
Supplemental Material for:
CYCLADES: Conflict-free Asynchronous

Machine Learning

A Algorithms in the Stochastic Updates family

Here we show that several algorithms belong to the Stochastic Updates (SU) family. These include
the well-known stochastic gradient descent, iterative linear solvers, stochastic PCA and others, as well
as combinations of weight decay updates, variance reduction methods, and more. Interestingly, even
some combinatorial graph algorithms fit under the SU umbrella, such as the maximal independent
set, greedy correlation clustering, and others. We visit some of these algorithms below.

Stochastic Gradient Descent (SGD) Given n functions f
1

, . . . , fn, one often wishes to minimize
the average of these functions:

min

x

1

n

n
X

i=1

fi(x).

A popular algorithm to do so —even in the case of non-convex losses— is the stochastic gradient
descent:

xk+1

= xk � �k ·rfi
k

(xk).

In this case, the distribution D for each sample ik is usually a with or without replacement uniform
sampling among the n functions. For this algorithm the conflict graph between the n possible different
updates is completely determined by the support of the gradient vectorrfi

k

(xk).

Weight decay and regularization Similar to SGD, in some cases we might wish to regularize the
objective with an `

2

term and solve instead the following optimization:

min

x

1

n

n
X

i=1

fi(x) +

⌘

2

||x||2
2

.

In this case, the update is a weighted version of the “non-regularized" SGD:

xk+1

= (1� �k⌘) · xk � �k ·rfi
k

(xk).

The above stochastic update algorithm can be also be written in the SU language. Although here for
each single update the entire model has to be updated with the new weights, we show below that with
a simple technique it can be equivalently expressed so that each update is sparse and the support is
again determined by the gradient vectorrfi

k

(xk).

First order techniques with variance reduction Variance reduction is a technique that is usually
employed for (strongly) convex problems, where we wish to minimize the variance of SGD in order
to achieve better rates. A popular way to do variance reduction is either through SVRG or SAGA,
where a “memory” factor is used in the computation of each gradient update rule. For SAGA we have

xk+1

= xk � � ·

rfs
k

(xk)� gs
k

+

1

n

n
X

i=1

gi

!

gs
k

= rfs
k

(xk).

For SVRG the update rule is

xk+1

= xk � �k · (rfi
k

(xk)�rfi
k

(y) + g)

10

where g = rf(y), and y is updated every T iterations of the previous form to be equal to the last xk

iterate. Again, although at first sight the above updates seem to be dense, we show below how we can
equivalently rewrite them so that the update-conflict graph is completely determined by the support
of the gradient vector rfi

k

(xk).

To reiterate, all of the above algorithms, various combinations of them, and further extensions can be
written in the language of SU, as presented in Alg. 2.

A.1 Lazy Updates

For the cases of weight decay/regularization, and variance reduction, we can reinterpret their inher-
ently dense updates in an equivalent sparse form. Let us consider the following generic form of
updates:

xj (1� µj)xj � ⌫j + hij(xS
i

) (1)

where hij(xS
i

) = 0 for all j 62 Si. Each stochastic update therefore reads from the set Si but writes
to every coordinate. However, it is possible to make updates lazily only when they are required.
Observe that if ⌧j updates are made, each of which have hij(xS

i

) = 0, then we could rewrite these
⌧j updates in closed form as

xj = (1� µj)
⌧
jxj � ⌫j

⌧
j

X

k=1

(1� µj)
k (2)

= (1� µj)
⌧
jxj � ⌫j

µj
(1� µj) (1� (1� µj)

⌧
j

) . (3)

This allows the stochastic updates to only write to coordinates in Si and defer writes to other
coordinates. This procedure is described in Algorithm 3. With CYCLADES it is easy to keep track of
⌧j , since we know the serially equivalent order of each stochastic update. On the other hand, it is
unclear how a HOGWILD! approach would behave with additional noise in ⌧j due to asynchrony. In
fact, HOGWILD! could possibly result in negative values of ⌧j , and in practice, we find that it is often
useful to threshold ⌧j by max(0, ⌧j).

Algorithm 3 Lazy Stochastic Updates pseudo-
algorithm

1: Input: x; f
1

, . . . , fn; u
1

, . . . , un; g
1

, . . . , gn;D; T .
2: Initialize ⇢(j) = 0.
3: for t = 1 : T do
4: sample i ⇠ D
5: xS

i

= read coordinates Si from x

6: for j 2 Si do
7: ⌧j = t� ⇢(j)� 1.
8: xj (1� µj)

⌧
jxj � ⌫j

P⌧
j

k=1

(1�
µj)

k.
9: xj (1� µj)xj � ⌫j + hij(xS

i

).
10: ⇢(j) t.
11: Output: x

Weight decay and regularization The
weighted decay SGD update is a special case of
Eq 1, with µj = ⌘� and ⌫j = 0. Eq 3 becomes
xj (1� ⌘�)

⌧
jxj .

Variance reduction with sparse gradi-
ents Suppose rfi(x) is sparse, such that
[rfi(x)]j = 0 for all x and j 62 Si. Then
we can perform SVRG and SAGA using lazy
updates, with µj = 0. For SAGA, the update
Eq 2 becomes

xj xj � �⌧jgj

where gj =

⇥

1

n

Pn
i=1

yk,i

⇤

j
is the jth coordi-

nate of the average gradient. For SVRG, we
instead use gj = [rf(y)]j .

SGD with dense linear gradients Suppose
instead that the gradient is dense, but has linear form [rfi(x)]j = �jxj � j +

˜hij(xS
i

), where
˜hij(xS

i

) = 0 for j 62 Si. The SGD stochastic update on the jth coordinate is then

xj xj � �(�jxj � j +

˜hij(xS
i

))

= (1� ��j)xj + �j � �˜hij(xS
i

).

This fits into our lazy-updates framework with µj = ��j , ⌫j = ��j , and hij(xS
i

) = ��˜hij(xS
i

).

