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A Marginal Likelihood Approximation

Proof of Proposition 2.1. By the assumption that L and L̃ are non-positive, the multiplicative error
assumption, and Jensen’s inequality,

Ẽ =

∫
eL̃(θ)π0(θ) dθ ≥

∫
e(1+ε)L(θ)π0(θ) dθ ≥

(∫
eL(θ)π0(θ) dθ

)1+ε

= E1+ε

and

Ẽ =

∫
eL̃(θ)π0(θ) dθ ≤

∫
e(1−ε)L(θ)π0(θ) dθ ≤

(∫
eL(θ)π0(θ) dθ

)1−ε

= E1−ε.

B Main Results

In order to construct coresets for logistic regression, we will use the framework developed by Feld-
man and Langberg [3] and improved upon by Braverman et al. [2]. For n ∈ [N ] := {1, . . . , N}, let
fn : S → R+ be a non-negative function from some set S and let f̄ = 1

N

∑N
n=1 fn be the average

of the functions. Define the sensitivity of n ∈ [N ] with respect to S by

σn(S) := sup
s∈S

fn(s)

f̄(s)
,

and note that σn(S) ≤ N . Also, for the set F := {fn |n ∈ [N ]}, define the dimension dim(F) of
F to be the minimum integer d such that

∀F ⊆ F , |{F ∩R |R ∈ ranges(F)}| ≤ (|F |+ 1)d,

where ranges(F) := {range(s, a)|s ∈ S, a ≥ 0} and range(s, a) := {f ∈ F | f(s) ≤ a}.
We make use of the following improved version of Feldman and Langberg [3, Theorems 4.1 and
4.4].
Theorem B.1 (Braverman et al. [2]). Fix ε > 0. For n ∈ [N ], let mn ∈ R+ be chosen such that

mn ≥ σn(S)

and let m̄N := 1
N

∑N
n=1mn. There is a universal constant c such that if C is a sample from F of

size

|C| ≥ c m̄N

ε2
(dim(F) log m̄N + ln(1/δ)),

such that the probability that each element of C is selected independently from F with probability
mn

Nm̄N
that fn is chosen, then with probability at least 1− δ, for all s ∈ S,∣∣∣∣f̄(s)− m̄N

|C|
∑
f∈C

f(s)

mn

∣∣∣∣ ≤ εf̄(s).
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The set C in the theorem is called a coreset. In our application to logistic regression, S = Θ
and fn(θ) = − ln p(Yn |Xn, θ). The key is to determine dim(F) and to construct the values mn

efficiently. Furthermore, it is necessary for m̄N = o(
√
N ) at a minimum and preferable for m̄N =

O(1).

Letting Zn = YnXn and φ(s) = ln(1 + exp(−s)), we can rewrite fn(θ) = φ(Zn · θ). Hence, the
goal is to find an upper bound

mn ≥ σn(Θ) = sup
θ∈Θ

N φ(Zn · θ)∑N
n′=1 φ(Zn′ · θ)

.

To obtain an upper bound on the sensitivity, we will take Θ = BR for some R > 0.

Lemma B.2. For all a, b ∈ R, φ(a)/φ(b) ≤ e|a−b|.

Proof. The lemma is trivial when a = b. Let ∆ = b− a 6= 0 and ρ(a) = φ(a)/φ(a+ ∆). We have

ρ′(a) =
(1 + ea) log(1 + e−a)− (1 + ea+∆) log(1 + e−a−∆)

(1 + ea)(1 + ea+∆) log2(1 + e−a−∆)
.

