
The Sound of APALM Clapping: Faster Nonsmooth
Nonconvex Optimization with Stochastic

Asynchronous PALM

Damek Davis and Madeleine Udell
Cornell University

{dsd95,mru8}@cornell.edu

Brent Edmunds
University of California, Los Angeles
brent.edmunds@math.ucla.edu

Abstract

We introduce the Stochastic Asynchronous Proximal Alternating Linearized Min-
imization (SAPALM) method, a block coordinate stochastic proximal-gradient
method for solving nonconvex, nonsmooth optimization problems. SAPALM is the
first asynchronous parallel optimization method that provably converges on a large
class of nonconvex, nonsmooth problems. We prove that SAPALM matches the
best known rates of convergence — among synchronous or asynchronous methods
— on this problem class. We provide upper bounds on the number of workers
for which we can expect to see a linear speedup, which match the best bounds
known for less complex problems, and show that in practice SAPALM achieves
this linear speedup. We demonstrate state-of-the-art performance on several matrix
factorization problems.

1 Introduction

Parallel optimization algorithms often feature synchronization steps: all processors wait for the last to
finish before moving on to the next major iteration. Unfortunately, the distribution of finish times is
heavy tailed. Hence as the number of processors increases, most processors waste most of their time
waiting. A natural solution is to remove any synchronization steps: instead, allow each idle processor
to update the global state of the algorithm and continue, ignoring read and write conflicts whenever
they occur. Occasionally one processor will erase the work of another; the hope is that the gain from
allowing processors to work at their own paces offsets the loss from a sloppy division of labor.

These asynchronous parallel optimization methods can work quite well in practice, but it is difficult
to tune their parameters: lock-free code is notoriously hard to debug. For these problems, there
is nothing as practical as a good theory, which might explain how to set these parameters so as to
guarantee convergence.

In this paper, we propose a theoretical framework guaranteeing convergence of a class of asynchronous
algorithms for problems of the form

minimize
(x1,...,xm)∈H1×...×Hm

f(x1, . . . , xm) +

m∑
j=1

rj(xj), (1)

where f is a continuously differentiable (C1) function with an L-Lipschitz gradient, each rj is a lower
semicontinuous (not necessarily convex or differentiable) function, and the sets Hj are Euclidean
spaces (i.e.,Hj = Rnj for some nj ∈ N). This problem class includes many (convex and nonconvex)
signal recovery problems, matrix factorization problems, and, more generally, any generalized low
rank model [20]. Following terminology from these domains, we view f as a loss function and each
rj as a regularizer. For example, f might encode the misfit between the observations and the model,
while the regularizers rj encode structural constraints on the model such as sparsity or nonnegativity.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Many synchronous parallel algorithms have been proposed to solve (1), including stochastic proximal-
gradient and block coordinate descent methods [22, 3]. Our asynchronous variants build on these
synchronous methods, and in particular on proximal alternating linearized minimization (PALM) [3].
These asynchronous variants depend on the same parameters as the synchronous methods, such as
a step size parameter, but also new ones, such as the maximum allowable delay. Our contribution
here is to provide a convergence theory to guide the choice of those parameters within our control
(such as the stepsize) in light of those out of our control (such as the maximum delay) to ensure
convergence at the rate guaranteed by theory. We call this algorithm the Stochastic Asynchronous
Proximal Alternating Linearized Minimization method, or SAPALM for short.

Lock-free optimization is not a new idea. Many of the first theoretical results for such algorithms
appear in the textbook [2], written over a generation ago. But within the last few years, asynchronous
stochastic gradient and block coordinate methods have become newly popular, and enthusiasm in
practice has been matched by progress in theory. Guaranteed convergence for these algorithms has
been established for convex problems; see, for example, [13, 15, 16, 12, 11, 4, 1].

