
Edge-exchangeable graphs and sparsity:
supplementary material

Diana Cai
Dept. of Statistics, U. Chicago

Chicago, IL 60637
dcai@uchicago.edu

Trevor Campbell
CSAIL, MIT

Cambridge, MA 02139
tdjc@mit.edu

Tamara Broderick
CSAIL, MIT

Cambridge, MA 02139
tbroderick@csail.mit.edu

A Overview

In Appendix B, we provide more examples of graph models that are either vertex exchangeable or
Kallenberg exchangeable. In Appendix C, we establish characterizations of edge exchangeability in
graphs via existing notions of exchangeability for combinatorial structures such as random partitions
and feature allocations. In Appendix D, we provide full proof details for the theoretical results in the
main text.

B More exchangeable graph models

Many popular graph models are vertex exchangeable. These models include the classic Erdős–Rényi
model [11], as well as Bayesian generative models for network data, such as the stochastic block
model [17], the mixed membership stochastic block model [1], the infinite relational model [18, 28],
the latent space model [16], the latent feature relational model [22], the infinite latent attribute model
[24], and the random function model [21]. See Orbanz and Roy [23] and Lloyd et al. [21] for more
examples and discussion.

Recently, a number of extensions to the Kallenberg-exchangeable model of Caron and Fox [9], which
builds on early work on bipartite graphs by Caron [8], have also been developed. These models
include extensions to stochastic block models [15], mixed membership stochastic block models [27],
and dynamic network models [25].

C Characterizations of edge-exchangeable graph sequences

We introduced edge exchangeability, a new notion of exchangeability for graphs. Just as the Aldous-
Hoover theorem provides a characterization of the distribution of vertex-exchangeable graphs, it
is desirable to provide a characterization of edge exchangeability in graphs. Below we show how
characterization theorems that already exist for other combinatorial structures can be readily applied
to provide characterizations for edge exchangeability in graphs.

We first develop mappings from edge-exchangeable graph sequences to familiar combinatorial
structures—such as partitions [26], feature allocations [4], and trait allocations [6, 7]—showing
that edge exchangeability in the graph corresponds to exchangeability in those structures. In this
manner, we provide characterizations of the case where one edge is added to the graph per step in
Appendix C.1.1, where multiple unique edges may be added per step in Appendix C.1.2, and where
multiple (non)unique edges may be added in Appendix C.1.3.

A limitation of these connections is that it is not immediately clear how to recover the connectivity in
the graph from the mapped combinatorial object; for instance, given a particular feature allocation,
the graph to which it corresponds is not identifiable. This issue has been addressed in a purely
combinatorial context via vertex allocations and the graph paintbox [7] using the general theory of
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trait allocations. In Appendix C.2, we provide an alternative connection to ordered combinatorial
structures [4, 7] under the assumption that vertex labels are provided. This assumption is often
reasonable in the setting of network data where the vertices and edges are observed directly. By
contrast, it is unusual to assume that labels are provided for blocks in the case of partitions, feature
allocations, and trait allocations since, in these cases, the combinatorial structure is typically entirely
latent in real data analysis problems. For instance, in clustering applications, finding parameters that
describe each cluster is usually part of the inference problem. In the graph case, though, the use of an
ordered structure identifies the particular pair of vertices corresponding to each edge in the graph,
allowing recovery of the graph itself.

C.1 The step collection sequence and connections to other forms of combinatorial
exchangeability

In order to analyze edge-exchangeable graphs using the existing combinatorial machinery of random
partitions, feature allocations, and trait allocations, we introduce a new combinatorial structure, the
step collection sequence, which can take the form of a sequence of partitions, feature allocations,
or trait allocations. As we will now see, the step collection sequence can be constructed from the
step-augmented graph sequence in the following way.

Suppose we assign a unique label φ to each pair of vertices. Then if a pair of vertices is labeled φ, we
may imagine that any particular edge between this pair of vertices is assigned label φ when it appears.
Let φj be the jth such unique edge label.