Examining the previous display we see that sgn(ρ′(a)) = sgn(∆). Hence if ∆ > 0,

sup
a

φ(a)

φ(a+ ∆)
= lim
a→∞

φ(a)

φ(a+ ∆)

= lim
a→∞

φ′(a)

φ′(a+ ∆)

= lim
a→∞

e−a

1 + e−a
1 + e−a−∆

e−a−∆

= e∆ = e|b−a|,

where the second equality follows from L’Hospital’s rule. Similarly, if ∆ < 0,

sup
a

φ(a)

φ(a+ ∆)
= lim
a→−∞

e−a

1 + e−a
1 + e−a−∆

e−a−∆

= lim
a→−∞

e∆ e−a

e−a−∆

= 1 ≤ e|b−a|,
where in this case we have used L’Hospital’s rule twice.

Lemma B.3. The function φ(s) is convex.

Proof. A straightforward calculation shows that φ′′(s) = es

(1+es)2 > 0.

Lemma B.4. For a random vector Z ∈ RD with finite mean Z̄ = E[Z] and a fixed vectors V, θ∗ ∈
RD,

inf
θ∈BR

E
[
φ(Z · (θ + θ∗))

φ(V · (θ + θ∗))

]
≥ e−R‖Z̄−V ‖2−|(Z̄−V )·θ∗|.

Proof. Using Lemmas B.2 and B.3, Jensen’s inequality, and the triangle inequality, we have

inf
θ∈BR

E
[
φ(Z · (θ + θ∗))

φ(V · (θ + θ∗))

]
≥ inf
θ∈BR

φ(E[Z] · (θ + θ∗))

φ(V · (θ + θ∗))

≥ inf
θ∈BR

e−|(Z̄−V )·(θ+θ∗)|

≥ inf
θ∈BR

e−|(Z̄−V )·θ|−|(Z̄−V )·θ∗)|

= e−R‖Z̄−V ‖2−|(Z̄−V )·θ∗|.
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We now prove the following generalization of Lemma 3.1

Lemma B.5. For any k-clustering Q, θ∗ ∈ Rd, and R > 0,

σn(θ∗ + BR) ≤ mn :=

⌈
N

1 +
∑k
i=1 |G

(−n)
i |e−R‖Z̄

(−n)
G,i −Zn‖2−|(Z̄(−n)

G,i −Zn)·θ∗|

⌉
.

Furthermore, mn can be calculated in O(k) time.

Proof. Straightforward manipulations followed by an application of Lemma B.4 yield

σn(θ∗ + BR)−1 = inf
θ∈BR

1

N

N∑
n′=1

φ(Zn′ · (θ + θ∗))

φ(Zn · (θ + θ∗))

= inf
θ∈BR

1

N

1 +

k∑
i=1

∑
Z′∈G(−n)

i

φ(Z ′ · (θ + θ∗))

φ(Zn · (θ + θ∗))


= inf
θ∈BR

1

N

[
1 +

k∑
i=1

|G(−n)
i |E

[
φ(Z

(−n)
G,i · (θ + θ∗))

φ(Zn · (θ + θ∗))

]]

≥ 1

N

[
1 +

k∑
i=1

|G(−n)
i |e−R‖Z̄

(−n)
G,i −Zn‖2−|(Z̄(−n)

G,i −Zn)·θ∗|

]
.

To see that the bound can be calculated in O(k) time, first note that the cluster in to which Zn
belongs can be found in O(k) time while Z̄(−n)

G,in
can be calculated in O(1) time. For i 6= in,

G
(−n)
i = Gi, so Z̄(−n)

G,i is just the mean of cluster i, and no extra computation is required. Finally,
computing the sum takes O(k) time.

In order to obtain an algorithm for generating coresets for logistic regression, we require a bound on
the dimension of the range space constructed from the examples and logistic regression likelihood.

Proposition B.6. The set of functionsF = {fn(θ) = φ(Zn·θ) |n ∈ [N ]} satisfies dim(F) ≤ D+1.