Asynchrony has also been used to speed up algorithms for nonconvex optimization, in particular,
for learning deep neural networks [6] and completing low-rank matrices [23]. In contrast to the
convex case, the existing asynchronous convergence theory for nonconvex problems is limited to the
following four scenarios: stochastic gradient methods for smooth unconstrained problems [19, 10];
block coordinate methods for smooth problems with separable, convex constraints [18]; block
coordinate methods for the general problem (1) [5]; and deterministic distributed proximal-gradient
methods for smooth nonconvex loss functions with a single nonsmooth, convex regularizer [9]. A
general block-coordinate stochastic gradient method with nonsmooth, nonconvex regularizers is still
missing from the theory. We aim to fill this gap.

Contributions. We introduce SAPALM, the first asynchronous parallel optimization method that
provably converges for all nonconvex, nonsmooth problems of the form (1). SAPALM is a a block
coordinate stochastic proximal-gradient method that generalizes the deterministic PALM method
of [5, 3]. When applied to problem (1), we prove that SAPALM matches the best, known rates of
convergence, due to [8] in the case where each rj is convex and m = 1: that is, asynchrony carries
no theoretical penalty for convergence speed. We test SAPALM on a few example problems and
compare to a synchronous implementation, showing a linear speedup.

Notation. Let m ∈ N denote the number of coordinate blocks. We letH = H1 × . . .×Hm. For
every x ∈ H, each partial gradient ∇jf(x1, . . . , xj−1, ·, xj+1, . . . , xm) : Hj → Hj is Lj-Lipschitz
continuous; we let L = minj{Lj} ≤ maxj{Lj} = L. The number τ ∈ N is the maximum
allowable delay. Define the aggregate regularizer r : H → (−∞,∞] as r(x) =

∑m
j=1 rj(xj). For

each j ∈ {1, . . . ,m}, y ∈ Hj , and γ > 0, define the proximal operator

proxγrj (y) := argmin
xj∈Hj

{
rj(xj) +

1

2γ
‖xj − y‖2

}
For convex rj , proxγrj (y) is uniquely defined, but for nonconvex problems, it is, in general, a set.
We make the mild assumption that for all y ∈ Hj , we have proxγrj (y) 6= ∅. A slight technicality
arises from our ability to choose among multiple elements of proxγrj (y), especially in light of the
stochastic nature of SAPALM. Thus, for all y, j and γ > 0, we fix an element

ζj(y, γ) ∈ proxγrj (y). (2)

By [17, Exercise 14.38], we can assume that ζj is measurable, which enables us to reason with expec-
tations wherever they involve ζj . As shorthand, we use proxγrj (y) to denote the (unique) choice
ζj(y, γ). For any random variable or vector X , we let Ek [X] = E

[
X | xk, . . . , x0, νk, . . . , ν0

]
denote the conditional expectation of X with respect to the sigma algebra generated by the history of
SAPALM.

2 Algorithm Description

Algorithm 1 displays the SAPALM method.

We highlight a few features of the algorithm which we discuss in more detail below.

2

Algorithm 1 SAPALM [Local view]

Input: x ∈ H
1: All processors in parallel do
2: loop
3: Randomly select a coordinate block j ∈ {1, . . . ,m}
4: Read x from shared memory
5: Compute g = ∇jf(x) + νj
6: Choose stepsize γj ∈ R++ . According to Assumption 3
7: xj ← proxγjrj (xj − γjg) . According to (2)

• Inconsistent iterates. Other processors may write updates to x in the time required to read x
from memory.
• Coordinate blocks. When the coordinate blocks xj are low dimensional, it reduces the

likelihood that one update will be immediately erased by another, simultaneous update.
• Noise. The noise ν ∈ H is a random variable that we use to model injected noise. It can be

set to 0, or chosen to accelerate each iteration, or to avoid saddle points.

Algorithm 1 has an equivalent (mathematical) description which we present in Algorithm 2, using an
iteration counter k which is incremented each time a processor completes an update. This iteration
counter is not required by the processors themselves to compute the updates.