Recall that we consider a sequence of graphs defined by its step-augmented edge sequence E′n. Let
Sj be the set of steps up to the current step n in which any edge labeled φj was added. If m edges
labeled φj were added in a single step s, s appears in Sj with multiplicity m. So each element s ∈ Sj
is an element of [n]. Let Kn be the number of unique vertex pairs seen among edges introduced up
until the current step n. Then we may define Cn to be the collection of step sets across edges that
have appeared by step n:

Cn = {S1, . . . , SKn}.

Finally, we can define the step collection sequence C = (C1, C2, . . .) as the sequence of Cn for
n = 1, 2, . . .. Note that it is not clear how to recover the original edge connectivity of the graph from
the step collection sequence, or whether it is possible to modify the sequence (or the labels φj) such
that it is easy to recover connectivity while maintaining the (non-trivial) connections to combinatorial
exchangeability provided in Appendices C.1.1 to C.1.3 below.

Example C.1. Suppose we have the edge sequence

E1 = {{2, 3}, {3, 6}},
E2 = {{2, 3}, {3, 6}},
E3 = {{2, 3}, {3, 6}, {6, 6}, {3, 6}},
E4 = {{2, 3}, {1, 4}, {3, 6}, {6, 6}, {3, 6}},

with step-augmentation

E′4 = {({2, 3}, 1), ({1, 4}, 4), ({3, 6}, 1), ({6, 6}, 3), ({3, 6}, 3)}

for E4. Now we label the unique edges in E′n. Using an order of appearance scheme [4] to index the
labels, E′4 becomes

{(φ1, 1), (φ2, 1), (φ3, 3), (φ1, 3), (φ4, 4)},

where the labels φj correspond to the four unique vertex pairs: φ1 = {3, 6}, φ2 = {2, 3}, φ3 =
{6, 6}, φ3 = {1, 4}. The step collection sequence for C1, . . . , C4 is

C1 = {{1}︸︷︷︸
φ1

}, C2 = {{1}︸︷︷︸
φ1

}, C3 = {{1, 3}︸ ︷︷ ︸
φ1

, {3}︸︷︷︸
φ3

}, C4 = {{1, 3}︸ ︷︷ ︸
φ1

, {3}︸︷︷︸
φ3

, {4}︸︷︷︸
φ4

}.

Here each element of Cn is a set corresponding to one of the four unique labels φj and contains all
step indices up to step n in which an edge with that label was added to the graph sequence. �
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(a) Partition (b) Feature allocation (c) Trait allocation

Figure 1: Connection of edge-exchangeable graphs with partitions, feature allocations, and trait
allocations. Light blocks represent 0, dark blocks either represent 1 or the specified count. In a
partition, exactly one edge arrives in each step. In a feature allocation, multiple edges may arrive at
each step, but at most one edge arrives between any two vertices at each step. In a trait allocation,
there may be multiple edges of any type.

To see that the step collection sequence can be interpreted as a familiar combinatorial object, we recall
the following definitions. A partition Cn of [n] is a set {S1, . . . , SKn} whose blocks, or clusters, are
mutually exclusive, i.e., Si ∩ Sj = ∅, i 6= j, and exhaustive, i.e.,

⋃
j Sj = [n]. Feature allocations

relax the definition of partitions by no longer requiring the blocks to be mutually exclusive and
exhaustive. A feature allocation Cn of [n] is a multiset {S1, . . . , SKn} of subsets of [n], such that
any datapoint in [n] occurs in finitely many features Sj [4]. A trait allocation generalizes the feature
allocation where now each Sj , called a trait, may itself be a multiset [6, 7].

We see that the step collection Cn can be interpreted as follows. If a single edge is added to the
graph at each round, Cn is a partition of [n], and the step collection sequence is a projective partition
sequence. If at most one edge is added between any pair of vertices at each step, Cn is a feature
allocation of [n], and the step collection sequence is a projective sequence of feature allocations.
In the most general case, when multiple edges may be added between any pair of vertices at each
step, Cn is a trait allocation of [n], and the step collection sequence is a projective sequence of trait
allocations.