11

SVRG with dense linear gradients Suppose instead that the gradient is dense, but has linear form
[rfi(x)]j = �jxj � j +

˜hij(xS
i

), where ˜hij(xS
i

) = 0 for j 62 Si. The SVRG stochastic update
on the jth coordinate is then

xj xj � �
⇣

�jxj � j +

˜hij(xS
i

)� �jyj + j � ˜hij(yS
i

) + gj

⌘

= (1� ��j)xj � �(gj � �jyj)� �
⇣

˜hij(xS
i

)� ˜hij(yS
i

)

⌘

where gj = [rf(y)]j as above. This fits into our framework with µj = ��j , ⌫j = �(gj � �jyj),
and hij(xS

i

) = ��
⇣

˜hij(xS
i

)� ˜hij(yS
i

)

⌘

.

B With and Without Replacement Proofs

In this Appendix, we show how the sampling and shattering Theorem 2 can be restated for sampling
with, or without replacement to establish Theorem 3.

Let us define three sequences of binary random variables {Xi}n
i=1

, {Yi}n
i=1

, and {Zi}n
i=1

. {Xi}n
i=1

consists of n i.i.d. Bernoulli random variables, each with probability p. In the second sequence
{Yi}n

i=1

, a random subset of B random variables is set to 1 without replacement. Finally, in the third
sequence {Zi}n

i=1

, we draw B variables with replacement, and we set them to 1. Here, B is integer
that satisfies the following bounds

(n + 1) · p� 1  B < (n + 1) · p.

Now, consider any function f , that has a “monotonicity" property:

f(x
1

, . . . , xi, . . . , xn) � f(x
1

, . . . , 0, . . . , xn), for all i = 1, . . . , n.

Let us now define

⇢X = Pr (f(X
1

, . . . , Xn) > C)

⇢Y = Pr (f(Y
1

, . . . , Yn) > C)

⇢Z = Pr (f(Z
1

, . . . , Zn) > C)

for some number C, and let us further assume that we have an upper bound on the above probability

⇢X  �.

Our goal is to bound ⇢Y and ⇢Z . By expanding ⇢X using the law of total probability we have

⇢X =

n
X

b=0

Pr

f(X
1

, . . . , Xn) > C

�

�

�

�

�

n
X

i=1

Xi = b

!

· Pr

n
X

i=1

Xi = b

!

=

n
X

b=0

qb · Pr

n
X

i=1

Xi = b

!

where qb = Pr (f(X
1

, . . . , Xn) > C |Pn
i=1

Xi = b), denotes the probability that f(X
1

, . . . , Xn) >
C given that a uniformly random subset of b variables was set to 1. Moreover, we have

⇢Y =

n
X

b=0

Pr

f(Y
1

, . . . , Yn) > C

�

�

�

�

�

n
X

i=1

Yi = b

!

· Pr

n
X

i=1

Yi = b

!

(i)
=

n
X

b=0

qb · Pr

n
X

i=1

Yi = b

!

(ii)
= qB · 1 (4)

where (i) comes form the fact that Pr (f(Y
1

, . . . , Yn) > C |Pn
i=1

Yi = b) is the same as the proba-
bility that that f(X

1

, . . . , Xn) > C given that a uniformly random subset of b variables where set
to 1, and (ii) comes from the fact that since we sample without replacement in Y , we have that
Pn

i Yi = B always.

12

In the expansion of ⇢X , we can keep the b = B term, and lower bound the probability to obtain:

⇢X =

n
X

b=0

qb · Pr

n
X

i=1

Xi = b

!

� qB · Pr

n
X

i=1

Xi = B

!

= ⇢Y · Pr

n
X

i=1

Xi = B

!

(5)

since all terms in the sum are non-negative numbers. Moreover, since Xis are Bernoulli random
variables, their sum

Pn
i=1

Xi is Binomially distributed with parameters n and p. We know that
the maximum of the Binomial pmf with parameters n and p occurs at Pr (

P

i Xi = B) where B
is the integer that satisfies the upper bound mentioned above: (n + 1) · p � 1  B < (n + 1) · p.
Furthermore, the maximum value of the Binomial pmf, with parameters n and p, cannot be less than
the corresponding probability of a uniform element:

Pr

n
X

i=1

Xi = B

!

� 1

n
. (6)

If we combine (5) and (6) we get

⇢X � ⇢Y /n, ⇢Y  n · �. (7)

The above establish a relation between the without replacement sampling sequence {Yi}n
i=1

, and the
i.i.d. uniform sampling sequence {Xi}n

i=1

.

Then, for the last sequence {Zi}n
i=1

we have

⇢Z =

n
X

b=0

Pr

f(Z
1

, . . . , Zn) > C

�

�

�

�

�

n
X

i=1

Zi = b

!

· Pr

n
X

i=1

Zi = b

!

(i)
=

B
X

b=1

qb · Pr

n
X

i=1

Zi = b

!

(8)

(ii)


✓

max

1bB
qb

◆

·
B
X

b=1

Pr

n
X

i=1

Zi = b

!

(iii)
= qB = ⇢Y  n · �,

where (i) comes from the fact that Pr (

Pn
i=1

Zi = b) is zero for b = 0 and b > B, (ii) comes by
applying Hölder’s Inequality, and (iii) holds since f is assumed to have the monotonicity property:

f(x
1

, . . . , xi, . . . , xn) � f(x
1

, . . . , 0, . . . , xn),

for any sequence of variables x
1

, . . . , xn. Hence, for any b
1

� b
2

Pr

f(Z
1

, . . . , Zn) > C

�

�

�

�

�

n
X

i=1

Zi = b
1

!

� Pr

f(Z
1

, . . . , Zn) > C

�

�

�

�

�

n
X

i=1

Zi = b
2

!

. (9)

In conclusion, we have upper bounded ⇢Z and ⇢Y by

⇢Z  ⇢Y  n · ⇢X  n · �. (10)

Application to Theorem 3: For our purposes, the above bound Eq. (10) allows us to assert Theorem 3
for with replacement, without replacement, and i.i.d. sampling, with different constants. Specifically,
for any graph G, the size of the largest connected component in the sampled subgraph can be
expressed as a function fG(x

1

, . . . , xn), where each xi is an indicator for whether the ith vertex was
chosen in the sampling process. Note that fG is a monotone function, i.e., fG(x

1

, . . . , xi, . . . , xn) �
fG(x

1

, . . . , 0, . . . , xn) since adding vertices to the sampled subgraph may only increase (or keep
constant) the size of the largest connected component. We note that the high probability statement of
Theorem 2, can be restated so that the constants in front of the size of the connected components
accomodate for a statement that is true with probability 1 � 1/n⇣ , for any constant ⇣ > 1. This
is required to take care of the extra n factor that appears in the bound of Eq. 10, and to obtain
Theorem 3.

