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Abstract

A key challenge in sequential decision problems is to determine how many sam-
ples are needed for an agent to make reliable decisions with good probabilistic
guarantees. We introduce Hoeffding-like concentration inequalities that hold for
a random, adaptively chosen number of samples. Our inequalities are tight under
natural assumptions and can greatly simplify the analysis of common sequential
decision problems. In particular, we apply them to sequential hypothesis testing,
best arm identification, and sorting. The resulting algorithms rival or exceed the
state of the art both theoretically and empirically.

1 Introduction

Many problems in artificial intelligence (AI) and machine learning (ML) involve designing agents
that interact with stochastic environments. The environment is typically modeled with a collection
of random variables. A common assumption is that the agent acquires information by observing
samples from these random variables. A key problem is to determine the number of samples that are
required for the agent to make sound inferences and decisions based on the data it has collected.

Many abstract problems fit into this general framework, including sequential hypothesis testing, e.g.,
testing for positiveness of the mean [18, 6], analysis of streaming data [19], best arm identification
for multi-arm bandits (MAB) [1, 5, 13], etc. These problems involve the design of a sequential
algorithm that needs to decide, at each step, either to acquire a new sample, or to terminate and output
a conclusion, e.g., decide whether the mean of a random variable is positive or not. The challenge is
that obtaining too many samples will result in inefficient algorithms, while taking too few might lead
to the wrong decision.

Concentration inequalities such as Hoeffding’s inequality [11], Chernoff bound, and Azuma’s inequal-
ity [7, 5] are among the main analytic tools. These inequalities are used to bound the probability of a
large discrepancy between sample and population means, for a fixed number of samples n. An agent
can control its risk by making decisions based on conclusions that hold with high confidence, due to
the unlikely occurrence of large deviations. However, these inequalities only hold for a fixed, constant
number of samples that is decided a-priori. On the other hand, we often want to design agents that
make decisions adaptively based on the data they collect. That is, we would like the number of
samples itself to be a random variable. Traditional concentration inequalities, however, often do
not hold when the number of samples is stochastic. Existing analysis requires ad-hoc strategies to
bypass this issue, such as union bounding the risk over time [18, 17, 13]. These approaches can lead
to suboptimal algorithms.
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We introduce Hoeffding-like concentration inequalities that hold for a random, adaptively chosen
number of samples. Interestingly, we can achieve our goal with a small double logarithmic overhead
with respect to the number of samples required for standard Hoeffding inequalities. We also show
that our bounds cannot be improved under some natural restrictions. Even though related inequalities
have been proposed before [15, 2, 3], we show that ours are significantly tighter, and come with
a complete analysis of the fundamental limits involved. Our inequalities are directly applicable to
a number of sequential decision problems. In particular, we use them to design and analyze new
algorithms for sequential hypothesis testing, best arm identification, and sorting. Our algorithms rival
or outperform state-of-the-art techniques both theoretically and empirically.

2 Adaptive Inequalities and Their Properties

We begin with some definitions and notation:
Definition 1. [20] Let X be a zero mean random variable. For any d > 0, we say X is d-subgaussian
if ∀r ∈ R,

E[erX ] ≤ ed
2r2/2

Note that a random variable can be subgaussian only if it has zero mean [20]. However, with some
abuse of notation, we say that any random variable X is subgaussian if X − E[X] is subgaussian.

Many important types of distributions are subgaussian. For example, by Hoeffding’s Lemma [11],
a distribution bounded in an interval of width 2d is d-subgaussian and a Gaussian random variable
N(0, σ2) is σ-subgaussian. Henceforth, we shall assume that the distributions are 1/2-subgaussian.
Any d-subgaussian random variable can be scaled by 1/(2d) to be 1/2-subgaussian
Definition 2 (Problem setup). LetX be a zero mean 1/2-subgaussian random variable. {X1, X2, . . .}
are i.i.d. random samples of X . Let Sn =

∑n
i=1Xi be a random walk. J is a stopping time with

respect to {X1, X2, . . .}. We let J take a special value∞ where Pr[J =∞] = 1− limn→∞ Pr[J ≤
n]. We also let f : N→ R+ be a function that will serve as a boundary for the random walk.

We note that because it is possible for J to be infinity, to simplify notation, what we really mean by
Pr[EJ ], where EJ is some event, is Pr[{J < ∞} ∩ EJ ]. We can often simplify notation and use
Pr[EJ ] without confusion.

2.1 Standard vs. Adaptive Concentration Inequalities

There is a very large class of well known inequalities that bound the probability of large deviations by
confidence that increases exponentially w.r.t. bound tightness. An example is the Hoeffding inequality
[12] which states, using the definitions mentioned above,

Pr[Sn ≥
√
bn] ≤ e−2b (1)

Other examples include Azuma’s inequality, Chernoff bound [7], and Bernstein inequalities [21].
However, these inequalities apply if n is a constant chosen in advance, or independent of the
underlying process, but are generally untrue when n is a stopping time J that, being a random
variable, depends on the process. In fact we shall later show in Theorem 3 that we can construct a
stopping time J such that

Pr[SJ ≥
√
bJ ] = 1 (2)

for any b > 0, even when we put strong restrictions on J .