In the following examples, corresponding to Figure 1, we show different step collection sequences
that correspond to a partition, a feature allocation, and a trait allocation.
Example C.2 (Partition). Consider the step collection C5 = {{1, 3}, {2}, {4}, {5}}. The edges
form a partition of the steps. Here exactly one edge arrives in each step. �

Example C.3 (Feature allocation). Consider the step collection C5 = {{1, 3}, {1}, {1, 5}, {3, 4}}.
This step collection forms a feature allocation of the steps. Thus in this case, there may be multiple
unique edges arriving in each step. �

Example C.4 (Trait allocation). In a trait allocation, there may be multiple edges (not necessarily
unique) at each step. Consider the step collection C5 = {{1, 3, 3, 3}, {1}, {1, 5}, {3}, {4, 4}}. This
collection forms a trait allocation of the steps, where elements of C5 are now multisets. �

In this section, we have connected certain types of edge-exchangeable graphs to partitions and feature
allocations. In the next two sections, we make use of known characterizations of these combinatorial
objects to characterize edge exchangeability in graphs.

C.1.1 Partition connection

First consider the connection to partitions. In this case, suppose that each index in [n] appears exactly
once across all of the subsets of Cn. This assumption on Cn is equivalent to assuming that in the
original graph sequence E1, E2, . . ., we have that En+1 always has exactly one more edge than En.
In this case, Cn is exactly a partition of [n]; that is, Cn is a set of mutually exclusive and exhaustive
subsets of [n]. If the edge sequence (En) is random, then (Cn) is random as well.

We say that a partition sequence C1, C2, . . ., where Cn is a (random) partition of [n] and Cm ⊆ Cn
for all m ≤ n, is infinitely exchangeable if, for all n, permuting the indices in [n] does not change the
distribution of the (random) partitions [26]. Permuting the indices [n] in the partition sequence (Cm)
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corresponds to permuting the order in which edges are added in our graph sequence (Em). As an
example of a model that generates a step collection sequence corresponding to a partition sequence,
consider the frequency model we introduced in Section 3 where the weights are normalized. At each
step, we choose a single edge according the resulting probability distribution over pairs of vertices.

Given this connection to exchangeable partitions, the Kingman paintbox theorem [20] provides a
characterization of edge exchangeability in graph sequences that introduce one edge per step: in
particular, it guarantees that a graph sequence that adds exactly one edge per step is edge exchangeable
if and only if the associated step collection sequence (Cn) has a Kingman paintbox representation.
An alternate characterization of edge exchangeability in graph sequences that introduce one edge
per step is provided by exchangeable partition probability functions (EPPFs) [26]. In particular, a
graph sequence that introduces one edge per step is edge-exchangeable if and only if the marginal
distribution of Cn (the step collection at step n) is given by an EPPF for all n.

C.1.2 Feature allocation connection

Next we notice that it need not be the case that exactly one edge is added at each step of the graph
sequence, e.g. between En and En+1. If we allow multiple unique edges at any step, then the step
collection Cn is just a set of subsets of [n], where each subset has at most one of each index in [n].
Suppose that any m belongs to only finitely many subsets in Cn for any n. That is, we suppose that
only finitely many edges are added to the graph at any step. Then Cn is an example of a feature
allocation [4]. Again, if (En) is random, then (Cn) is random as well.

We say that a (random) feature allocation sequence (Cm) is infinitely exchangeable if, for any n,
permuting the indices of [n] does not change the distribution of the (random) feature allocations
[3, 4]. Permuting the indices [n] in the sequence (Cm) corresponds to permuting the steps when
edges are added in the edge sequence (Em). Consider the following example of a graph frequency
model that produces a step collection sequence corresponding to an exchangeable feature allocation.
For n = 1, 2, . . ., we draw whether the graph has an edge {i, j} at time step n as Bernoulli with
probability w{i,j} = wiwj . Thus, in each step, we draw at most one edge per unique vertex pair. But
we may draw multiple edges in the same step.