13

C Robustness against High-degree Outliers

Here, we discuss how CYCLADES can guarantee nearly linear speedups when there is a sublinear
O(n�

) number of high-conflict updates, as long as the remaining updates have small degree.

Assume that our conflict graph Gc defined between the n update functions has a very high maximum
degree �o. However, consider the case where there are only O(n�

) nodes that are of that high-degree,
while the rest of the vertices have degree much smaller (on the induced subgraph by the latter
vertices), say �. According to our main analysis, our prescribed batch sizes cannot be greater than
B = (1� ✏) (1�✏)n

�

o

. However, if say �o = ⇥(n), then that would imply that B = O(1), hence there
is not room for parallelization by CYCLADES. What we will show, is that by sampling according to
B = (1� ✏)n�O(n�

)

�

, we can on average expect a parallelization that is similar to the case where the
outliers are not present in the conflict graph. For a toy example see Figure 7.

�o = 6

� = 2

Figure 7: The above conflict graph has a vertex with high degree (i.e., �
o

= 6), and the remaining of the graph
has maximum induced degree � = 2. In this toy case, when we sample roughly n�1

� = 3 vertices, more often
than not, the large degree vertex will not be part of the sampled batch. This implies that when parallelizing with
CYCLADES these cases will be as much parallelizable as if the high degree vertex was not part of the graph. Each
time we happen to sample a batch that includes the max. degree vertex, then essentially we lose all flexibility
to parallelize, and we have to run the serial algorithm. What we establish rigorously is that “on average" the
parallelization will be as good as one would hope for even in the case where the outliers are not present.

Our main result for the outlier case follows:
Lemma 3. Let us assume that there are O(n�

) outlier vertices in the original conflict graph G with
degree at most �o, and let the remaining vertices have degree (induced on the remaining graph) at
most �. Let the induced update-variable graph on these low degree vertices abide to the same graph
assumptions as those of Theorem 1. Moreover, let the batch size be bounded as

B  min

⇢

(1� ✏)
n�O(n�

)

�

, O

✓

n1��

P

◆�

.

Then, the expected runtime of CYCLADES will be O
�

E
u

·
P · log

2 n
�

.

Proof. Let wi
s denote the total work required for batch i if that batch contains no outlier notes, and

wi
o otherwise. It is not hard to see that ws =

P

i wi
s = O

�

E
u

·
P · log

2 n
�

and wo =

P

i wi
s =

O
�

Eu ·  · log

2 n
�

Hence, the expected computational effort by CYCLADES will be

ws · Pr{a random batch contains no outliers} + wo Pr{a random batch contains outliers}
where

Pr{a random batch contains no outliers} = ⌦

✓

1� 1

n1��

◆B
!

� 1�O

✓

B

n1��

◆

(11)

Hence the expected running time will be proportional to O
�

E
u

·
P · log

2 n
�

, if O(

E
u

·
P · log

2 n) =

O(Eu ·  · log

2 n · B
n1��

), which holds when B = O
⇣

n1��

P

⌘

.

D Parallel Connected Components Computation

As we will see in the following, the cost of computing CCs in parallel will depend on the number of
cores so that uniform allocation across them is possible, and the number of edges that are induced

14

by the sampled updates on the bipartite update-variable graph Gu is bounded. As a reminder we
denote as Gi

u the bipartite subgraphs of the update-variable graph Gu, that is induced by the sampled
updates of the i-th batch. Let us denote as Ei

u the number of edges in Gi
u.

Following the sampling recipe of our main text (i.e., sampling each update per batch uniformly and
with replacement), let us assume here that we are sampling c · n updates in total, for some constant
c � 1. Assuming that the size of each batch is B = (1� ✏) n

�

, the total number of sampled batches
will be nb =

c
1�✏�. The total number of edges in the induced sampled bipartite graphs is a random

variable that we denote as

Z =

n
b

X

i=1

Ei
u.

Observe that EZ = c · Eu. Using a simple Hoeffding concentration bound we can see that

Pr {|Z � cEu| > (1 + �)c · Eu}  2e
� 2c2·(1+�)2E

2
u

c·n�2
L  2e

�2c·(1+�)2·n�2
L

�2
L

where �L is the max left degree of the bipartite graph Gu and �L is its average left degree. Now
assuming that

�L

�L
 pn

we obtain
Pr {|Z � cEu| > log n · c · Eu}  2e�c·log2 n.

Hence, we get the following simple lemma:

Lemma 4. Let �L
�L
 pn. Then, the total number of edges Z =

Pn
b

i=1

Ei
u across the nb =

c
1�✏�

sampled subgraphs G1

u, . . . , Gn
b

u is less than O(Eu log n) with probability 1� n�⌦(log n).

Now that we have a bound on the number of edges in the sampled subgraphs, we can derive the
complexity bounds for computing CCs in parallel. We will break the discussion into the not-too-many-
and many-core regime.

The not-too-many cores regime. In this case, we sample nb subgraphs, allocate them across P
cores, and let each core compute CCs on its allocated subgraphs using BFS or DFS. Since each batch
is of size B = (1� ✏) n

�

, we need nb = bc · n/Bc = c · b �

1�✏c batches to cover c · n updates in total.
If the number of cores is

P = O

✓

�L

�L
· �
◆

,

then the max cost of a single CC computation on a subgraph (which is O(B�L)) is smaller than the
average cost across P cores, which is O(Z/P). This implies that a uniform allocation is possible, so
that P cores can share the computational effort of computing CCs. Hence, we can get the following
lemma:

Lemma 5. Let the number of cores be P = O
⇣

�L
�L

· �
⌘

, and let us sample O(�) batches, where

each batch is of size O(

n
�

). Then, each core will not spend more than O
⇣

E
u

log n
P

⌘

time in computing
CCs, with high probability.