Proof. For all F ⊆ F ,

|{F ∩R |R ∈ ranges(F)}| = |{range(F, θ, a) | θ ∈ Θ, a ≥ 0}|,

where range(F, θ, a) := {fn ∈ F | fn(θ) ≤ a}. But, since φ is invertible and monotonic,

{fn ∈ F | fn(θ) ≤ a} = {fn ∈ F |φ(Zn · θ) ≤ a}
= {fn ∈ F |Zn · θ ≤ φ−1(a)},

which is exactly a set of points shattered by the hyperplane classifier Z 7→ sgn(Z · θ − b), with
b := φ−1(a). Since the VC dimension of the hyperplane concept class is D + 1, it follows that [5,
Lemmas 3.1 and 3.2]

|{range(F, θ, a) | θ ∈ Θ, a ≥ 0}| ≤
D+1∑
j=0

(
|F |
j

)
≤
D+1∑
j=0

|F |j

j!

≤
D+1∑
j=0

(
D + 1

j

)
|F |j = (|F |+ 1)D+1.

Proof of Theorem 3.2. Combine Theorem B.1, Lemma 3.1, and Proposition B.6. The algorithm has
overall complexity O(Nk) since it requires O(Nk) time to calculate the sensitivities by Lemma 3.1
and O(N) time to sample the coreset.
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C Sensitivity Lower Bounds

Lemma C.1. Let V1, . . . , VK ∈ RD−1 be unit vectors such that for some ε > 0, for all k 6= k’,
Vk · Vk′ ≤ 1− ε. Then for 0 < δ <

√
1/2 , there exist unit vectors Z1, . . . , ZK ∈ RD such that

• for k 6= k′, Zk · Zk′ ≥ 1− 2δ2 > 0

• for k = 1, . . . ,K and α > 0, there exists θk ∈ RD such that ‖θ‖2 ≤
√

2 δα, θk · Zk =

−αεδ
2

2 and for k 6= k, θk · Zk′ ≥ αεδ2

2 .

Proof. Let Zk be defined such that Zki = δVki for i = 1, . . . , D − 1 and ZkD =
√

1− δ2 . Thus,
‖Zk‖2 = 1 and for k 6= k′,

Zk · Zk′ = δ2Vk · Vk′ + 1− δ2 ≥ 1− 2δ2

since Vk ·Vk′ ≥ −1. Let θk be such that θki = −αδVki for i = 1, . . . , D− 1 and θkd = αδ2(1−ε/2)√
1−δ2 .

Hence,

θk · θk = α2δ2

(
Vk · Vk +

(1− ε/2)2δ2

1− δ2

)
≤ 2α2δ2

θk · Zk = α(−δ2Vk · Vk + δ2(1− ε/2)) = −αεδ
2

2
,

and for k′ 6= k,

θk · Zk′ = α(−δ2Vk · Vk′ + δ2(1− ε/2)) ≥ αδ2(−1 + ε+ 1− ε/2) =
αεδ2

2
.

Proposition C.2. Let V1, . . . , VK ∈ RD−1 be unit vectors such that for some ε > 0, for all k 6= k’,
Vk · Vk′ ≤ 1− ε. Then for any 0 < ε′ < 1, there exist unit vectors Z1, . . . , ZK ∈ RD such that for
k, k′, Zk · Zk′ ≥ 1− ε′ but for any R > 0,

σk(BR) ≥ K

1 + (K − 1)e−Rε
√
ε′ /4

,

and hence σk(RD) = K.

Proof. Let Z1, . . . , ZK ∈ RD be as in Lemma C.1 with δ such that δ2 = ε′/2. Since for s ≥ 0,
φ(s)/φ(−s) ≤ e−s, conclude that, choosing α such that

√
2 αδ = R, we have

σn(BR) = sup
θ∈BR

K φ(Zk · θ)∑K
k′=1 φ(Zk′ · θ)

≥ K φ(−αεδ2/2)

φ(−αεδ2/2) + (K − 1)φ(αεδ2/2)

≥ K

1 + (K − 1)e−αεδ2/2

=
K

1 + (K − 1)e−Rε
√
ε′ /4

.