Similarly to the partition case in Section C.1.1, we can apply known results from feature allocations to
characterize edge exchangeability in graph models of this form. For instance, we know that the feature
paintbox [4, 7] characterizes distributions over exchangeable feature allocations (and therefore the step
collection sequence for graphs of this form) just as the Kingman paintbox characterizes distributions
over exchangeable partitions (and therefore the step collection sequence for edge-exchangeable
graphs with exactly one new edge per step).

We may also consider feature paintbox distributions with extra structure. For instance, the step
collection sequence is said to have an exchangeable feature probability function (EFPF) [4] if the
probability of each step collection Cn in the sequence can be expressed as a function only of the
total number of steps n and the subset sizes within Cn (i.e. the edge multiplicities in the graph), and
is symmetric in the subset sizes. As another example, the step collection sequence is said to have
a feature frequency model if there exists a (random) sequence of probabilities (wj)

∞
j=1 associated

with edges j = 1, 2, . . . and a number λ > 0, conditioned on which the step collection sequence
arises from the graph built by adding edge j at each step independently1 with probability wj for all
values of j ∈ N, along with an additional Poiss(λ) number of edges that never share a vertex with
any other edge in the sequence. In other words, the graph is constructed with a graph frequency
model as in the main text of the present work (modulo the aforementioned additional Poisson number
of edges). Theorem 17 (“Equivalence of EFPFs and feature frequency models”) from [4] shows that
these two examples are actually equivalent: if the step collection sequence has an EFPF, it has a
feature frequency model, and vice versa.

C.1.3 Further extensions

Finally, we may consider the case where at every step, any non-negative (finite) number of edges may
be added and those edges may have non-trivial (finite) multiplicity; that is, the multiplicity of any
edge at any step can be any non-negative integer. By contrast, in Section C.1.2, each unique edge
occurred at most once at each step. In this case, the step collection Cn is a set of subsets of [n]. The

1This is conditional independence since the (wj) may be random.
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subsets need not be unique or exclusive since we assume any number of edges may be added at any
step. And the subsets themselves are multisets since an edge may be added with some multiplicity at
step n. We say that Cn is a trait allocation, which we define as a generalization of a feature allocation
where the subsets of Cn are multisets. As above, if (En) is random, (Cn) is as well.

We say that a (random) trait allocation sequence (Cm) is infinitely exchangeable if, for any n,
permuting the indices of [n] does not change the distribution of the (random) trait allocation. Here,
permuting the indices of [n] corresponds to permuting the steps when edges are added in the edge
sequence (Em). A graph frequency model that generates a step collection sequence as a trait
allocation sequence is the multiple-edge-per-step frequency model sampling procedure described in
Section 3. Here, at each step, multiple edges can appear each with multiplicity potentially greater
than 1, requiring the full generality of a trait allocation sequence.

Campbell et al. [7] characterize exchangeable trait allocations via, e.g., probability functions and
paintboxes and thereby provide a characterization over the corresponding step collection sequences
of such edge-exchangeable graphs.

C.2 Connections to exchangeability in ordered combinatorial structures

As noted earlier, it is not immediately clear how to recover the connectivity in an edge-exchangeable
graph from the step collection sequence, nor how to do so in a way that preserves non-trivial connec-
tions to other exchangeable combinatorial structures. Campbell et al. [7] considers an alternative to
the step collection sequence in which the (multi)subsets in the combinatorial structure correspond
to vertices rather than edges, known as a vertex allocation. This allows for the characterization of
edge-exchangeable graphs via the graph paintbox using the general theory of trait allocations, while
maintaining an explicit representation of the structure of the graph, i.e., the connection between edges
that share a vertex.