In Algorithm 1, a processor might not have access to the shared-memory’s global state, xk, at
iteration k. Rather, because all processors can continuously update the global state while other
processors are reading, local processors might only read the inconsistently delayed iterate xk−dk =

(x
k−dk,1

1 , . . . , x
k−dk,m
m), where the delays dk are integers less than τ , and xl = x0 when l < 0.

Algorithm 2 SAPALM [Global view]

Input: x0 ∈ H
1: for k ∈ N do
2: Randomly select a coordinate block jk ∈ {1, . . . ,m}
3: Read xk−dk = (x

k−dk,1

1 , . . . , x
k−dk,m
m) from shared memory

4: Compute gk = ∇jkf(xk−dk) + νkjk
5: Choose stepsize γkjk ∈ R++ . According to Assumption 3
6: for j = 1, . . . ,m do
7: if j = jk then
8: xk+1

jk
← proxγk

jk
rjk

(xkjk − γ
k
jk
gk) . According to (2)

9: else
10: xk+1

j ← xkj

2.1 Assumptions on the Delay, Independence, Variance, and Stepsizes

Assumption 1 (Bounded Delay). There exists some τ ∈ N such that, for all k ∈ N, the sequence of
coordinate delays lie within dk ∈ {0, . . . , τ}m.
Assumption 2 (Independence). The indices {jk}k∈N are uniformly distributed and collectively IID.
They are independent from the history of the algorithm xk, . . . , x0, νk, . . . , ν0 for all k ∈ N.

We employ two possible restrictions on the noise sequence νk and the sequence of allowable stepsizes
γkj , all of which lead to different convergence rates:

Assumption 3 (Noise Regimes and Stepsizes). Let σ2
k := Ek

[
‖νk‖2

]
denote the expected squared

norm of the noise, and let a ∈ (1,∞). Assume that Ek
[
νk
]

= 0 and that there is a sequence of
weights {ck}k∈N ⊆ [1,∞) such that

(∀k ∈ N) , (∀j ∈ {1, . . . ,m}) γkj :=
1

ack(Lj + 2Lτm−1/2)
.

3

which we choose using the following two rules, both of which depend on the growth of σk:

Summable.
∑∞
k=0 σ

2
k <∞ =⇒ ck ≡ 1;

α-Diminishing. (α ∈ (0, 1)) σ2
k = O((k + 1)−α) =⇒ ck = Θ((k + 1)(1−α)).

More noise, measured by σk, results in worse convergence rates and stricter requirements regarding
which stepsizes can be chosen. We provide two stepsize choices which, depending on the noise regime,
interpolate between Θ(1) and Θ(k1−α) for any α ∈ (0, 1). Larger stepsizes lead to convergence
rates of order O(k−1), while smaller ones lead to order O(k−α).

2.2 Algorithm Features

Inconsistent Asynchronous Reading. SAPALM allows asynchronous access patterns. A proces-
sor may, at any time, and without notifying other processors:

1. Read. While other processors are writing to shared-memory, read the possibly out-of-sync,
delayed coordinates xk−dk,1

1 , . . . , x
k−dk,m
m .

2. Compute. Locally, compute the partial gradient∇jkf(x
k−dk,1

1 , . . . , x
k−dk,m
m).

3. Write. After computing the gradient, replace the jkth coordinate with

xk+1
jk
∈ argmin

y
rjk(y) + 〈∇jkf(xk−dk) + νkjk , y − x

k
jk
〉+

1

2γkjk
‖y − xkjk‖

2.

Uncoordinated access eliminates waiting time for processors, which speeds up computation. The
processors are blissfully ignorant of any conflict between their actions, and the paradoxes these
conflicts entail: for example, the states xk−dk,1

1 , . . . , x
k−dk,m
m need never have simultaneously existed

in memory. Although we write the method with a global counter k, the asynchronous processors need
not be aware of it; and the requirement that the delays dk remain bounded by τ does not demand
coordination, but rather serves only to define τ .