Comparing Eqs. (1) and (2), one clearly sees how Chernoff and Hoeffding bounds are applicable only
to algorithms whose decision to continue to sample or terminate is fixed a priori. This is a severe
limitation for stochastic algorithms that have uncertain stopping conditions that may depend on the
underlying process. We call a bound that holds for all possible stopping rules J an adaptive bound.

2.2 Equivalence Principle

We start with the observation that finding a probabilistic bound on the position of the random walk
SJ that holds for any stopping time J is equivalent to finding a deterministic boundary f(n) that the
walk is unlikely to ever cross. Formally,

2



Proposition 1. For any δ > 0,

Pr[SJ ≥ f(J)] ≤ δ (3)

for any stopping time J if and only if

Pr[{∃n, Sn ≥ f(n)}] ≤ δ (4)

Intuitively, for any f(n) we can choose an adversarial stopping rule that terminates the process as
soon as the random walk crosses the boundary f(n). We can therefore achieve (3) for all stopping
times J only if we guarantee that the random walk is unlikely to ever cross f(n), as in Eq. (4).

2.3 Related Inequalities

The problem of studying the supremum of a random walk has a long history. The seminal work of
Kolmogorov and Khinchin [4] characterized the limiting behavior of a zero mean random walk with
unit variance:

lim sup
n→∞

Sn√
2n log log n

= 1 a.s.

This law is called the Law of Iterated Logarithms (LIL), and sheds light on the limiting behavior of a
random walk. In our framework, this implies

lim
m→∞

Pr
[
∃n > m : Sn ≥

√
2an log log n

]
=

{
1 if a < 1

0 if a > 1

This theorem provides a very strong result on the asymptotic behavior of the walk. However, in most
ML and statistical applications, we are also interested in the finite-time behavior, which we study.

The problem of analyzing the finite-time properties of a random walk has been considered before
in the ML literature. It is well known, and can be easily proven using Hoeffding’s inequality union
bounded over all possible times, that a trivial bound

f(n) =
√
n log(2n2/δ)/2 (5)

holds in the sense of Pr [∃n, Sn ≥ f(n)] ≤ δ. This is true because by union bound and Hoeffding
inequality [12]

Pr[∃n, Sn ≥ f(n)] ≤
∞∑
n=1

Pr[Sn ≥ f(n)] ≤
∞∑
n=1

e− log(2n2/δ) ≤ δ
∞∑
n=1

1

2n2
≤ δ

Recently, inspired by the Law of Iterated Logarithms, Jamieson et al. [15], Jamieson and Nowak
[13] and Balsubramani [2] proposed a boundary f(n) that scales asymptotically as Θ(

√
n log log n)

such that the “crossing event” {∃n, Sn ≥ f(n)} is guaranteed to occur with a low probability.
They refer to this as finite time LIL inequality. These bounds, however, have significant room for
improvement. Furthermore, [2] holds asymptotically, i.e., only w.r.t. the event {∃n > N,Sn ≥ f(n)}
for a sufficiently large (but finite) N , rather than across all time steps. In the following sections, we
develop general bounds that improve upon these methods.

3 New Adaptive Hoeffding-like Bounds

Our first main result is an alternative to finite time LIL that is both tighter and simpler:
Theorem 1 (Adaptive Hoeffding Inequality). Let Xi be zero mean 1/2-subgaussian random vari-
ables. {Sn =

∑n
i=1Xi, n ≥ 1} be a random walk. Let f : N→ R+. Then,

1. If limn→∞
f(n)√

(1/2)n log logn
< 1, there exists a distribution for X such that

Pr[{∃n, Sn ≥ f(n)}] = 1

2. If f(n) =
√
an log(logc n+ 1) + bn, c > 1, a > c/2, b > 0, and ζ is the Riemann-ζ

function, then
Pr[{∃n, Sn ≥ f(n)}] ≤ ζ (2a/c) e−2b/c (6)
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We also remark that in practice the values of a and c do not significantly affect the quality of the
bound. We recommend fixing a = 0.6 and c = 1.1 and will use this configuration in all subsequent
experiments. The parameter b is the main factor controlling the confidence we have on the bound (6),
i.e., the risk. The value of b is chosen so that the bound holds with probability at least 1− δ, where δ
is a user specified parameter.

Based on Proposition 1, and fixing a and c as above, we get a readily applicable corollary:
Corollary 1. Let J be any random variable taking value in N. If

f(n) =
√

0.6n log(log1.1 n+ 1) + bn

then
Pr[SJ ≥ f(J)] ≤ 12e−1.8b

The bound we achieve is very similar in form to Hoeffding inequality (1), with an extra O(log log n)
slack to achieve robustness to stochastic, adaptively chosen stopping times. We shall refer to this
inequality as the Adaptive Hoeffding (AH) inequality.