If we are willing to eschew the unordered nature of the step collection sequence, and assume that
we have an a priori labeling on the vertices, there is yet another alternative using the ordered step
collection sequence. The availability of labeled vertices is often a reasonable assumption in the
setting of network data, where the vertices and edges are typically observed directly. Suppose the
vertices are labeled using the natural numbers 1, 2, . . . . Then we can use the ordering of the vertex
labels to order the vertex pairs in a diagonal manner, i.e. {1, 1}, {1, 2}, {2, 2}, {1, 3}, {2, 3}, . . . .
Note that, for the purpose of building this diagonal ordering, we consider the lowest-valued index
in each vertex pair first. We build the step collection sequence (Cn) in the same manner as before,
except that each step collection Cn is no longer an unordered collection of subsets; the subsets derive
their order from the vertex pairs they represent. For example, if we observe edges at vertex pairs
{1, 1} and {1, 2} at step 1, and edges at vertex pairs {1, 1} and {2, 3} at step 2, then

C1 = ({1}, {1}, ∅, ∅, . . . )

and

C2 = ({1, 2}, {1}, ∅, ∅, {2}, ∅, . . . ) .

Since we know the order of the subsets in each Cn as they relate to the vertex pairs in the graph and
their connectivity, we can recover the graph sequence from the ordered step collection sequence (Cn).
Exchangeability in an ordered step collection sequence means that the distribution is invariant to
permutations of the indices within the subsets (although the ordering of the subsets themselves cannot
be changed). Given this notion of exchangeability, the earlier connections to exchangeable partitions,
feature allocations, and trait allocations remain true, modulo the fact that they must themselves be
ordered. Broderick et al. [4] provides a paintbox characterization of ordered exchangeable feature
allocations, thereby providing characterizations (via the earlier connections to partitions and feature
allocations) of edge-exchangeable graphs that add either one or multiple unique edges per step.
Note that, in these cases, this is a full characterization of edge-exchangeable graphs, by contrast to
Appendix C.1, where we provided a characterization only of edge exchangeability in graphs. We
suspect that a similar characterization of edge-exchangeable graphs with multiple (non)unique edges
per step is available by examining characterizations of exchangeable ordered trait allocations.
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D Proofs

The proof of the main theorem in the paper (Theorem 5.3) follows from a collection of lemmas
below. Lemma 5.2 characterizes the expected number of vertices and edges; Lemma D.3 establishes
a useful transformation of those expectations; and Lemma D.4 shows that the two sets of expectations
are asymptotically equivalent, so it is enough to consider the transformed expectation. Lemma D.6
provides the asymptotics of the transformed expectations. Finally, Lemma 5.1 shows that the random
sequences converge almost surely to their expectations, yielding the final result.

D.1 Preliminaries

Notation. We first define the asymptotic notation used in the main paper and appendix. We use
the notation “a.s.” to mean almost surely, or with probability 1. Let (Xn)n∈N, (Yn)n∈N be two
random sequences. We say that Xn

a.s.
= O(Yn) if lim supn→∞

Xn
Yn

<∞ a.s., and that Xn
a.s.
= Ω(Yn)

if Yn
a.s.
= O(Xn) a.s. We say that Xn

a.s.
= o(Yn) if limn→∞

Xn
Yn

= 0 a.s. Lastly, we say that

Xn
a.s.
= Θ(Yn) if Xn

a.s.
= O(Yn) and Yn

a.s.
= O(Xn).

Let Vn, En be the respective sets of active vertices and edges at step n in the multigraph, and
|Vn|, |En| be their respective cardinalities, as defined in the main text. We use the notation V̄n and
Ēn to represent these analogous vertex and edge sets for the binary graph. Note that V̄n is the same
as Vn.

Useful results. We present two useful theorems for analyzing expectations involving random sums
of functions of points from Poisson point processes. Below, we will apply these theorems repeatedly
to get expectations of graph quantities. The first theorem is Campbell’s theorem, which is used to
compute the moments of functionals of a Poisson process. We state it below for completeness, and
refer to Kingman [19, Sec. 3.2] for details.

Theorem D.1 (Campbell’s theorem). Let Π be a Poisson point process on S with rate measure ν,
and let f : S → R be measurable. If

∫
S

min(|f(x)|, 1) ν(dx) <∞, then

E

(
exp

(
c
∑
x∈Π

f(x)

))
= exp

(∫
S

(exp(cf(x))− 1) ν(dx)

)
for any c ∈ C, and furthermore,

E

(∑
x∈Π

f(x)

)
=

∫
S

f(x) ν(dx).