Proof of Theorem 3.4. Choose V1, . . . , VN ∈ RD−1 to be anyN distinct unit vectors. Apply Propo-
sition C.2 with K = N and ε = 1−maxn 6=n′ Vn · Vn′ > 0.

Proof of Proposition 3.5. First note that if V is uniformly distributed on SD, then the distribution of
V · V ′ does not depend on the distribution of V ′ since V · V ′ and V · V ′′ are equal in distribution
for all V ′, V ′′ ∈ SD. Thus it suffices to take V ′1 = 1 and V ′i = 0 for all i = 2, . . . , D. Hence the
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distribution of V ·V ′ is equal to the distribution of V1. The CDF of V1 is easily seen to be proportional
to the surface area (SA) of Cs := {v ∈ SD | v1 ≤ s}. That is, P[V1 ≤ s] = SA(Cs)/SA(C1). Let
U ∼ Beta(D−1

2 , 1
2 ), and let B(a, b) be the beta function. It follows from [6, Eq. 1], that by setting

s = 1− ε with ε ∈ [0, 1/2],

P[V1 ≥ 1− ε] =
1

2
P[−
√

1− U ≤ ε− 1]

=
1

2
P[U ≤ 2ε− ε2]

=
1

2B(D−1
2 , 1

2 )

∫ 2ε−ε2

0

t(D−3)/2(1− t)−1/2 dt

≤ 1

2B(D−1
2 , 1

2 )
(1− ε)−1

∫ 2ε−ε2

0

t(D−3)/2 dt

=
1

(D − 1)B(D−1
2 , 1

2 )

(2− ε)(D−1)/2

1− ε
ε(D−1)/2

≤ 2(D+1)/2

(D − 1)B(D−1
2 , 1

2 )
ε(D−1)/2.

Applying a union bound over the
(
D
2

)
distinct vector pairs completes the proof.

Lemma C.3 (Hoeffding’s inequality [1, Theorem 2.8]). Let Ak be zero-mean, independent random
variables with Ak ∈ [−a, a]. Then for any t > 0,

P

(
K∑
k=1

Ak ≥ t

)
≤ e−

t2

2a2K .

Proof of Proposition 3.6. We say that unit vectors V and V ′ are (1−ε)-orthogonal if |V ·V ′| ≤ 1−ε.
Clearly ‖Vn‖2 = 1. For n 6= n′, by Hoeffding’s inequality P(|Vn · Vn′ | ≥ 1 − ε) ≤ 2e−(1−ε)2D/2.
Applying a union bound to all

(
K
2

)
pairs of vectors, the probability that any pair is not (1 − ε)-

orthogonal is at most

2

(
K

2

)
e−(1−ε)2D/2 ≤ 1

2
.

Thus, with probability at least 1/2, V1, . . . , VN are pairwise (1− ε)-orthogonal.

Proof of Corollary 3.7. The data from Theorem 3.4 satisfies Zn · Zn′ ≥ 1− ε′, so for n 6= n′,

‖Zn − Zn′‖22 = 2− 2Zn · Zn′ ≤ 2ε′.

Applying Lemma 3.1 with the clusteringQ = {Z1, . . . , ZN} and combining it with the lower bound
in Theorem 3.4 yields the result.

D A Priori Expected Sensitivity Upper Bounds

Proof of Proposition 3.8. First, fix the number of datapoints N ∈ N. Since Xn are generated from
a mixture, let Ln denote the integer mixture component from which Xn was generated, let Ci be
the set of integers 1 ≤ j ≤ N with j 6= n and Lj = i, and let C = (Ci)

∞
i=1. Note that with this

definition, |G(−n)
i | = |Ci|. Using Jensen’s inequality and the upper bound from Lemma 3.1 with
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the clustering induced by the label sequence,

E [σn (BR)] ≤ E [mn] = NE

[
1

1 +
∑
i |Ci|e

−R‖Z̄(−n)
G,i −Zn‖2

]

= NE

[
E

[
1

1 +
∑
i |Ci|e

−R‖Z̄(−n)
G,i −Zn‖2

|C

]]

≤ NE

 1

1 +
∑
i |Ci|e

−RE
[
‖Z̄(−n)

G,i −Zn‖2 |C
]
 .