Informally, part 1 of Theorem 1 implies that if we choose a boundary f(n) that is conver-
gent w.r.t.

√
n log log n and would like to bound the probability of the threshold-crossing event,√

(1/2)n log log n is the asymptotically smallest f(n) we can have; anything asymptotically smaller
will be crossed with probability 1. Furthermore, part 2 implies that as long as a > 1/2, we can
choose a sufficiently large b so that threshold crossing has an arbitrarily small probability. Combined,
we thus have that for any κ > 0, the minimum f (call it f∗) needed to ensure an arbitrarily small
threshold-crossing probability can be bounded asymptotically as follows:√

1/2
√
n log log n ≤ f∗(n) ≤ (

√
1/2 + κ)

√
n log log n (7)

Figure 1: Illustration of Theorem 1 part 2. Each
blue line represents a sampled walk. Although the
probability of reaching higher than the Hoeffding
bound (red) at a given time is small, the threshold
is crossed almost surely. The new bound (green)
remains unlikely to be crossed.

This fact is illustrated in Figure 1, where we
plot the bound f(n) from Corollary 1 with
12e−1.8b = δ = 0.05 (AH, green). The corre-
sponding Hoeffding bound (red) that would have
held (with the same confidence, had n been a
constant) is plotted as well. We also show draws
from an unbiased random walk (blue). Out of
the 1000 draws we sampled, approximately 25%
of them cross the Hoeffding bound (red) before
time 105, while none of them cross the adaptive
bound (green), demonstrating the necessity of
the extra

√
log log n factor even in practice.

We also compare our bound with the trivial
bound (5), LIL bound in Lemma 1 of [15] and
Theorem 2 of [2]. The graph in Figure 2 shows
the relative performance of the three bounds
across different values of n and risk δ. The LIL
bound of [15] is plotted with parameter ε = 0.01
as recommended. We also experimented with
other values of ε, obtaining qualitatively similar
results. It can be seen that our bound is signifi-
cantly tighter (by roughly a factor of 1.5) across
all values of n and δ that we evaluated.

3.1 More General, Non-Smooth Boundaries

If we relax the requirement that f(n) must be smooth, or, formally, remove the condition that

lim
n→∞

f(n)√
n log log n

must exist or go to∞, then we might be able to obtain tighter bounds.
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Figure 2: Comparison of Adaptive Hoeffding (AH) and LIL [15], LIL2 [2] and Trivial bound. A
threshold function f(n) is computed and plotted according to the four bounds, so that crossing occurs
with bounded probability δ (risk). The two plots correspond to different risk levels (0.01 and 0.1).

For example many algorithms such as median elimination [9] or the exponential gap algorithm [17, 6]
make (sampling) decisions “in batch”, and therefore can only stop at certain pre-defined times. The
intuition is that if more samples are collected between decisions, the failure probability can be easier
to control. This is equivalent to restricting the stopping time J to take values in a set N ⊂ N.
Equivalently we can also think of using a boundary function f(n) defined as follows:

fN(n) =

{
f(n) n ∈ N

+∞ otherwise
(8)

Very often the set N is taken to be the following set:
Definition 3 (Exponentially Sparse Stopping Time). We denote by Nc, c > 1, the set Nc = {dcne :
n ∈ N}.

Methods based on exponentially sparse stopping times often achieve asymptotically optimal per-
formance on a range of sequential decision making problems [9, 18, 17]. Here we construct an
alternative to Theorem 1 based on exponentially sparse stopping times. We obtain a bound that is
asymptotically equivalent, but has better constants and is often more effective in practice.
Theorem 2 (Exponentially Sparse Adaptive Hoeffding Inequality). Let {Sn, n ≥ 1} be a random
walk with 1/2-subgaussian increments. If

f(n) =
√
an log(logc n+ 1) + bn

and c > 1, a > 1/2, b > 0, we have

Pr[{∃n ∈ Nc, Sn ≥ f(n)}] ≤ ζ(2a) e−2b

We call this inequality the exponentially sparse adaptive Hoeffding (ESAH) inequality. Compared to
(6), the main improvement is the lack of the constant c in the RHS. In all subsequent experiments we
fix a = 0.55 and c = 1.05.

Finally, we provide limits for any boundary, including those obtained by a batch-sampling strategy.
Theorem 3. Let {Sn, n ≥ 1} be a zero mean random walk with 1/2-subgaussian increments. Let
f : N→ R+. Then

1. If there exists a constant C ≥ 0 such that lim infn→∞
f(n)√
n
< C, then

Pr[{∃n, Sn ≥ f(n)}] = 1

2. If limn→∞
f(n)√
n

= +∞, then for any δ > 0 there exists an infinite set N ⊂ N such that

Pr[{∃n ∈ N, Sn ≥ f(n)}] < δ
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Informally, part 1 states that if a threshold f(n) drops an infinite number of times below an asymptotic
bound of Θ(

√
n), then the threshold will be crossed with probability 1. This rules out Hoeffding-like

bounds. If f(n) grows asymptotically faster than
√
n, then one can “sparsify” f(n) so that it will be

crossed with an arbitrarily small probability. In particular, a boundary with the form in Equation (8)
can be constructed to bound the threshold-crossing probability below any δ (part 2 of the Theorem).