The second theorem is a specific form of the Slivnyak-Mecke theorem, which is useful for computing
the expected sum of a function of each point x ∈ Π and Π \ {x} over all points in a Poisson
point process Π. If each point in Π is thought of as relating to a particular vertex in a graph, the
Slivnyak-Mecke theorem allows us to take expectations of the sum (over all possible vertices in
the graph) of a function of each vertex and all its possible edges. For example, it is used below to
compute the expected number of active vertices by taking the expected sum of vertices that have
nonzero degree. We state it below for completeness, and refer to Daley and Vere-Jones [10, Prop.
13.1.VII] and Baddeley et al. [2, Thm. 3.1,Thm. 3.2] for details.

Theorem D.2 (Slivnyak-Mecke theorem). Let Π be a Poisson point process on S with rate measure
ν, and let f : S × Ω→ R+ be measurable. Then

E

(∑
x∈Π

f(x,Π \ {x})

)
=

∫
S

E (f(x,Π)) ν(dx).

D.2 Graph moments

In this section, we give the expected number of vertices and expected number of edges for the multi-
and binary graph cases. We begin by defining the degree Di of vertex i in the multigraph and the
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degree D̄i of vertex i in the binary graph, respectively, as

Di =
∑
j

M{i,j} D̄i =
∑
j

1
(
M{i,j} > 0

)
. (D.1)

Now we present the expected number of edges and vertices. We note that both the multi- and binary
graphs have the same number of (active) vertices, and so their expectations are the same.

Lemma (5.2, main text). The expected number of vertices and edges for the multi- and binary graphs
are

E
(
|V̄n|

)
= E (|Vn|) =

∫ [
1− exp

(
−
∫

1− (1− wv)n ν(dv)

)]
ν(dw),

E (|En|) =
n

2

∫∫
wv ν(dw) ν(dv),

E
(
|Ēn|

)
=

1

2

∫∫
(1− (1− wv)n) ν(dw) ν(dv).

Proof. Using the tower property of conditional expectation and Fubini’s theorem, we have that the
expected number of vertices is

E (|Vn|) = E

(
E

(∑
i

1(Di > 0)

∣∣∣∣W
))

= E

(∑
i

P
(
Di > 0

∣∣∣∣W)
)
,

followed by the definition of degree in Equation (D.1) and the binomial density,

E (|Vn|) = E

∑
i

1−
∏
j

P
(
M{i,j} = 0 |W

) = E

∑
w∈W

1−
∏

v∈W\{w}

(1− wv)n

 .

Using the Slivnyak-Mecke theorem (Theorem D.2),

E (|Vn|) =

∫
E

(
1−

∏
v∈W

(1− wv)n

)
ν(dw)

=

∫ [
1− E

(
exp

(
n
∑
v∈W

log(1− wv)

))]
ν(dw),

and finally by Campbell’s theorem (Theorem D.1) on the inner expectation,

E (|Vn|) =

∫ [
1− exp

(
−
∫

(1− (1− wv)n) ν(dv)

)]
ν(dw).

For the expected number of edges, we can again apply the tower property and Fubini’s theorem
followed by repeated applications of Slivnyak-Mecke to the expectations to get:

E(|En|) = E

E

1

2

∑
i6=j

M{i,j}
∣∣W
 =

1

2

∫
E

(∑
v∈W

nwv

)
ν(dw) =

n

2

∫
wvν(dw)ν(dv).