What Does the Noise Model Capture? SAPALM is the first asynchronous PALM algorithm to
allow and analyze noisy updates. The stochastic noise, νk, captures three phenomena:

1. Computational Error. Noise due to random computational error.
2. Avoiding Saddles. Noise deliberately injected for the purpose of avoiding saddles, as in [7].
3. Stochastic Gradients. Noise due to stochastic approximations of delayed gradients.

Of course, the noise model also captures any combination of the above phenomena. The last one is,
perhaps, the most interesting: it allows us to prove convergence for a stochastic- or minibatch-gradient
version of APALM, rather than requiring processors to compute a full (delayed) gradient. Stochastic
gradients can be computed faster than their batch counterparts, allowing more frequent updates.

2.3 SAPALM as an Asynchronous Block Mini-Batch Stochastic Proximal-Gradient Method

In Algorithm 1, any stochastic estimator ∇f(xk−dk ; ξ) of the gradient may be used, as long as
Ek
[
∇f(xk−dk ; ξ)

]
= ∇f(xk−dk), and Ek

[
‖∇f(xk−dk ; ξ)−∇f(xk−dk)‖2

]
≤ σ2. In particular,

if Problem 1 takes the form

minimize
x∈H

Eξ [f(x1, . . . , xm; ξ)] +
1

m

m∑
j=1

rj(xj),

then, in Algorithm 2, the stochastic mini-batch estimator gk = m−1k
∑mk

i=1∇f(xk−dk ; ξi),

where ξi are IID, may be used in place of ∇f(xk−dk) + νk. A quick calculation shows that
Ek
[
‖gk −∇f(xk−dk)‖2

]
= O(m−1k). Thus, any increasing batch size mk = Ω((k + 1)−α), with

α ∈ (0, 1), conforms to Assumption 3.

When nonsmooth regularizers are present, all known convergence rate results for nonconvex stochastic
gradient algorithms require the use of increasing, rather than fixed, minibatch sizes; see [8, 22] for
analogous, synchronous algorithms.

4

3 Convergence Theorem

Measuring Convergence for Nonconvex Problems. For nonconvex problems, it is standard to
measure convergence (to a stationary point) by the expected violation of stationarity, which for us is
the (deterministic) quantity:

Sk := E

 m∑
j=1

∥∥∥∥∥ 1

γkj
(wkj − xkj) + νk

∥∥∥∥∥
2
 ;

where (∀j ∈ {1, . . . ,m}) wkj = proxγk
j rj

(xkj − γkj (∇jf(xk−dk) + νkj)). (3)

A reduction to the case r ≡ 0 and dk = 0 reveals that wkj − xkj + γkj ν
k
j = −γkj∇jf(xk) and,

hence, Sk = E
[
‖∇f(xk)‖2

]
. More generally, wkj − rkj + γkj ν

k
j ∈ −γkj (∂Lrj(w

k
j) +∇jf(xk−dk))

where ∂Lrj is the limiting subdifferential of rj [17] which, if rj is convex, reduces to the standard
convex subdifferential familiar from [14]. A messy but straightforward calculation shows that our
convergence rates for Sk can be converted to convergence rates for elements of ∂Lr(wk) +∇f(wk).

We present our main convergence theorem now and defer the proof to Section 4.
Theorem 1 (SAPALM Convergence Rates). Let {xk}k∈N ⊆ H be the SAPALM sequence created
by Algorithm 2. Then, under Assumption 3 the following convergence rates hold: for all T ∈ N, if
{νk}k∈N is

1. Summable, then

min
k=0,...,T

Sk ≤ Ek∼PT
[Sk] = O

(
m(L+ 2Lτm−1/2)

T + 1

)
;

2. α-Diminishing, then

min
k=0,...,T

Sk ≤ Ek∼PT
[Sk] = O

(
m(L+ 2Lτm−1/2) +m log(T + 1)

(T + 1)−α

)
;

where, for all T ∈ N, PT is the distribution {0, . . . , T} such that PT (X = k) ∝ c−1k .