4 Applications to ML and Statistics

We now apply our adaptive bound results to design new algorithms for various classic problems in ML
and statistics. Our bounds can be used to analyze algorithms for many natural sequential problems,
leading to a unified framework for such analysis. The resulting algorithms are asymptotically optimal
or near optimal, and outperform competing algorithms in practice. We provide two applications in
the following subsections and leave another to the appendix.

4.1 Sequential Testing for Positiveness of Mean

Our first example is sequential testing for the positiveness of the mean of a bounded random variable.
In this problem, there is a 1/2-subgaussian random variable X with (unknown) mean µ 6= 0. At each
step, an agent can either request a sample from X , or terminate and declare whether or not E[X] > 0.
The goal is to bound the agent’s error probability by some user specified value δ.

This problem is well studied [10, 18, 6]. In particular Karp and Kleinberg [18] show in Lemma 3.2
(“second simulation lemma”) that this problem can be solved with an O

(
log(1/δ) log log(1/µ)/µ2

)
algorithm with confidence 1− δ. They also prove a lower bound of Ω

(
log log(1/µ)/µ2

)
. Recently,

Chen and Li [6] referred to this problem as the SIGN-ξ problem and provided similar results.

We propose an algorithm that achieves the optimal asymptotic complexity and performs very well
in practice, outperforming competing algorithms by a wide margin (because of better asymptotic
constants). The algorithm is captured by the following definition.
Definition 4 (Boundary Sequential Test). Let f : N → R+ be a function. We draw i.i.d. samples
X1, X2, . . . from the target distribution X . Let Sn =

∑n
i=1Xi be the corresponding partial sum.

1. If Sn ≥ f(n), terminate and declare E[X] > 0;

2. if Sn ≤ −f(n), terminate and declare E[X] < 0;

3. otherwise increment n and obtain a new sample.

We call such a test a symmetric boundary test. In the following theorem we analyze its performance.
Theorem 4. Let δ > 0 and X be any 1/2-subgaussian distribution with non-zero mean. Let

f(n) =
√
an log(logc n+ 1) + bn

Figure 3: Empirical Performance of Boundary Tests. The plot on the left is the algorithm in
Definition 4 and Theorem 4 with δ = 0.05, the plot on the right uses half the correct threshold.
Despite of a speed up of 4 times, the empirical accuracy drops below the requirement
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where c > 1, a > c/2, and b = c/2 log ζ (2a/c) + c/2 log 1/δ. Then, with probability at least 1− δ,
a symmetric boundary test terminates with the correct sign for E[X], and with probability 1− δ, for
any ε > 0 it terminates in at most

(2c+ ε)

(
log(1/δ) log log(1/µ)

µ2

)
samples asymptotically w.r.t. 1/µ and 1/δ.

4.1.1 Experiments

To evaluate the empirical performance of our algorithm (AH-RW), we run an experiment where
X is a Bernoulli distribution over {−1/2, 1/2}, for various values of the mean parameter µ. The
confidence level δ is set to 0.05, and the results are averaged across 100 independent runs. For this
experiment and other experiments in this section, we set the parameters a = 0.6 and c = 1.1. We
plot in Figure 3 the empirical accuracy, average number of samples used (runtime), and the number
of samples after which 90% of the runs terminate.

Figure 4: Comparison of various algorithms for de-
ciding the positiveness of the mean of a Bernoulli
random variable. AH-RW and ESAH-RW use or-
ders of magnitude fewer samples than alternatives.

The empirical accuracy of AH-RW is very high,
as predicted by Theorem 4. Our bound is em-
pirically very tight. If we decrease the bound by
a factor of 2, that is we use f(n)/2 instead of
f(n), we get the curve in the right hand side plot
of Figure 3. Despite a speed up of approximately
4 times, the empirical accuracy gets below the
0.95 requirement, especially when µ is small.

We also compare our method, AH-RW, to the
Exponential Gap algorithm from [6] and the al-
gorithm from the “second simulation lemma”
of [18]. Both of these algorithms rely on a
batch sampling idea and have very similar per-
formance. The results show that our algorithm
is at least an order of magnitude faster (note
the log-scale). We also evaluate a variant of
our algorithm (ESAH-RW) where the boundary
function f(n) is taken to be fNc

as in Theorem 2
and Equation (8). This algorithm achieves very
similar performance as Theorem 4, justifying
the practical applicability of batch sampling.