Using Jensen’s inequality again and conditioning on the labels Y = (Yn)Nn=1 and indicator Ln,

E
[
‖Z̄(−n)

G,i − Zn‖2 |C
]
≤
√

E
[
‖Z̄(−n)

G,i − Zn‖22 |C
]

=

√
E
[
E
[
‖Z̄(−n)

G,i − Zn‖22 |C,Ln, Y
]
|C
]
.

For fixed labels Y and clustering C, Ln, the linear combination in the expectation is multivariate
normal with

Z̄
(−n)
G,i − Zn ∼ N

 1

|Ci|

∑
j∈Ci

Yj

µi − Ynµ′n,
1

|Ci|
Σi + Σ′n

 ,

where µ′n,Σ
′
n are the mean and covariance of the mixture component that generated Xn. Further,

for any multivariate normal random vector W ∈ Rd,

E
[
WTW

]
=

d∑
m=1

E
[
W 2
m

]
=

d∑
m=1

Var [Wm] + E [Wm]
2
,

so

E
[
‖Z̄(−n)

G,i − Zn‖
2
2 |Ln, C, Y

]
= Tr

[
1

|Ci|
Σi + Σ′n

]
+

(∑
j∈Ci

Yj

|Ci|

)2

µTi µi − 2Yn

(∑
j∈Ci

Yj

|Ci|

)
µTi µ

′
n + µ′n

T
µ′n.

Exploiting the i.i.d.-ness of Yj for j ∈ Ci given C, defining ȳj = E [Yi|Li = j], and noting that Xn

is sampled from the mixture model,

E
[
E
[
‖Z̄(−n)

G,i − Zn‖
2
2 |Ln, C, Y

]
|C
]

=
∑
j

πj

(
Tr

[
1

|Ci|
Σi + Σj

]
+
|Ci| ȳ2

i + 1− ȳ2
i

|Ci|
µTi µi − 2ȳj ȳiµ

T
i µj + µTj µj

)

=
∑
j

πj

(
Tr [Σi] +

(
1− ȳ2

i

)
µTi µi

|Ci|
+ Tr [Σj ] + ȳ2

i µ
T
i µi − 2ȳj ȳiµ

T
i µj + µTj µj

)
=Ai |Ci|−1

+Bin,

where Ai and Bi are positive constants

Ai = Tr [Σi] +
(
1− ȳ2

i

)
µTi µi

Bi =
∑
j

πj
(
Tr [Σj ] + ȳ2

i µ
T
i µi − 2ȳiȳjµ

T
i µj + µTj µj

)
.

Therefore, with 0−1 defined to be +∞,

E [mn] ≤ NE

[
1

1 +
∑
i |Ci|e−R

√
Ai|Ci|−1+Bi

]
.
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As N →∞, we expect the values of |Ci|/N to concentrate around πi. To get a finite sample bound
using this intuition, we split the expectation into two conditional expectations: one where all |Ci|/N
are not too far from πi, and one where they may be. Define g : R∞+ → R+ as

g(x) =
1

1 +
∑
i xie

−R
√
Aix

−1
i +Bi

,

π = (π1, π2, . . . ), ε = (ε1, ε2, . . . ) with εi > 0, and ηi = max(πi − εi, 0). Then

E [mn] ≤ NP
(
∀i, |Ci|

N
≥ ηi

)
g(Nη) +NP

(
∃i :
|Ci|
N

< ηi

)
= Ng(Nη) +NP

(
∃i :
|Ci|
N

< ηi

)
(1− g(Nη)) .