The many-cores regime. When P >> �L
�L

the uniform balancing of the above method will break,
leaving no room for further parallelization. In that case, we can use a very simple “push-label”
CC algorithm, whose cost on P cores and arbitrary graphs with E edges and max degree � is
O(max{E

P , �} · C
max

), where C
max

is the size of the longest-shortest path, or the diameter of the
graph. This parallel CC algorithm is given below, where each core is allocated with a number of
vertices

The above simple algorithm can be significantly slow for graphs where the longest-shortest path
is large. Observe, that in the sampled subgraphs Gi

u the size of the shortest-longest path is always
bounded by the size of the largest connected component. By Theorem 3 that is bounded by O

⇣

log n
✏2

⌘

.
Hence, we obtain the following lemma.

15

Lemma 6. For any number of cores P = O(

n
�·�L

), computing the connected component of a single

sampled graph Gi
u can be performed in time O(

Ei

u

log n
P), with high probability.

Algorithm 5 push-label

1: Initialize shared cc(v) variables to vertexIDs
2: for i = 1 : length of longest shortest path do
3: for v in the allocated vertex set do
4: for all u that are neighbors of v do
5: Read cc(v) from shared memory
6: if cc(u) > cc(v) then
7: Update shared cc(u)

min(cc(u), cc(v))

Since, we are interested in the overall running
time for nb batches of the CC algorithm, we can
see that the above lemma simply boils down to
the following:

Corollary 1. For any number of cores P =

O(

n
�·�L

), computing the connected component
for all sampled graph G1

u, . . . , Gn
b

u can be per-
formed in time O(

E log

2 n
P).

Remark 2. In practice it seems to be that par-
allelizing the CC computation using the not-too-
many core regime policy is significantly more
scalable.

E Allocating the Conflict Groups

After we have sampled a single batch (i.e., a subgraph Gi
u), and computed the CCs for it, we have

to allocate the connected components of that sampled subgraph across cores. Observe that each
connected component will contain at most log n updates, each ordered according to the a serial
predetermined order. Once a core has been assigned all the CCs, it will process all the updates
included in the CCs according to the order that each update has been labeled with.

Now assuming that the cost of the i-th update is wi, the cost of a single connected component C
will be wC =

P

i2C wi. We can now allocate the CCs accross cores so that the maximum core load
is minimized, using the following 4/3-approximation algorithm (i.e., an allocation with max load
that is at most 4/3 times the maximum between the max weight, and the sum of weights divided by
P):To proceed with characterizing the maximum load among the P cores, we assume that the cost of
a single update Ui is proportional to the out-degree of that update —according to the update-variable
graph Gu— times a constant cost which we shall refer to as . Hence, wi = O(dL,i · ), where dL,i

is the degree of the i-th left vertex of Gu.

Algorithm 6 Greedy allocation
1: Input {w1, . . . , wm

} % weights to be
allocated

2: b1 = 0, . . . , b
P

= 0 % empty buckets
3: w = sorted stack of the weights (descending

order)
4: for i = 1 : m do
5: w = pop(w)
6: add w to bucket b

i

with least sum of weights

Observe that the total cost of computing the
updates in a single sampled subgraph Gi

u is pro-
portional to O(Ei

u · ). Moreover, observe that
the maximum weight among all CCs cannot be
more than O(�L log n) where �L is the max
left degree of the bipartite update-variable graph
Gu.

Lemma 7. We can allocate CCs such
that the maximum load among cores is
O
⇣

max

n

Ei

u

P , �L log n
o

· 
⌘

, with high prob-
ability, where  is the per edge cost for comput-
ing one of the n updates defined on Gu.

If P = O
⇣

n
�·�L

⌘

then the average weight will be larger than the maximum divided by a log n factor,
and a near-uniform allocation of CCs according to their weights possible. Since, we are interested in
the overall running time for nb batches, we can see that the above lemma simply boils down to the
following:

Corollary 2. For any number of cores P = O(

n
�·�L

), computing the stochastic updates of the
allocated connected component for all sampled graphs (i.e., batches) G1

u, . . . , Gn
b

u can be performed
in time O(

E log

2 n
P · ).

16

Dataset # datapoints # features Density (average Commentsnumber of features
per datapoint)

NH2010 48,838 48,838 4.8026 Topological graph of 49
Census Blocks in New Hampshire.

DBLP 5,425,964 5,425,964 3.1880 Authorship network of 1.4M authors
and 4M publications, with 8.65M edges.

MovieLens ⇠10M 82,250 200 10M movie ratings from 71,568 users
for 10,682 movies.

EN-Wiki 20,207,156 213,272 200 Subset of English Wikipedia dump.
Table 3: Details of datasets used in our experiments.

Problem Algorithm Dataset HOGWILD! CYCLADES Batch Average # Average size
Stepsize Stepsize Size of connected of connected

components components

Least squares SAGA NH2010 1⇥ 10�14 3⇥ 10�14 1,000 792.98 1.257
DBLP 1⇥ 10�5 3⇥ 10�4 10,000 9410.34 1.062

Graph eigen SVRG NH2010 1⇥ 10�5 1⇥ 10�1 1,000 792.98 1.257
DBLP 1⇥ 10�7 1⇥ 10�2 10,000 9410.34 1.062

Matrix comp SGD MovieLens 5⇥ 10�5 5,000 1663.73 3.004Weighted SGD
Word embed SGD EN-Wiki 1⇥ 10�10 4,250 2571.51 1.653

Table 4: Stepsizes and batch sizes for the various learning tasks in our evaluation. We selected stepsizes that
maximize convergence without diverging. We also chose batch sizes to maximize performance of CYCLADES.
We further list the average size of connected components and the average number of connected components in
each batch. Typically there are many connected components with small average size, which leads to good load
balancing for CYCLADES.