4.2 Best Arm Identification

The MAB (Multi-Arm Bandit) problem [1, 5] studies the optimal behavior of an agent when faced
with a set of choices with unknown rewards. There are several flavors of the problem. In this paper,
we focus on the fixed confidence best arm identification problem [13]. In this setting, the agent
is presented with a set of arms A, where the arms are indistinguishable except for their expected
reward. The agent is to make sequential decisions at each time step to either pull an arm α ∈ A, or to
terminate and declare one arm to have the largest expected reward. The goal is to identify the best
arm with a probability of error smaller than some pre-specified δ > 0.

To facilitate the discussion, we first define the notation we will use. We denote by K = |A| as the
total number of arms. We denote by µα the true mean of an arm, α∗ = arg maxµα, We also define
µ̂α(nα) as the empirical mean after nα pulls of an arm.

This problem has been extensively studied, including recently [8, 14, 17, 15, 6]. A survey is presented
by Jamieson and Nowak [13], who classify existing algorithms into three classes: action elimination
based [8, 14, 17, 6], which achieve good asymptotics but often perform unsatisfactorily in practice;
UCB based, such as lil’UCB by [15]; and LUCB based approaches, such as [16, 13], which achieve
sub-optimal asymptotics of O(K logK) but perform very well in practice. We provide a new
algorithm that out-performs all previous algorithm, including LUCB, in Algorithm 1.
Theorem 5. For any δ > 0, with probability 1− δ, Algorithm 1 outputs the optimal arm.
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Algorithm 1 Adaptive Hoeffding Race (set of arms A, K = |A|, parameter δ)
fix parameters a = 0.6, c = 1.1, b = c/2 (log ζ (2a/c) + log(2/δ))

initialize for all arms α ∈ A, nα = 0, initialize Â = A be the set of remaining arms
while Â has more than one arm do

Let α̂∗ be the arm with highest empirical mean, and compute for all α ∈ Â

fα(nα) =


√(

a log(logc nα + 1) + b+ c log |Â|/2
)
/nα if α = α̂∗√

(a log(logc nα + 1) + b) /nα otherwise

draw a sample from the arm with largest value of fα(nα) from Â, nα = nα + 1

remove from Â arm α if µ̂a + fα(nα) < µ̂α̂∗ − fα̂∗(nα̂∗)
end while
return the only element in Â

4.2.1 Experiments

Figure 5: Comparison of various methods for best
arm identification. Our methods AHR and ES-
AHR are significantly faster than state-of-the-art.
Batch sampling ES-AHR is the most effective one.

We implemented Algorithm 1 and a variant
where the boundary f is set to fNc

as in Theo-
rem 2. We call this alternative version ES-AHR,
standing for exponentially sparse adaptive Ho-
effding race. For comparison we implemented
the lil’UCB and lil’UCB+LS described in [14],
and lil’LUCB described in [13]. Based on the
results of [13], these algorithms are the fastest
known to date.

We also implemented the DISTRIBUTION-
BASED-ELIMINATION from [6], which theo-
retically is the state-of-the-art in terms of asymp-
totic complexity. Despite this fact, the empirical
performance is orders of magnitude worse com-
pared to other algorithms for the instance sizes
we experimented with.

We experimented with most of the distribution
families considered in [13] and found qualita-
tively similar results. We only report results us-
ing the most challenging distribution we found
that was presented in that survey, where µi = 1− (i/K)

0.6. The distributions are Gaussian with 1/4
variance, and δ = 0.05. The sample count is measured in units of H1 =

∑
α6=α∗ ∆−2α hardness [13].

5 Conclusions

We studied the threshold crossing behavior of random walks, and provided new concentration
inequalities that, unlike classic Hoeffding-style bounds, hold for any stopping rule. We showed that
these inequalities can be applied to various problems, such as testing for positiveness of mean, best
arm identification, obtaining algorithms that perform well both in theory and in practice.
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A Appendix

A.1 Equivalence Principle

To show the correctness of Proposition 1, we first show and prove a more general lemma
Lemma 1. Let F = {Fn} be a filtration for some discrete stochastic process. Let In be the indicator
function for some event sequence measurable w.r.t. F. For any δ > 0,

Pr[IJ = 1] ≤ δ
for any random variable J taking values in N if and only if

Pr[{∃n, In = 1}] ≤ δ

Proof of Lemma 1. To prove sufficiency we show that for any sample path

IJ ≤ sup
n∈N

In = I {∃n, In = 1}

Therefore

Pr[IJ = 1] ≤ Pr[I{∃n, In = 1} = 1]

= Pr[{∃n, In = 1}]
which implies Pr[IJ = 1] ≤ δ if Pr[{∃n, In = 1}] ≤ δ.

To show the necessity, we construct the following stopping time random variable

J = inf{n ∈ N : In = 1}
Then for any sample path

I{∃n, In = 1} ≤ IJ
which as before imply

Pr[{∃n, In = 1}] ≤ Pr[IJ = 1]

which implies that if Pr[{∃n, In = 1}] ≤ δ does not hold, there is a stopping time J for which
Pr[IJ = 1] ≤ δ does not hold.