Using the union bound, noting that 1− g(Nη) ≤ 1, and then using Hoeffding’s inequality yields

E [mn] ≤ Ng(Nη) +N
∑
i

P
(
|Ci|
N

< ηi

)
≤ Ng(Nη) +N

∑
i:πi>εi

P
(
|Ci|
N
− πi < −εi

)
≤ Ng(Nη) +N

∑
i:πi>εi

e−2Nε2i

=
1

N−1 +
∑
i ηie

−R
√
AiN−1η−1

i +Bi

+
∑

i:πi>εi

Ne−2Nε2i .

We are free to pick ε as a function of π and N . Let ε = N−r for any 0 < r < 1/2. Note that this
means ηi = max(πi −N−r, 0). Then

E [mn] =
1

N−1 +
∑
i ηie

−R
√
AiN−1η−1

i +Bi

+
∑
i:ηi>0

Ne−2N1−2r

.

It is easy to see that the first term converges to
(∑

i πie
−R
√
Bi

)−1

by a simple asymptotic analysis.
To show the second term converges to 0, note that for all N ,∑

i

πi =
∑

i:πi>N−r

πi +
∑

i:πi≤N−r

πi

≥
∑

i:πi>N−r

πi

≥
∑

i:πi>N−r

N−r

=
∣∣{i : πi > N−r

}∣∣N−r.
Since

∑
i πi = 1 < ∞, |{i : πi > N−r}| = O(Nr). Therefore there exists constants C,M < ∞

such that ∣∣{i : πi > N−r
}∣∣ ≤M + CNr,

and thus ∑
i:πi>N−r

Ne−2N1−2r

≤ N(M + CNr)e−2N1−2r

→ 0, N →∞.

Finally, since m̄N = 1
N

∑N
n=1mn, we have E [m̄N ] = E [mn], and the result follows.

Proof of Corollary 3.9. This is a direct result of Proposition 3.8 with π1 = 1, πi = 0 for i ≥ 2.
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Table 1: Datasets used for experiments

Name N D positive examples k
Low-dimensional Synthetic Binary 1M 5 9.5% 4
Higher-dimensional Synthetic Binary 1M 10 8.9% 4
Synthetic Balanced Mixture 1M 10 50% 4
Chemical Reactivity2 26,733 100 3% 6
Webspam3 350K 127 60% 6
Cover type4 581,012 54 51% 6

E Further Experimental Details

The datasets we used are summarized in Table 1. We briefly discuss some implementation details of
our experiments.

Implementing Algorithm 1. One time-consuming part of creating the coreset is calculating the
adjusted centers Z̄(−n)

G,i . We instead used the original centersQi. Since we use small k values andN

in large, each cluster is large. Thus, the difference between Z̄(−n)
G,i andQi was negligible in practice,

resulting at most a 1% change in the sensitivity while resulting in an order of magnitude speed-up
in the algorithm. In order to speed up the clustering step, we selected a random subset of the data
of size L = min(1000k, 0.025N) and ran the sklearn implementation of k-means++ to obtain k
cluster centers. We then calculated the clustering and the normalized k-means score I for the full
dataset. Notice that L is chosen to be independent of N as N becomes large but is never more
than a construct fraction of the full dataset when N is small.1 Thus, calculating a clustering only
takes a small amount of time that is comparable to the time required to run our implementation of
Algorithm 1.

Posterior Inference Procedure. We used the adaptive Metropolis-adjusted Langevin algorithm [4,
8], where we adapted the overall step size and targeted an acceptance rate of 0.574 [7]. It T iterations
were used in total, adaptation was done for the first T/2 iterations while the remaining iterations
were used as approximate posterior samples. For the subsampling experiments, for a subsample size
M , an approximate dataset D̃ of sizeM was obtained either using random sampling or Algorithm 1.
The dataset D̃ was then fixed for the full MCMC run.
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