F Evaluation — Long version

F.1 Implementation and Setup

Our experiments were conducted on a machine with 72 CPUs (Intel(R) Xeon(R) CPU E7-8870 v3,
2.10 GHz) on 4 NUMA nodes, each with 18 CPUs, and 1TB of memory. We ran both CYCLADES
and HOGWILD! with 1, 4, 8, 16 and 18 threads pinned to CPUs on a single NUMA node (i.e., the
maximum physical number of cores possible, for a single node), so that we can avoid well-known
cache coherence and scaling issues across different nodes [24]. We note that distributing threads
across NUMA nodes significantly increased running times for both CYCLADES and HOGWILD!, but
was relatively worse for HOGWILD!. We believe this is due to the poorer locality of HOGWILD!,
which results in more cross-node communication. In this paper, we exclusively focus our study
and experiments on parallelization within a single NUMA node, and leave cross-NUMA node
parallelization for future work, while referring the interested reader to a recent study of the various
tradeoffs of ML algorithms on NUMA aware architectures [24].

In Table 3 we list some details of the datasets that we use in our experiments. The stepsizes and
batch sizes used for each problem are listed in Table 4, along with dataset and problem details. In
general, we chose the stepsizes to maximize convergence without diverging. Batch sizes were picked
to optimize performance for CYCLADES.

F.2 Learning tasks and algorithmic setup

Least squares via SAGA The first problem we consider is least squares:

min

x

1

n
kAx� bk2

2

= min

x

1

n

n
X

i=1

(a

T
i x� bi)

2

which we will solve using the SAGA algorithm [7], an incrimental gradient algorithm with faster
than SGD rates on convex, or strongly convex functions. In SAGA, we initialize gi = rfi(x0

) and
iterate the following two steps

xk+1

= xk � � ·

rfs
k

(xk)� gs
k

+

1

n

n
X

i=1

gi

!

gs
k

= rfs
k

(xk).

17

where fi(x) = (a

T
i x � bi)

2 and rfi(x) = 2

�

a

T
i x� bi

�

ai. In the above iteration it is useful to
observe that the updates can be performed in a sparse and "lazy" way. That is for any updates where
the sampled gradients rfs

k

have non-overlapping support, we can still run them in parallel, and
apply the vector of gradient sums at the end of a batch "lazily". We explain the details of the lazy
updates in Appendix A.1. This requires computing the number of skipped gradient sum updates, say
they were ⌧j of them for each lazily updated coordinate j, which may be negative in HOGWILD!
due to re-ordering of updates. We thresholded ⌧j when needed in the HOGWILD! implementation,
as this produced better convergence for HOGWILD!. Unlike other experiments, we used different
stepsizes � for CYCLADES and HOGWILD!, as HOGWILD! would often diverge with larger stepsizes.
The stepsizes chosen for each were the largest such that the algorithms did not diverge. We used the
DBLP and NH2010 datasets for this experiment, and set A as the adjacency matrix of each graph.
For NH2010, the values of b were set to population living in the Census Block. For DBLP we used
synthetic values: we set b = A

˜

x + 0.1˜

z, where ˜

x and ˜

z were generated randomly. The SAGA
algorithm was run for up to 500 epochs for each dataset.

Graph eigenvector via SVRG Given an adjacency matrix A, the top eigenvector of AT
A is useful

in several applications such as spectral clustering, principle component analysis, and others. In a
recent work, [10] proposes an algorithm for computing the top eigenvector of AT

A by running
intermediate SVRG steps to approximate the shift-and-invert iteration. Specifically, at each step
SVRG is used to solve

min

1

2

x

T
(�I�A

T
A)x� b

T
x = min

n
X

i=1

✓

1

2

x

T

✓

�

n
I� aia

T
i

◆

x� 1

n
b

T
x

◆

.

According to [10], if we initialize y = x

0

and assume kaik = 1, we have to iterate the following
updates

xk+1

= xk � � · n · (rfs
k

(xk)�rfs
k

(y)) + � ·rf(y)

where after every T iterations we update y = xk, and the stochastic gradients are of the form
rfi(x) =

�

�
nI� aia

T
i

�

x� 1

nb.

We apply CYCLADES to SVRG with dense linear gradients (see App. A.1) for parallelizing this
problem, which uses lazy updates to avoid dense operations on the entire model x. This requires
computing the number of skipped updates, ⌧j , for each lazily updated coordinate, which may be
negative in HOGWILD! due to re-ordering of updates. In our HOGWILD! implementation, we
thresholded the bookkeeping variable ⌧j (described in App. A.1), as we found that this produced
faster convergence. The rows of A are normalized by their `

2

-norm, so that we may apply the SVRG
algorithm of [10] with uniform sampling. Two graph datasets were used in this experiment. The
first, DBLP (http://snap.stanford.edu/data) is an authorship network consisting of 1.4M
authors and 4M publications, with 8.65M edges. The second, NH2010 (http://cise.ufl.edu/
research/sparse/matrices/DIMACS10/nh2010.html) is a weighted topological graph of 49
Census Blocks in New Hampshire, with an edge between adjacent blocks, for a total of 234K edges.
We ran SVRG for 50 and 100 epochs for NH2010 and DBLP respectively.

Matrix completion via SGD In the matrix completion problem, we are given a partially observed
n⇥m matrix M, and wish to factorize it as M ⇡ UV where U and V are low rank matrices with
dimensions n⇥ r and r ⇥m respectively. This may be achieved by optimizing

min

U,V

X

(i,j)2⌦

(Mi,j �Ui,·V·,j)
2

where ⌦ is the set of observed entries, which can be approximated by SGD on the observed samples.
The objective can also be regularized as:

min

U,V

X

(i,j)2⌦

(Mi,j�Ui,·V·,j)
2

+

�

2

(kUk2F +kVk2F) = min

U,V

X

(i,j)2⌦

✓

(Mi,j �Ui,·V·,j)
2

+

1

|⌦|
�

2

(kUk2F + kVk2F)

◆

.

The regularized objective can be optimized by weighted SGD, which samples (i, j) 2 ⌦ and updates

Ui0,·
⇢

(1� ��)Ui,· � � · |⌦| · 2(Ui,·V·,j �Mi,j)(V·,j)
T if i = i0

(1� ��)Ui0,· otherwise

18

http://snap.stanford.edu/data
http://cise.ufl.edu/research/sparse/matrices/DIMACS10/nh2010.html
http://cise.ufl.edu/research/sparse/matrices/DIMACS10/nh2010.html

and analogously for V·,j In our experiments, we chose a rank of r = 100, and ran SGD and weighted
SGD for 200 epochs. We used the MovieLens 10M dataset containing 10M ratings for 10,000 movies
by 72,000 users.