Effects of Delay and Linear Speedups. The m−1/2 term in the convergence rates presented in
Theorem 1 prevents the delay τ from dominating our rates of convergence. In particular, as long as
τ = O(

√
m), the convergence rate in the synchronous (τ = 0) and asynchronous cases are within a

small constant factor of each other. In that case, because the work per iteration in the synchronous
and asynchronous versions of SAPALM is the same, we expect a linear speedup: SAPALM with p
processors will converge nearly p times faster than PALM, since the iteration counter will be updated
p times as often. As a rule of thumb, τ is roughly proportional to the number of processors. Hence
we can achieve a linear speedup on as many as O(

√
m) processors.

3.1 The Asynchronous Stochastic Block Gradient Method

If the regularizer r is identically zero, then the noise νk need not vanish in the limit. The following
theorem guarantees convergence of asynchronous stochastic block gradient descent with a constant
minibatch size. See the supplemental material for a proof.
Theorem 2 (SAPALM Convergence Rates (r ≡ 0)). Let {xk}k∈N ⊆ H be the SAPALM sequence
created by Algorithm 2 in the case that r ≡ 0. If, for all k ∈ N, {Ek

[
‖νk‖2

]
}k∈N is bounded (not

necessarily diminishing) and

(∃a ∈ (1,∞)) , (∀k ∈ N) , (∀j ∈ {1, . . . ,m}) γkj :=
1

a
√
k(Lj + 2Mτm−1/2)

,

then for all T ∈ N, we have

min
k=0,...,T

Sk ≤ Ek∼PT
[Sk] = O

(
m(L+ 2Lτm−1/2) +m log(T + 1)√

T + 1

)
,

where PT is the distribution {0, . . . , T} such that PT (X = k) ∝ k−1/2.

5

4 Convergence Analysis

4.1 The Asynchronous Lyapunov Function

Key to the convergence of SAPALM is the following Lyapunov function, defined onH1+τ , which
aggregates not only the current state of the algorithm, as is common in synchronous algorithms, but
also the history of the algorithm over the delayed time steps: (∀x(0), x(1), . . . , x(τ) ∈ H)

Φ(x(0), x(1), . . . , x(τ)) = f(x(0)) + r(x(0)) +
L

2
√
m

τ∑
h=1

(τ − h+ 1)‖x(h)− x(h− 1)‖2.

This Lyapunov function appears in our convergence analysis through the following inequality, which
is proved in the supplemental material.
Lemma 1 (Lyapunov Function Supermartingale Inequality). For all k ∈ N, let zk =
(xk, . . . , xk−τ) ∈ H1+τ . Then for all ε > 0, we have

Ek
[
Φ(zk+1)

]
≤ Φ(zk)− 1

2m

m∑
j=1

(
1

γkj
− (1 + ε)

(
Lj +

2Lτ

m1/2

))
Ek
[
‖wkj − xkj + γkj ν

k
j ‖2
]

+

m∑
j=1

γkj
(
1 + γkj (1 + ε−1)

(
Lj + 2Lτm−1/2

))
Ek
[
‖νkj ‖2

]
2m

where for all j ∈ {1, . . . ,m}, we have wkj = proxγk
j rj

(xkj − γkj (∇jf(xk−dk) + νkj)). In particular,
for σk = 0, we can take ε = 0 and assume the last line is zero.

Notice that if σk = ε = 0 and γkj is chosen as suggested in Algorithm 2, the (conditional) expected
value of the Lyapunov function is strictly decreasing. If σk is nonzero, the factor ε will be used in
concert with the stepsize γkj to ensure that noise does not cause the algorithm to diverge.

