Is, `Is,s

)
16s6t−1

. Next we write QX|Yj the law of X conditionally on Y under Qj .
By the chain rule for the Kullback-Leibler divergence, note that

KL
(
Q(ht,It)

1 ,Q(ht,It)
2

)
=

t−1∑
s=1

EQ1

[
KL
(
QIs|hs1 ,QIs|hs2

)
+ KL

(
Q`Is,s|(hs,Is)1 ,Q`Is,s|(hs,Is)2

)]
+ EQ1

[
KL
(
QIt|ht1 ,QIt|ht2

)]
. (19)

Note that Q1(Is = i|hs) = pi,s = Q2(Is = i|hs) for all s (by definition of a randomised algorithm
with weight vector ps at time s), so that the first and third KL terms equal zero. As for the second one,
we can check that Q`Is,s|(hs,Is)j = Qj,Is (the Is-th marginal of Qj). Combining all these remarks
with (19), we get

KL
(
Q(ht,It)

1 ,Q(ht,It)
2

)
=

t−1∑
s=1

EQ1

[
KL(Q1,Is , Q2,Is)

]
=

t−1∑
s=1

EQ1

[
K∑
i=1

1{Is=i}KL(Q1,i, Q2,i)

]

=

K∑
i=1

EQ1

[
Ni(t− 1)

]
KL
(
Q1,i, Q2,i

)
,

which concludes the proof.

B Inequalities from Information Theory

We first recall below a well-known data-processing inequality that can be found, e.g., in Gray [2011,
Corollary 7.2]. The main message is that transforming the data at hand can only reduce the ability to
distinguish between two probability distributions.

Lemma 5 (Contraction of entropy). Let P and Q be two probability distributions on the same
measurable space (Ω,F), and let X be any random variable on (Ω,F). Denote by PX and QX the
laws of X under P and Q respectively. Then,

KL
(
PX ,QX

)
6 KL(P,Q) .

Next we recall an inequality between the Kullback-Leibler divergence and the chi-squared divergence.
In the particular case of Bernoulli distributions with parameters p, q ∈ [0, 1], these divergences are
given respectively by1

kl(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

and χ2(p, q) =
(p− q)2

q(1− q)
.

Lemma 6 (Consequence of Lemma 2.7 in Tsybakov 2008). Let p, q ∈ [0, 1]. Then

kl(p, q) 6 χ2(p, q) .

The final lemma is a straightforward corollary of Lemma 5 and the KL divergence between two
Gaussians.

Lemma 7. For a 6 b and define clip[a,b](x) = max {a,min {x, b}}. Let Z be normally distributed
with mean 1/2 and variance σ2 > 0. Define X = clip[0,1](Z) and Y = clip[0,1](Z − ε) for ε ∈ R.
Then KL(PX ,PY ) 6 ε2/(2σ2).

1We use the usual conventions: 0 log 0 = 0/0 = 0 and a/0 = +∞ for all a > 0.
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C Proof of Theorem 4

The proof follows the same lines as that of Theorem 3. In the sequel we show that there exists a loss
sequence `1:T ∈ [0, 1]KT such that QT 6 αTK and E[RT (`1:T )] > (1/25)

√
αTK. As in the proof

of Theorem 3, we use Lemma 4 with α/2 and combine it with Bernstein’s inequality to prove that
QT 6 αTK with high probability.

Part 1: Applying Lemma 4 with α/2 (note that T > 32K > K/(4(1− α/2)) by assumption on T )
and noting that maxj EQj [RT (`1:T )] > EQ̄[RT (`1:T )] we get that for some j ∈ {1, . . . ,K} the
probability distribution Qj defined with ε = (1/2)

√
(α/2)(1− α/2)K/T satisfies

EQj [RT (`1:T )] >
1

8

√
α

2

(
1− α

2

)
TK >

1

32

√
7αTK (20)

since α 6 1/4 by assumption.

Part 2: Next we prove that

Qj(QT > αTK) 6
1

32T
. (21)

To this end recall that µT = 1
T

∑T
t=1 `t and

QT =

T∑
t=1

‖`t − µT ‖22 =

K∑
i=1

T∑
t=1

(`i,t − µi,T )2

︸ ︷︷ ︸
=:vi,T

.

Noting that `i,t ∈ {0, 1} almost surely, we have vi,T = Tµi,T (1− µi,T ) 6 Tµi,T =
∑T
t=1 `i,t.

Recall that under Qj , the `i,t, t > 1, are i.i.d. Ber
(
αji ) where αji = (α/2) + ε1{i 6=j} (we used

Lemma 4 with α/2). We now apply Bernstein’s inequality exactly as after (13): combined with a
union bound, it yields that, for all δ ∈ (0, 1), with Qj-probability at least 1−δ, for all i ∈ {1, . . . ,K},

T∑
t=1

`i,t 6 Tαji +

√
2Tαji

(
1− αji

)
log

K

δ
+

1

3
log

K

δ

6 T
(α

2
+ ε
)

+

√
2T
(α

2
+ ε
)

log
K

δ
+

1

3
log

K

δ
. (22)

Now note that, by definition of ε = (1/2)
√

(α/2)(1− α/2)K/T and by the assumption T > 8K/α,

α

2
+ ε 6

α

2
+

1

2

√
αK

2T
6

5α

8
.