The expected number of edges for the binary case is obtained similarly via Fubini and Slivnyak-
Mecke:

E(|Ēn|) = E

1

2

∑
i 6=j

P (M{i,j} > 0|W)

 =
1

2
E

 ∑
w∈W,v∈W\{w}

(1− (1− wv)n)


=

1

2

∫ ∫
(1− (1− wv)n) ν(dw) ν(dv).
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The asymptotic behavior of these quantities is difficult to derive directly due to the discreteness of
the indices n. Therefore, we rely on a technique called Poissonization, which allows us to bypass
this difficulty by instead considering a continuous analog of the quantities in order to get asymptotic
behaviors. Below, we introduce primed notation V ′t , E

′
t, Ē
′
t, D

′
t,i to represent the Poissonized quanti-

ties for the vertices, multigraph edges, binary edges, and the degree of a vertex, where the index t
now represents a continuous quantity. These will be defined such that V ′N has the same asymptotic
behavior as VN , E′N has the same asymptotic behavior as EN , and so on.

GivenW , let Πij be the Poisson process generated with rate wiwj if i < j and rate 0 if i = j, and
let Πji = Πij . Let Πi :=

⋃∞
j=1 Πij , which is a Poisson process with rate ui :=

∑
j:j 6=i wiwj via

Poisson process superposition [19, Sec. 2.2]. If we think of t as continuous time passing, the process
Πij represents the times at which new edges are added between vertices i and j, and Πi represents
the times at which any new edges involving vertex i are added.

Thus, we define the Poissonized degree of vertex i in the multi- and binary graph cases, respectively,
to be a function of the continuous parameter t > 0,

D′t,i = |Πi ∩ [0, t]|, D̄′t,i =
∑
j

1 (|Πij ∩ [0, t]| > 0) .

We can define the Poissonized graph quantities of interest using these two quantities:

|V̄ ′t | = |V ′t | =
∑
i

1(D′t,i > 0), |E′t| =
1

2

∞∑
i=1

D′t,i, |Ē′t| =
1

2

∑
i

D̄′t,i.

Lemma D.3. The expected number of Poissonized vertices and edges for the multi- and binary
graphs is

E (|V ′t |) =

∫ [
1− exp

(
−
∫

(1− e−twv) ν(dv)

)]
ν(dw)

E (|E′t|) =
t

2

∫∫
wv ν(dw) ν(dv)

E
(
|Ē′t|

)
=

1

2

∫∫
(1− exp(−twv)) ν(dw) ν(dv).

Proof. For the expected number of Poissonized vertices, we apply the tower property and Fubini’s
theorem to get

E (|V ′t |) = E

(
E

(∑
i

1(D′t,i > 0)

∣∣∣∣∣W
))

= E

(∑
i

1− P (Dt,i = 0 |W)

)
.

Using the fact that D′t,i|W is Poisson-distributed,

E (|V ′t |) = E

(∑
i

1− exp (−tui)

)
= E

∑
w∈W

1− exp

−tw ∑
v∈W\{w}

v

 .

Finally, by the Slivnyak-Mecke theorem and Campbell’s theorem,

E (|V ′t |) =

∫
E

(
1− exp

(
−tw

∑
v∈W

v

))
ν(dw)

=

∫ [
1− exp

(∫
(e−twv − 1) ν(dv)

)]
ν(dw).
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For the expected number of Poissonized edges, after applying Fubini’s theorem and Slivnyak-Mecke
we have

E (|E′t|) = E

(
1

2

∑
i

D′t,i

)
= E

(
1

2

∑
i

E
(
D′t,i|W

))

= E

(
1

2

∑
i

ui

)
= E

1

2

∑
w∈W,v∈W\{w}

wv


=

1

2

∫ ∫
wv ν(dw) ν(dv).

For the expected number of Poissonized edges in the binary case, noting that |Πij ∩ [0, t]| is Poisson-
distributed with rate twiwj , and applying Fubini’s theorem and Slivnyak-Mecke, we have:

E(|Ē′t|) = E

(
E

(∑
i

D̄′t,i|W

))
= E

 ∑
w∈W,v∈W\{w}

(1− exp(−twv))


=

∫ ∫
(1− exp(−twv)) ν(dw) ν(dv).