4.2 Proof of Theorem 1

For either noise regime, we define, for all k ∈ N and j ∈ {1, . . . ,m}, the factor ε := 2−1(a − 1).
With the assumed choice of γkj and ε, Lemma 1 implies that the expected Lyapunov function decreases,
up to a summable residual: with Akj := wkj − xkj + γkj ν

k
j , we have

E
[
Φ(zk+1)

]
≤ E

[
Φ(zk)

]
− E

 1

2m

m∑
j=1

1

γkj

(
1− 1 + ε

ack

)
‖Akj ‖2


+

m∑
j=1

γkj
(
1 + γkj (1 + ε−1)

(
Lj + 2Lτm−1/2

))
E
[
Ek
[
‖νkj ‖2

]]
2m

. (4)

Two upper bounds follow from the the definition of γkj , the lower bound ck ≥ 1, and the straightfor-
ward inequalities (ack)−1(L+ 2Mτm−1/2)−1 ≥ γkj ≥ (ack)−1(L+ 2Mτm−1/2)−1:

1

ck
Sk ≤

1
(1−(1+ε)a−1)

2ma(L+2Lτm−1/2)

E

 1

2m

m∑
j=1

1

γkj

(
1− 1 + ε

ack

)
‖Akj ‖2


and
m∑
j=1

γkj
(
1 + γkj (1 + ε−1)

(
Lj + 2Lτm−1/2

))
Ek
[
‖νkj ‖2

]
2m

≤ (1 + (ack)−1(1 + ε−1))(σ2
k/ck)

2a(L+ 2Lτm−1/2)
.

Now rearrange (4), use E
[
Φ(zk+1)

]
≥ infx∈H{f(x) + r(x)} and E

[
Φ(z0)

]
= f(x0) + r(x0), and

sum (4) over k to get

1∑T
k=0 c

−1
k

T∑
k=0

1

ck
Sk ≤

f(x0) + r(x0)− infx∈H{f(x) + r(x)}+
∑T
k=0

(1+(ack)
−1(1+ε−1))(σ2

k/ck)

2a(L+2Lτm−1/2)

(1−(1+ε)a−1)

2ma(L+2Lτm−1/2)

∑T
k=0 c

−1
k

.

6

The left hand side of this inequality is bounded from below by mink=0,...,T Sk and is precisely the
term Ek∼PT

[Sk]. What remains to be shown is an upper bound on the right hand side, which we will
now call RT .

If the noise is summable, then ck ≡ 1, so
∑T
k=0 c

−1
k = (T+1) and

∑T
k=0 σ

2
k/ck <∞, which implies

that RT = O(m(L+ 2Lτm−1/2)(T + 1)−1). If the noise is α-diminishing, then ck = Θ
(
k(1−α)

)
,

so
∑T
k=0 c

−1
k = Θ((T + 1)α) and, because σ2

k/ck = O(k−1), there exists a B > 0 such that∑T
k=0 σ

2
k/ck ≤

∑T
k=0Bk

−1 = O(log(T +1)), which implies that RT = O((m(L+2Lτm−1/2)+
m log(T + 1))(T + 1)−α).

5 Numerical Experiments

In this section, we present numerical results to confirm that SAPALM delivers the expected perfor-
mance gains over PALM. We confirm two properties: 1) SAPALM converges to values nearly as
low as PALM given the same number of iterations, 2) SAPALM exhibits a near-linear speedup as
the number of workers increases. All experiments use an Intel Xeon machine with 2 sockets and 10
cores per socket.

We use two different nonconvex matrix factorization problems to exhibit these properties, to which
we apply two different SAPALM variants: one without noise, and one with stochastic gradient noise.
For each of our examples, we generate a matrix A ∈ Rn×n with iid standard normal entries, where
n = 2000. Although SAPALM is intended for use on much larger problems, using a small problem
size makes write conflicts more likely, and so serves as an ideal setting to understand how asynchrony
affects convergence.

1. Sparse PCA with Asynchronous Block Coordinate Updates. We minimize

argmin
X,Y

1

2
||A−XTY ||2F + λ‖X‖1 + λ‖Y ‖1, (5)

where X ∈ Rd×n and Y ∈ Rd×n for some d ∈ N. We solve this problem using SAPALM
with no noise νk = 0.