Substituting the last upper bound in (22) and using the assumption Tα > 4 log(K/δ) (that we check
later) to obtain log(K/δ) 6 (1/2)

√
Tα log(K/δ) we get

T∑
t=1

`i,t 6
5Tα

8
+

(√
5

2
+

1

6

)√
Tα log

K

δ
6

5Tα

8
+

3Tα

8
= Tα , (23)

where the last inequality is true whenever Tα > c1 log(K/δ) with c1 = (4/9)2(3
√

5 + 1)2. By
the assumption α > 2c1 log(T )/T > c1 log(32TK)/T (since T > 32K), the condition Tα >
c1 log(K/δ) is satisfied for δ = 1/(32T ) (as well as the weaker condition Tα > 4 log(K/δ)

mentioned above). We conclude the proof of (21) via QT =
∑K
i=1 vi,T 6

∑K
i=1

∑T
t=1 `i,t 6 αTK

by (23).

Conclusion: We show by contradiction that there exists a loss sequence `1:T ∈ [0, 1]KT such that
QT 6 αTK and

E[RT (`1:T )] >
1

64

√
7αTK , (24)
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where the expectation is with respect to the internal randomisation of the algorithm. Imagine for a
second that (24) were false for every loss sequence `1:T ∈ [0, 1]KT satisfying QT 6 αTK. Then
we would have 1{QT6αTK}EQj [RT (`1:T )|`1:T ] 6 (1/64)

√
7αTK almost surely (since the internal

source of randomness of the bandit algorithm is independent of `1:T ). Therefore, using the tower rule
for the first expectation on the r.h.s. below, we would get

EQj [RT (`1:T )] = EQj
[
RT (`1:T )1{QT6αTK}

]
+ EQj

[
RT (`1:T )1{QT>αTK}

]
6

1

64

√
7αTK + T ·Qj(QT > αTK)

6
1

64

√
7αTK +

1

32
<

1

32

√
7αTK (25)

where (25) follows from (21) and by noting that 1/32 < (1/64)
√

7αTK since α > 8K/T >
4/(7TK). Comparing (25) and (20) we get a contradiction, which proves that there exists a loss
sequence `1:T ∈ [0, 1]KT satisfying both QT 6 αTK and (24). We conclude the proof by noting
that
√

7/64 > 1/25.

Nota: the assumption T > (32K) ∨ 601 is sufficient to make the interval
[

2c1 log(T )∨(8K)
T , 1

4

]
non

empty.

D Proof of Lemma 3

First we use the definition of the losses to bound

RT (`i1:T ) =

T∑
t=1

(`It,t − `i,t) > ∆

T∑
t=1

1{Zt∈[2∆,1−2∆] and It 6=i} .

Let Wt = 1{Zt∈[2∆,1−2∆]}, which forms an i.i.d. Bernoulli sequence with

Qi (Wt = 0) 6 exp

(
− (1/2− 2∆)2

2σ2

)
, p 6 1/8 ,

where the inequality follows by standard tail bounds on the Gaussian integral [Boucheron et al., 2013,
Exercise 2.7]. Therefore by Hoeffding’s bound

Qi

(
T∑
t=1

Wt 6
3T

4

)
= Qi

(
T∑
t=1

Wt − TEQi [W1] 6
3T

4
− (1− p)T

)
6 exp (−T/32) 6 δ/2 .

The first part of the statement follows from the union bound and because if Ni(T ) 6 T/2 and∑T
t=1Wt > 3T/4, then

∆

T∑
t=1

1{Zt∈[2∆,1−2∆] and It 6=i} > ∆T/4 .

For the second part we use below the tower rule (conditioning on It and the history ht up to t− 1)
and the fact that Wt is independent of It given ht but also independent of ht to get that

EQi [RT (`i1:T )] > ∆

T∑
t=1

Qi (Wt = 1 and It 6= i)

> ∆

T∑
t=1

Qi (Wt = 1)Qi (It 6= i) >
7∆

8
EQi [T −Ni(T )] ,

which completes the proof.
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E Proof of Corollary 3

Suppose on the contrary that such a strategy exists. Then

E[RT (`1:T )] 6
∫ ∞

0

P (RT (`1:T ) > x) dx

6
∫ ∞

0

exp

−( x

C
√

(K − 1)T

) 1
p

 dx 6 C
√

(K − 1)T .

By the assumption in the corollary we have

δ > P
(
RT (`1:T ) > C

√
(K − 1)T logp(1/δ)

)
= P

(
RT (`1:T ) >

√
(K − 1)T log(1/(16δ))

203C
· 203C2 logp(1/δ)

log(1/(16δ))

)
,

which leads to a contradiction by choosing δ sufficiently small and T sufficiently large and applying
Theorem 2 to show that there exists an `1:T ∈ [0, 1]KT for which

P

(
RT (`1:T ) >

√
(K − 1)T log(1/(16δ))

203C

)
> 2δ .
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