Word embedding via SGD Semantic word embeddings aim to represent the meaning of a word w
via a vector vw 2 Rr. In a recent work by [2], the authors propose using a generative model, and
solving for the MLE which is equivalent to:

min

{v
w

},C

X

w,w0

Aw,w0
(log(Aw,w0

)� kvw + vw0k2
2

� C)

2,

where Aw,w0 is the number of times words w and w0 co-occur within ⌧ words in the corpus. In our
experiments we set ⌧ = 10 following the suggested recipe of the aforementioned paper. We can
approximate the solution to the above problem by SGD: we can repeatedly sample entries Aw,w0

from A and update the corresponding vectors vw,vw0 . In this case the update is of the form as:
vw = vw + 4�Aw,w0

(log(Aw,w0
)� kvw + vw0k2

2

� C)(vw + vw0
)

and identically for vw0 Then, at the end of each full pass over the data, we update the constant C by
its locally optimal value, which can be calculated in closed form:

C
P

w,w0 Aw,w0
(log(Aw,w0

)� kvw + vw0k2
2

)

P

w,w0 Aw,w0
.

In our experiments, we optimized for a word embedding of dimension r = 100, and tested on a 80MB
subset of the English Wikipedia dump available at http://mattmahoney.net/dc/text.html.
The dataset contains 213K words and A has 20M non-zero entries. For our experiments, we run SGD
for 200 epochs.

F.3 Speedup and Convergence Results

In this subsection, we present the bulk of our experimental findings.

(a) Least Squares, DBLP,
SAGA

(b) Graph Eig., NH2010,
SVRG

(c) Mat. Comp., 10M, `2-
SGD

(d) Word2Vec, EN-Wiki,
SGD

Figure 8: Convergence of CYCLADES and HOGWILD! in terms of overall running time with 1, 8, 16, 18 threads.
CYCLADES is initially slower, but ultimately reaches convergence faster than HOGWILD!.

(a) Least squares, DBLP,
SAGA

(b) Graph Eig., NH2010,
SVRG

(c) Mat. Comp., 10M, `2-
SGD

(d) Word2Vec, EN-Wiki,
SGD

Figure 9: Speedup of CYCLADES and HOGWILD! versus number of threads. On multiple threads, CYCLADES
always reaches ✏ objective faster than HOGWILD!. In some cases CYCLADES is faster than HOGWILD! even
on 1 thread, due to better cache locality. In Figs. 9(a) and 4(b), CYCLADES exhibits significant gains, since
HOGWILD! suffers from asynchrony noise for which we had to use comparatively smaller stepsizes to prevent
divergence.

19

http://mattmahoney.net/dc/text.html

Least squares When running SAGA for least squares, we found that HOGWILD! was divergent
with the large stepsizes that we were using for CYCLADES (Fig. 10). Thus, in the multi-thread setting,
we were only able to use smaller stepsizes for HOGWILD!, which resulted in slower convergence
than CYCLADES, as seen in Fig. 8(a). The effects of a smaller stepsize for HOGWILD! are also
manisfested in terms of speedups in Fig. 9(a), since HOGWILD! takes a longer time to converge to an
✏ objective value.

Graph eigenvector The convergence of SVRG for graph eigenvectors is shown in Fig. 8(b). CY-
CLADES starts off slower than HOGWILD!, but always produces results equivalent to the convergence
on a single thread. Conversely, HOGWILD! does not exhibit the same behavior on multiple threads
as it does serially—in fact, the error due to asynchrony causes HOGWILD! to converge slower on
multiple threads. This effect is clearly seen on Figs. 9(b), where HOGWILD! fails to converge faster
than the serial counterpart, and CYCLADES attains a significantly better speedup on 16 threads.

Matrix completion and word embeddings Figures 8(c) and 8(d) show the convergence for the
matrix completion and word embeddings problems. CYCLADES is initially slower than HOGWILD!
due to the overhead of computing connected components. However, due to better cache locality
and convergence properties, CYCLADES is able to reach a lower objective value in less time than
HOGWILD!. In fact, we observe that CYCLADES is faster than HOGWILD! when both are run serially,
demonstrating that the gains from (temporal) cache locality outweigh the coordination overhead of
CYCLADES. These results are reflected in the speedups of CYCLADES and HOGWILD! (Figs. 9(c)
and 9(d)). CYCLADES consistently achieves a better speedup (9� 10⇥ on 18 threads) compared to
that of HOGWILD! (7� 9⇥ on 18 threads).

F.4 Runtime Breakdown

Figure 10: Convergence of CYCLADES and HOGWILD!
on least squares using SAGA, with 16 threads, on DBLP
dataset. HOGWILD! diverges with � > 10�5; thus, we
were only able to use a smaller step size � = 10�5 for
HOGWILD! on multiple threads. For HOGWILD! on 1
thread (and CYCLADES on any number of threads), we
could use a larger stepsize of � = 3⇥ 10�4.

Partitioning and allocation costs The cost of
partitioning and allocation for CYCLADES is
given in Table 5, relatively to the time that HOG-
WILD! takes to complete one epoch of stochastic
updates (i.e., a single pass over the dataset). For
matrix completion and the graph eigenvector
problem, on 18 threads, CYCLADES takes the
equivalent of 4-6 epochs of HOGWILD! to com-
plete its partitioning, as the problem is either
very sparse or the updates are expensive. For
solving least squares using SAGA and word em-
beddings using SGD, the cost of partitioning is
equivalent to 11-14 epochs of HOGWILD! on
18 threads. However, we point out that parti-
tioning and allocation is a one-time cost which
becomes cheaper with more stochastic update
epochs. Additionally, we note that this cost can
become amortized quickly due to the extra experiments one has to run for hyperparameter tuning,
since the graph partitioning is identical across different stepsizes one might want to test.