Proof of Proposition 1. Follows from Lemma 1, taking the indicator function to be

In = I{Sn ≥ f(n)}

A.2 Proof of adaptive concentration inequalities

To prove the adaptive concentration inequalities we establish a lemma that will be used in the proof.
Lemma 2. Let X and {Xn, n ≥ 1} be a sequence of i.i.d 1/2-subgaussian zero mean random
variables. Let Sn =

∑n
i=1Xi be a zero mean random walk. Then

Pr

[
max
1≤i≤n

Si ≥
√
an

]
≤ e−2a

holds for all a > 0, n ≥ 1

Proof of Lemma 2. First we remark that because the distribution is subgaussian, the moment gener-
ating function MX(r) for X exists for all values of r. Therefore MSn

(r) for Sn also exists for all
values of n and r, because

MSn(r) = (MX(r))
n

The sequence {Sn, n ≥ 1} is a martingale. We can apply a variant of Bernstein inequality for
submartingales [21] (which can be proved from Kolmogorov’s submartingale inequality) to have, for
any α > 0 and r > 0, and wherever MSn(r) exists,

Pr

[
max
1≤i≤n

Si ≥ nα
]
≤MSn(r)e−rnα

10



Because the increments are 1/2-subgaussian

MX(r) ≤ er
2/8

We must have
MSn

(r) ≤ enr
2/8

Combined we have, for all r > 0

Pr

[
max
1≤i≤n

Si ≥ nα
]
≤ enr

2/8e−rnα

= e−n(rα−r
2/8)

The RHS is minimized when φ(r) = rα − r2/8 is maximized. We can take the derivative of this
term and setting to zero we have

φ′(r) = α− 2r/8 = 0

which leads to
r = 4α

Therefore the tightest version of the original inequality is

Pr

[
max
1≤i≤n

Si ≥ nα
]
≤ e−2nα

2

This can be viewed as a strengthened version of the original Hoeffding inequality [11] by upper
bounding max1≤i≤n Si rather than Sn only. We can proceed to make α =

√
a/n and have

Pr

[
max
1≤i≤n

Si ≥
√
an

]
≤ e−2a

Proof of Theorem 1. We first prove part 1 of the theorem. We can construct the distribution X = 1/2
with probability 1/2 and X = −1/2 with probability 1/2. This distribution is 1/2-subgaussian, and
the standard deviation σ(X) = 1/2. Recall that Xi are i.i.d. samples from X . By the law of iterated
logarithms [4], if Xn has non-zero variance σ2, Xn/σ has unit variance and

lim sup
n→∞

Sn

σ
√

2n log log n
= 1 a.s

where a.s indicates that the event has probability measure 1, or happens "almost surely". This means
that for the distribution we constructed

lim sup
n→∞

Sn√
1/2n log log n

= 1 a.s

If limn→∞
f(n)√

1/2n log logn
< 1, for any ε > 0 and N > 0, so that ∀n > N

f(n) < (1− ε)
√

1/2n log log n

and regardless of our choice of N , almost surely there exists n ≥ N so that

Sn√
1/2n log log n

> 1− ε > f(n)√
1/2n log log n

which implies Sn ≥ f(n). We next prove the second part of the theorem. Suppose we choose a
monotonic non-decreasing f(n), and c > 1.

Pr[{∃n, Sn ≥ f(n)}] = Pr [∪∞n=1{Sn ≥ f(n)}]
= Pr

[
∪∞l=0 ∪cl≤n≤cl+1 {Sn ≥ f(n)}

]
≤ Pr

[
∪∞l=0

{
max

cl≤n≤cl+1
Sn ≥ f(cl)

}]
(9)

≤
∞∑
l=0

Pr

[
max

1≤n≤cl+1
Sn ≥ f(cl)

]

11



where 9 is derived from the monotonicity of f(n) and the last step is by union bound. We take
f(n) =

√
an log(logc n+ 1) + bn, which is indeed monotonic non-decreasing and apply Lemma 2

to obtain

Pr[{∃n, Sn ≥ f(n)}] ≤
∞∑
l=0

Pr

[
max

1≤n≤cl+1
Sn ≥

√(
a log(l + 1) + b

c

)
cl+1

]

≤
∞∑
l=0

e−
2a
c log(l+1)e−2b/c =

∞∑
l=0

(l + 1)−2a/ce−2b/c

=

∞∑
l=1

l−2a/ce−2b/c

= ζ

(
2a

c

)
e−2b/c

Proof of Theorem 2. Proof of Theorem 2 is essentially the same as that of Theorem 1:

Pr[{∃n ∈ Nc, Sn ≥ f(n)}] = Pr

[ ⋃
n∈Nc

{Sn ≥ f(n)}

]
≤
∑
n∈Nc

Pr[Sn ≥ f(n)]

Again taking f(n) =
√
an log(logc n+ 1) + bn and apply Hoeffding Inequality [12] we have