2. Quadratically Regularized Firm Thresholding PCA with Asynchronous Stochastic
Gradients. We minimize

argmin
X,Y

1

2
||A−XTY ||2F + λ(‖X‖Firm + ‖Y ‖Firm) +

µ

2
(‖X‖2F + ‖Y ‖2F), (6)

where X ∈ Rd×n, Y ∈ Rd×n, and ‖ · ‖Firm is the firm thresholding penalty proposed in [21]:
a nonconvex, nonsmooth function whose proximal operator truncates small values to zero
and preserves large values. We solve this problem using the stochastic gradient SAPALM
variant from Section 2.3.

In both experiments X and Y are treated as coordinate blocks. Notice that for this problem, the
SAPALM update decouples over the entries of each coordinate block. Each worker updates its
coordinate block (say, X) by cycling through the coordinates of X and updating each in turn,
restarting at a random coordinate after each cycle.

In Figures (1a) and (1c), we see objective function values plotted by iteration. By this metric,
SAPALM performs as well as PALM, its single threaded variant; for the second problem, the curves
for different thread counts all overlap. Note, in particular, that SAPALM does not diverge. But
SAPALM can add additional workers to increment the iteration counter more quickly, as seen in
Figure 1b, allowing SAPALM to outperform its single threaded variant.

We measure the speedup Sk(p) of SAPALM by the (relative) time for p workers to produce k iterates

Sk(p) =
Tk(p)

Tk(1)
, (7)

where Tk(p) is the time to produce k iterates using p workers. Table 2 shows that SAPALM achieves
near linear speedup for a range of variable sizes d. (Dashes — denote experiments not run.)

7

0 100 200 300 400
10

5

10
6

10
7

10
8

1
2
4
8
16

(a) Iterates vs objective

0 50 100 150 200
10

5

10
6

10
7

10
8

1
2
4
8
16

(b) Time (s) vs. objective

0 1 2 3 4
x 10

5

0.5

1

1.5

2

2.5

3

3.5x 10
7

1
2
4
8
16

(c) Iterates vs. objective

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5x 10
7

1
2
4
8
16

(d) Time (s) vs. objective

Figure 1: Sparse PCA ((1a) and (1b)) and Firm Thresholding PCA ((1c) and (1d)) tests for d = 10.

threads d=10 d=20 d=100
1 65.9972 253.387 6144.9427
2 33.464 127.8973 –
4 17.5415 67.3267 –
8 9.2376 34.5614 833.5635
16 4.934 17.4362 416.8038

Table 1: Sparse PCA timing for 16 iterations
by problem size and thread count.

threads d=10 d=20 d=100
1 1 1 1
2 1.9722 1.9812 –
4 3.7623 3.7635 –
8 7.1444 7.3315 7.3719
16 13.376 14.5322 14.743

Table 2: Sparse PCA speedup for 16 iterations
by problem size and thread count.

Deviations from linearity can be attributed to a breakdown in the abstraction of a “shared memory”
computer: as each worker modifies the “shared” variables X and Y , some communication is required
to maintain cache coherency across all cores and processors. In addition, Intel Xeon processors
share L3 cache between all cores on the processor. All threads compete for the same L3 cache space,
slowing down each iteration. For small d, write conflicts are more likely; for large d, communication
to maintain cache coherency dominates.

6 Discussion

A few straightforward generalizations of our work are possible; we omit them to simplify notation.

Removing the log factors. The log factors in Theorem 1 can easily be removed by fixing a
maximum number of iterations for which we plan to run SAPALM and adjusting the ck factors
accordingly, as in [14, Equation (3.2.10)].

Cluster points of {xk}k∈N. Using the strategy employed in [5], it’s possible to show that all cluster
points of {xk}k∈N are (almost surely) stationary points of f + r.

Weakened Assumptions on Lipschitz Constants. We can weaken our assumptions to allow Lj
to vary: we can assume Lj(x1, . . . , xj−1, ·, xj+1, . . . , xm)-Lipschitz continuity each partial gradient
∇jf(x1, . . . , xj−1, ·, xj+1, . . . , xm) : Hj → Hj , for every x ∈ H.