Least Squares Least Squares Graph Eig. Graph Eig. Mat. Comp. Mat. Comp. Word2Vec
threads SAGA SAGA SVRG SVRG SGD Weighted SGD SGD

NH2010 DBLP NH2010 DBLP MovieLens MovieLens EN-Wiki
1 1.9155 2.2245 0.9039 0.9862 0.7567 0.5507 0.5299
4 4.1461 4.6099 1.6244 2.8327 1.8832 1.4509 1.1509
8 6.1157 7.6151 2.0694 4.3836 3.2306 2.5697 1.9372

16 11.7033 13.1351 3.2559 6.2161 5.5284 4.6015 3.5561
18 11.5580 14.1792 4.7639 6.7627 6.1663 5.5270 3.9362

Table 5: Cost of partitioning and allocation. The table shows the ratio of the time that CYCLADES consumes
for partition and allocation over the time that HOGWILD! takes for 1 full pass over the dataset. On 18 threads,
CYCLADES takes between 4-14 HOGWILD! epochs to perform partitioning. Note however, this computational
effort is only required once per dataset.

Stochastic updates running time When performing stochastic updates, CYCLADES has better
cache locality and coherence, but requires synchronization after each batch. Table 6 shows the time

20

for each method to complete a single pass over the dataset, only with respect to stochastic updates
(i.e., here we factor out the partitioning time). In most cases, CYCLADES is faster than HOGWILD!.
In the cases where CYCLADES is not faster, the overheads of synchronizing outweigh the gains from
better cache locality and coherency. However, in some of these cases, synchronization can help by
preventing errors due to asynchrony that lead to worse convergence, thus allowing CYCLADES to use
larger stepsizes and maximize convergence speed.

Mat. Comp. Mat. Comp. Word2Vec Graph Eig. Graph Eig. Least Squares Least Squares
threads SGD `2-SGD SGD SVRG SVRG SAGA SAGA

MovieLens MovieLens EN-Wiki NH2010 DBLP NH2010 DBLP
Cyc Hog Cyc Hog Cyc Hog Cyc Hog Cyc Hog Cyc Hog Cyc Hog

1 2.76 2.87 3.69 3.84 9.85 10.25 0.07 0.07 11.54 11.50 0.04 0.04 5.01 5.25
4 1.00 1.17 1.27 1.51 2.98 3.35 0.04 0.04 4.60 4.81 0.03 0.03 1.93 1.96
8 0.57 0.68 0.71 0.86 1.61 1.89 0.03 0.03 2.86 3.03 0.01 0.01 1.04 1.03

16 0.35 0.40 0.42 0.48 0.93 1.11 0.02 0.02 2.03 2.15 0.01 0.01 0.59 0.55
18 0.32 0.36 0.37 0.40 0.86 1.03 0.02 0.02 1.92 2.01 0.01 0.01 0.52 0.51

Table 6: Time, in seconds, to complete one epoch (i.e. full pass of stochastic updates over the data) by
CYCLADES and HOGWILD!. Lower times are highlighted in boldface. CYCLADES is usually faster than
HOGWILD!, due to its better cache locality and coherence properties.

F.5 Diminishing stepsizes

In the previous experiments we used constant stepsizes. Here, we investigate the behavior of
CYCLADES and HOGWILD! in the regime where we decrease the stepsize after each epoch. In
particular, we ran the matrix completion experiments with SGD (with and without regularization),
where we multiplicatively updated the stepsize by 0.95 after each epoch. The convergence and
speedup plots are given in Figure 11. CYCLADES is able to achieve a speedup of up to 6� 7⇥ on
16�18 threads. On the other hand, HOGWILD! is performing worse comparatively to its performance
with constant stepsizes (Figure 9(c)). The difference is more significant on regularized SGD, where
we have to perform lazy updates (Appendix A.1), and HOGWILD! fails to achieve the same optimum
as CYCLADES with multiple threads. Thus, on 18 threads, HOGWILD! obtains a maximum speedup
of 3⇥, whereas CYCLADES attains a speedup of 6.5⇥.

(a) Convergence, SGD (b) Convergence, `2-SGD (c) Speedup, SGD (d) Speedup, `2-SGD

Figure 11: Convergence and speedups for SGD and weighted SGD with diminishing stepsizes for the matrix
completion on the MovieLens dataset. In this case, CYCLADES outperforms HOGWILD! by achieving up to 6-7x
speedup, when HOGWILD! achieves at most 5x speedup for 16-18 threads. For the weighted SGD algorithm, we
used lazy updates (Appendix A.1), in which case HOGWILD! on multiple threads gets to a worse optimum.

F.6 Binary Classification and Dense Coordinates

Filtering % # filtered features # remaining features
0.048% 1,555 3,228,887
0.047% 1,535 3,228,907
0.034% 1,120 3,229,322
0.028% 915 3,229,527
0.016% 548 3,229,894

Figure 12: Filtering of features in URL dataset. with
a total of 3,230,442 features before filtering. The maxi-
mum percentage of features filtered is less than 0.05%.

In addition to the above experiments, here we
explore settings where CYCLADES is expected
to perform poorly due to the inherent density of
updates (i.e., for data sets with dense features).
In particular, we test CYCLADES on a classifi-
cation problem for text based data, where a few
features appear in most data points. Specifically,
we run classification for the URL dataset [15]
contains ⇠ 2.4M URLs, labeled as either be-
nign or malicious, and 3.2M features, including
bag-of-words representation of tokens in the URL.

21

(a) Convergence, 0.016% (b) Convergence, 0.034% (c) Convergence, 0.047% (d) Convergence, 0.048%

(e) Speedup, 0.016% (f) Speedup, 0.034% (g) Speedup, 0.047% (h) Speedup, 0.048%

Figure 13: Convergence and speedups of CYCLADES and HOGWILD! on 1, 4, 8, 16, 18 threads, for
different percentage of dense features filtered.

For this classification task, we used a logistic regression model, trained using SGD. By its power-law
nature, the dataset consists of a small number of extremely dense features which occur in nearly all
updates. Since CYCLADES explicitly avoids all conflicts, for these dense cases it will have a schedule
of SGD updates that leads to poor speedups. However, we observe that most conflicts are caused by a
small percentage of the densest features. If these features are removed from the dataset, CYCLADES
is able to obtain much better speedups. To that end, we ran CYCLADES and HOGWILD! after filtering
the densest 0.016% to 0.048% of features. The number of features that are filtered are shown in Table
12.