Pr[{∃n ∈ Nc, Sn ≥ f(n)}] ≤
∑
n∈Nc

e−2a log(logc n+1)−2b

≤
∞∑
l=0

(l + 1)−2ae−2b

= ζ(2a)e−2b

Proof of Theorem 3. We denote by En the event {Sn ≥ C
√
n} and Ēn as its complement. Consider

the probability of En|Sm = sm for some n > m. Because of the memoryless property of the random
walk

Pr{Sn ≥ C
√
n|Sm = sm} = Pr{Sn−m ≥ C

√
n− sm}

For any constant D > C, there exists M(D) ≥ 0, so that for all n ≥M(D), we have

C
√
n− sm ≤ D

√
n

Because Sn−m ≥ D
√
n would imply Sn−m ≥ C

√
n− sm, which means for such n ≥M(D),

Pr{Sn ≥ C
√
n|Sm = sm} = Pr{Sn−m ≥ C

√
n− sm} ≥ Pr{Sn−m ≥ D

√
n} (10)

By the central limit theorem (CLT), the distribution function Fn(x) for Sn

σ
√
n

, where σ is the standard
deviation of Xi, converges to the standard normal N (0, 1) with distribution function Φ(x), or
alternatively,

lim
n→∞

Sn/
√
n→D N (0, σ2)

Where →D indicates convergence in distribution. Because for all sample path Sm/
√
n → 0, by

Fatou’s lemma,
lim
n→∞

Sm/
√
n→p 0

where→p denote convergence in probability. By Theorem2.7 in [22] we have

lim
n→∞

(Sn − Sm)/
√
n→D N (0, σ2)

12



therefore
lim
n→∞

Pr[Sn−m/
√
n ≥ D] = lim

n→∞
Pr[(Sn − Sm)/

√
n ≥ D] = 1− Φ(D/σ) (11)

Combining 10 and 11 we have for n ≥M(D),
Pr[En | Sm = sm] ≥ 1− Φ(D/σ) > 0

Therefore for a sequence of integer time steps n > m1 > · · · > mk,
lim
n→∞

Pr[En | Ēm1 , ..., Ēmk
]

= lim
n→∞

∑
sm1

Pr[En | Sm1 = sm1 , Ēm1 , ..., Ēmk
] Pr[Sm1 = sm1 | Ēm1 , ..., Ēmk

]

≥
∑
sm1

(1− Φ(D/σ)) Pr[Sm1 = sm1 | Ēm1 , ..., Ēmk
]

= 1− Φ(D/σ) > 0

So there exists some ε > 0 and a functionN : N→ N, so that for anym1 ≥ 0, and any ∀n > N (m1),
Pr[En | Ēm1 , ..., Ēmk

] ≥ ε
regardless of the choice for m2, · · ·mk.

If lim infn→∞
f(n)√
n
< C, then there is any infinite ordered sequence Q = {Q0, Q1, ...} ⊂ N+ so

that Q0 > 0, and ∀Qi ∈ Q, Qi+1 > N (Qi) and

f(Qi) ≤ C
√
Qi

Then

Pr[{@n, Sn ≥ f(n)}] ≤ Pr

 ⋂
n∈Q

Ēn


=
∏
i∈N

Pr
[
ĒQi
|ĒQi−1

, ..., ĒQ0

]
≤
∏
i∈N

(1− ε) = 0

Now we prove the second part. By Hoeffding Inequality [12],

Pr[Sn ≥ f(n)] ≤ e−2f
2(n)/n

which means
lim
n→∞

Pr [Sn ≥ f(n)] = 0

under our assumption limn→∞
f(n)√
n

= ∞. We call this probability q(n) = Pr [Sn ≥ f(n)]. We
construct a sequence Q ⊂ N+ indexed by i ∈ N+ recursively as follows:

Q1 = inf
n∈N

{
n : q(n) <

δ

2

}
Qi = inf

n∈N

{
n > Qi−1|q(n) <

δ

2i

}
If is easy to see that Q can be constructed because limn→∞ q(n) = 0, and we can always find
sufficiently large n so that q(n) < δ/2i,∀i ∈ N+. Furthermore Q is an infinite monotonic increasing
sequence by definition. Therefore

Pr[{∃n ∈ Q,Sn ≥ f(n)}] = Pr

 ⋃
n∈Q
{Sn ≥ f(n)}


≤
∑
n∈Q

q(n) ≤ δ
∞∑
i=1

1

2i
= δ

13



A.3 Proof for sequential testing for positiveness of mean

To prove Theorem 4 we first prove a lemma
Lemma 3. If we let µ, δ, a, b > 0, c > 1, and

f(n) =
√
an log(logc n+ 1) + bn

Define
J = inf{n : f(n) ≤ µn}

Then asymptotically as µ→ 0,

J ≤ (a+ b)
log log (1/µ)

µ2

Proof of Lemma 3. In the following we often neglect lower order terms. When we do so we use ∼
rather than =, and . rather than ≤. The alternatives carry the same meaning, only that they hold as
µ→ 0

We first define I = γ log log (1/µ)
µ2 , where γ is some constant we will later fix. Our proof strategy is to

show that if γ satisfies γ > a+ b, asymptotically f(I) ≤ µI , which makes I an upper bound for J .