7 Conclusion

This paper presented SAPALM, the first asynchronous parallel optimization method that provably
converges on a large class of nonconvex, nonsmooth problems. We provide a convergence theory for
SAPALM, and show that with the parameters suggested by this theory, SAPALM achieves a near linear
speedup over serial PALM. As a special case, we provide the first convergence rate for (synchronous
or asynchronous) stochastic block proximal gradient methods for nonconvex regularizers. These
results give specific guidance to ensure fast convergence of practical asynchronous methods on a
large class of important, nonconvex optimization problems, and pave the way towards a deeper
understanding of stability of these methods in the presence of noise.

8

References
[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In 2012 IEEE 51st IEEE

Conference on Decision and Control (CDC), pages 5451–5452, Dec 2012.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods, volume 23.

[3] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming, 146(1-2):459–494, 2014.

[4] D. Davis. SMART: The Stochastic Monotone Aggregated Root-Finding Algorithm. arXiv preprint
arXiv:1601.00698, 2016.

[5] D. Davis. The Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems. arXiv preprint
arXiv:1604.00526, 2016.

[6] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang,
Q. V. Le, and A. Y. Ng. Large Scale Distributed Deep Networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1223–1231.
Curran Associates, Inc., 2012.

[7] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points—online stochastic gradient for tensor
decomposition. In Proceedings of The 28th Conference on Learning Theory, pages 797–842, 2015.

[8] S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for nonconvex stochastic
composite optimization. Mathematical Programming, 155(1):267–305, 2016.

[9] M. Hong. A distributed, asynchronous and incremental algorithm for nonconvex optimization: An admm
based approach. arXiv preprint arXiv:1412.6058, 2014.

[10] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous Parallel Stochastic Gradient for Nonconvex Optimiza-
tion. In Advances in Neural Information Processing Systems, pages 2719–2727, 2015.

[11] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An Asynchronous Parallel Stochastic Coordinate
Descent Algorithm. Journal of Machine Learning Research, 16:285–322, 2015.

[12] J. Liu, S. J. Wright, and S. Sridhar. An Asynchronous Parallel Randomized Kaczmarz Algorithm. arXiv
preprint arXiv:1401.4780, 2014.

[13] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan. Perturbed Iterate
Analysis for Asynchronous Stochastic Optimization. arXiv preprint arXiv:1507.06970, 2015.

[14] Y. Nesterov. Introductory Lectures on Convex Optimization : A Basic Course. Applied optimization.
Kluwer Academic Publ., Boston, Dordrecht, London, 2004.

[15] Z. Peng, Y. Xu, M. Yan, and W. Yin. ARock: an Algorithmic Framework for Asynchronous Parallel
Coordinate Updates. arXiv preprint arXiv:1506.02396, 2015.

[16] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A Lock-Free Approach to Parallelizing Stochastic
Gradient Descent. In Advances in Neural Information Processing Systems, pages 693–701, 2011.

[17] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317. Springer Science & Business
Media, 2009.

[18] P. Tseng. On the Rate of Convergence of a Partially Asynchronous Gradient Projection Algorithm. SIAM
Journal on Optimization, 1(4):603–619, 1991.

[19] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous deterministic and stochastic gradient
optimization algorithms. IEEE Transactions on Automatic Control, 31(9):803–812, Sep 1986.

[20] M. Udell, C. Horn, R. Zadeh, and S. Boyd. Generalized Low Rank Models. arXiv preprint arXiv:1410.0342,
2014.

[21] J. Woodworth and R. Chartrand. Compressed sensing recovery via nonconvex shrinkage penalties. arXiv
preprint arXiv:1504.02923, 2015.

[22] Y. Xu and W. Yin. Block Stochastic Gradient Iteration for Convex and Nonconvex Optimization. SIAM
Journal on Optimization, 25(3):1686–1716, 2015.

[23] H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vishwanathan, and I. Dhillon. NOMAD: Non-locking, Stochastic
Multi-machine Algorithm for Asynchronous and Decentralized Matrix Completion. Proc. VLDB Endow.,
7(11):975–986, July 2014.

9