Full results of the experiment are presented in Figure 13.

G Complete Experiment Results

In this section, we present the remaining experimental results that were left out for brevity from
our main experimental section. In Figures 14 and 15, we show the convergence behaviour of our
algorithms, as a function of the overall time, and then as a function of the time that it takes to perform
only the stochastic updates (i.e., in Fig. 15 we factor out the graph partitioning, and allocation time).
In Figure 16, we provide the complete set of speedup results for all algorithms and data sets we
tested, in terms of the number of cores. In Figure 17, we provide the speedups in terms of the the
computation of the stochastic updates, as a function of the number of cores. Then, in Figures 18 – 21,
we present the convergence, and speedups of the overal computation, and then of the stochastic
updates part, for our dense feature URL data set. Finally, in Figure 22 we show the divergent behavior
of HOGWILD! for the least square experiments with SAGA, on the NH2010 and DBLP datasets. Our
overall observations here are similar to the main text. One additional note to make is that when we
take a closer look to the figures relative to the times and speedups of the stochastic updates part of
CYCLADES (i.e., when we factor out the time of the graph partitioning part), we see that CYCLADES
is able to perform stochastic updates faster than HOGWILD! due to its superior spatial and temporal
access locality patterns. If the coordination overheads for CYCLADES are excluded, we are able to
improve speedups, in some cases by up to 20-70% (Table 7). This suggests that by further optimizing
the computation of connected components, we can hope for better overall speedups of CYCLADES.

22

Mat. Comp. Mat. comp Word2Vec Graph Eig. Graph Eig. Least Squares Least Squares
SGD `2-SGD SGD SVRG SVRG SAGA SAGA

MovieLens MovieLens EN-Wiki NH2010 DBLP NH2010 DBLP
Overall
Speedup 8.8010 7.6876 10.4299 2.9134 4.7927 4.4790 4.6405
Speedup of
Updates 9.0453 7.9226 11.4610 3.4802 5.5533 4.6998 8.1133
% change 2.7759% 3.0580% 9.8866% 19.4551% 15.8718% 4.9285% 74.8408%

Table 7: Speedups of CYCLADES at 16 threads. Two versions speedups are given for each problem:
(1) with the overall running time, including the coordination overheads, and (2) using only the running
time for stochastic updates. Speedups using only stochastic updates are up to 20% better, which
suggests we could potentially observe larger speedups by further optimizing the computation of
connected components.

(a) LS, NH2010, SAGA (b) LS, DBLP, SAGA (c) Graph Eig., NH2010,
SVRG

(d) Graph Eig., DBLP,
SVRG

(e) Mat. Comp., 10M, `2-
SGD

(f) Mat. Comp., 10M, SGD (g) Word2Vec, EN-Wiki,
SGD

Figure 14: Convergence of CYCLADES and HOGWILD! on various problems, using 1, 8, 16 threads,
in terms of overall running time. CYCLADES is initially slower, but ultimately reaches convergence
faster than HOGWILD!.

23

(a) LS, NH2010, SAGA (b) LS, DBLP, SAGA (c) Graph eigenvector,
NH2010, SVRG

(d) Graph eigenvector,
DBLP, SVRG

(e) Matrix completion,
MovieLens 10M, weighted
SGD

(f) Matrix completion,
MovieLens 10M, SGD

(g) Word embeddings, EN-
Wiki, SGD

Figure 15: Convergence of CYCLADES and HOGWILD! on various problems, using 1, 8, 16 threads,
in terms of running time for stochastic updates.

24

(a) LS, NH2010, SAGA (b) LS, DBLP, SAGA (c) Graph Eig., NH2010,
SVRG

(d) Graph Eig., DBLP,
SVRG

(e) Mat. Comp., 10M, `2-
SGD

(f) Mat. Comp., 10M, SGD (g) Word2Vec, EN-Wiki,
SGD

Figure 16: Speedup of CYCLADES and HOGWILD! on various problems, using 1, 4, 8, 16 threads, in
terms of overall running time. On multiple threads, CYCLADES always reaches ✏ objective faster
than HOGWILD!. In some cases (16(a), 16(e), 16(g)), CYCLADES is faster than HOGWILD! on even
1 thread, as CYCLADES has better cache locality.

25

(a) LS, NH2010, SAGA (b) LS, DBLP, SAGA (c) Graph Eig., NH2010,
SVRG

(d) Graph Eig., DBLP,
SVRG

(e) Mat. Comp., 10M, `2-
SGD

(f) Mat. Comp., 10M, SGD (g) Word2Vec, EN-Wiki,
SGD

Figure 17: Speedup of CYCLADES and HOGWILD! on various problems, using 1, 4, 8, 16 threads, in
terms of running time for stochastic updates.

26

(a) 0.016% (b) 0.028% (c) 0.047%

(d) 0.048%
Figure 18: Convergence of CYCLADES and HOGWILD! on the malicious URL detection problem,
using 1, 4, 8, 16 threads, in terms of overall running time, for different percentage of features filtered.

(a) 0.016% (b) 0.028% (c) 0.047%

(d) 0.048%
Figure 19: Convergence of CYCLADES and HOGWILD! on the malicious URL detection problem, in
terms of running time for stochastic updates, for different percentage of features filtered.

27

(a) 0.016% (b) 0.028% (c) 0.047%

(d) 0.048%
Figure 20: Speedup of CYCLADES and HOGWILD! on the malicious URL detection problem, using
1, 4, 8, 16 threads, in terms of overall running time, for different percentage of features filtered.

(a) 0.016% (b) 0.028% (c) 0.047%

(d) 0.048%
Figure 21: Speedup of CYCLADES and HOGWILD! on the malicious URL detection problem, in
terms of running time for stochastic updates, for different percentage of features filtered.

28

(a) Least squares, NH2010, SAGA (b) Least squares, DBLP, SAGA

Figure 22: Convergence of CYCLADES and HOGWILD! on least squares using SAGA, with 16
threads, on the NH2010 and DBLP datasets. CYCLADES was able to converge using larger stepsizes,
but HOGWILD! often diverged with the same large stepsize. Thus, we were only able to use smaller
stepsizes for HOGWILD! in the multi-threaded setting.

29