logc(I) = logc γ + logc log log
1

µ
+ 2 logc

1

µ
∼ 2

log c
log

1

µ

and

log(logc(I) + 1) ∼ log log
1

µ

Therefore, neglecting low order terms we have,

f(I) ∼

√
γ

log log(1/µ)

µ2
(a log log

1

µ
+ b)

.
√
γ(a+ b)

log log (1/µ)

µ
∼

√
a+ b

γ
µI

Because we only neglected lower order terms

lim
µ→0

f(I)

µI
≤

√
a+ b

γ

For f(I) ≤ µI asymptotically, it suffices to have√
a+ b

γ
< 1

or
γ > a+ b

Therefore I constitutes an upper bound for J whenever γ > a+ b

Proof of Theorem 4. Without loss of generality, we assume E[X] = µ > 0, and let S′n = Sn − µn
be a new zero mean random walk on the same sample space.

To prove the correctness we note that the algorithms terminates incorrectly only if ∃n, Sn ≤ −f(n),
or equivalently ∃n, S′n ≤ −f(n)− µn. By Theorem 1

Pr[∃n ∈ N, S′n ≤ −f(n)− µn] ≤ Pr[∃n ∈ N, S′n ≤ −f(n)] = Pr[∃n ∈ N,−S′n ≥ f(n)] ≤ δ

To bound the runtime we show by Theorem 1, for any stopping time J taking values in N, with
probability at least 1− δ, we have

SJ ≥ S′J ≥ −f(J)

14



For any value for J that satisfies
µJ ≥ 2f(J)

with probability at least 1− δ
f(J) ≤ −f(J) + µJ ≤ S′J + µJ = SJ

and the termination criteria SJ ≥ f(J) is met. So with probability at least 1 − δ, the algorithm
terminates within

inf{J : µJ ≥ 2f(J)}
steps. By Lemma 3, this is satisfied asymptotically as µ→ 0 and δ → 0 when

J . 4

(
a+

c

2
log ζ

(
2a

c

)
+
c

2
log

1

δ

)
log log (1/µ)

µ2
. (2c+ ε)

log(1/δ) log log (1/µ)

µ2

where ε > 0 is any constant.

A.4 Proof for best arm identification

Proof of Theorem 5. To avoid notational confusion, we first remark that the set A changes as arms
are eliminated, and we use A0 to denote the original arm set.

To prove the correctness of the algorithm we define En as the event that the optimal arm is eliminated
at time step n. We define a random variable J to be the time step either the algorithm terminates, or
eliminates the optimal arm, whichever happens first. J is a well defined random variable because
for any sample path J takes a deterministic value in N. We denote Jα as the number of pulls made
to each arm at time step J , and ÂJ as the set of available (not eliminated) arms. For EJ to happen,
there must be α 6= α∗ ∈ ÂJ , so that µ̂α is the maximum out of all empirical means, and

µ̂α∗ + fα∗(Jα∗) < µ̂α − fα(Jα)

We let the event of an underestimation upon termination UJ(α) be the event

UJ(α) = {µ̂α(Jα) + fα(Jα) < µα}
and the event of an overestimation OJ(α) as the event

OJ(α) = {α = arg max
α∈ÂJ

µ̂α(Jα)} ∩ {µ̂α − fα(Jα) > µα}

Noting that
fα(nα) ≥

√
(a log(logc nα + 1) + b)/nα

and because nα(µ̂α(nα)− µα) is a zero mean random walk, by Theorem 1 and Lemma 1 we can
have

Pr[UJ(α)] ≤ Pr
[
µ̂α(Jα)− µα ≤ −

√
(a log(logc Jα + 1) + b)/Jα

]
≤ δ

2
and similarly

Pr[OJ(α)] ≤ ζ
(

2a

c

)
e−2b/c−2c log |ÂJ |/(2c) ≤ δ

2|ÂJ |
If neither UJ(α∗) nor OJ(α),∀α 6= α∗ happen, then ŪJ(α∗) ∩

⋂
α6=α∗ ŌJ(α) implies for any

α 6= α∗, either
α 6= arg max

α∈ÂJ

µ̂α(Jα)

or
µ̂α∗ + fα∗(Jα∗) ≥ µα∗ > µα ≥ µ̂α − fα(Jα)

and EJ (best arm is eliminated) cannot happen. Therefore

EJ ⊂ UJ(α∗) ∪

 ⋃
α 6=α∗∈AJ

OJ(α)


Which means that

Pr[EJ ] ≤ δ/2 + (|ÂJ | − 1)
δ

2|ÂJ |
≤ δ
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Because J is the time step the algorithm terminates, or eliminates the optimal arm, which ever happens
first. Therefore for any sample path where EJ does not happen, the algorithm never eliminated the
optimal arm, including during the final iteration. Therefore the algorithm must terminate correctly.
The set of such sample paths has probability measure at least 1− δ.
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