D.3 Asymptotics

We have defined the expected number of vertices and edges for the multigraph and binary graph
cases (Lemma 5.2) and presented the Poissonized version of these expectations (Lemma D.3). We
now show in Lemma D.4 that the expected graph quantities and their Poissonized expectations are
asymptotically equivalent.
Lemma D.4. The Poissonized expectations for the number of vertices and the number of edges in the
multi- and binary graphs are asymptotically equivalent to the original expectations; i.e., as n→∞,

E (|V ′n|) ∼ E (|Vn|) ,
E (|E′n|) ∼ E (|En|) ,
E
(
|Ē′n|

)
∼ E

(
|Ēn|

)
.

Proof. For the vertices, we have

E (|Vn| − |V ′n|) =

∫ [
exp

(
−
∫

(1− e−nwv) ν(dv)
)
− exp

(
−
∫

(1− (1− wv)n) ν(dv)
)]
ν(dw).

Using the elementary inequalities

0 ≤ e−nx − (1− x)n ≤ nx2e−nx, x ∈ [0, 1], n > 0

0 ≤ e−a − e−b ≤ b− a, 0 ≤ a ≤ b,
we have

0 ≤ E (|Vn| − |V ′n|) ≤
∫∫

n(wv)2e−nwv ν(dv) ν(dw). (D.2)

Finally, note that

∀n > 0,∀w, v ∈ [0, 1], nwve−nwv ≤ e−1

and ∫∫
e−1wv ν(dw) ν(dv) = e−1

(∫
w ν(dw)

)2

<∞.

Therefore by Lebesgue dominated convergence,

0 ≤ lim
n→∞

E (|Vn| − |V ′n|) ≤
∫∫

lim
n→∞

n(wv)2e−nwv ν(dv) ν(dw) = 0,

9



so we have that limn→∞ E (|Vn| − |V ′n|) = 0. Since E(|Vn|), E(|V ′n|) are monotonically increasing
by inspection, E(|Vn|) ∼ E(|V ′n|), n→∞, as required.

For the binary graph edges,

E
(
|Ēn| − |Ē′n|

)
=

1

2

∫∫
(exp(−nwv)− (1− wv)n) ν(dv) ν(dw).

Using the earlier elementary inequalities,

0 ≤ E
(
|Ēn| − |Ē′n|

)
=

1

2

∫∫
n(wv)2e−nwv ν(dv) ν(dw).

This is (modulo the constant factor of 1/2) the exact expression in Equation (D.2). Therefore, the
same analysis can be performed, and the result holds.

For multigraph edges,

E (|En| − |E′n|) =
n

2

∫∫
(wv − wv) ν(dv) ν(dw) = 0,

so E (|En|) ∼ E (|E′n|), n→∞.

Lemma D.4 allows us to analyze the asymptotics of the Poissonized expectations and apply the result
directly to the asymptotics of the original graph quantities. To achieve the desired asymptotics for
the Poissonized expectations, we will make a further assumption on the rate measure ν generating
the vertex weights in Equation (2). Namely, we assume that the tails of ν decay at a rate that will
yield the appropriate weight decay in the weights (wj)—and thereby the appropriate decay in vertex
creation to finally yield sparsity in the graph itself. In particular, the tail of a measure ν is said to be
regularly varying if there exists a function ` : R+ → R+ and α ∈ (0, 1) such that∫ 1

x

ν(dw) ∼ x−α`(x−1), x→ 0, ∀ c > 0, lim
x→∞

`(cx)

`(x)
= 1. (D.3)

The condition on the function ` is equivalent to saying that ` is slowly varying. For additional
details on regular and slow variation, see Feller [12, VIII.8]. An important equivalent formulation of
Equation (D.3) that we will use in our following proof of the asymptotics of Poissonized expectations
is provided by Lemma D.5 (see Gnedin et al. [14, Prop. 13] and Broderick et al. [5, Prop. 6.1] for the
proof).
Lemma D.5 (Broderick et al. [5], Gnedin et al. [14]). The tail of ν is regularly varying iff there exists
a function ` : R+ → R+ and α ∈ (0, 1) such that∫ x

0

uν(du) ∼ x1−α`(x−1), x→ 0, ∀ c > 0, lim
x→∞

`(cx)

`(x)
= 1. (D.4)

Lemma D.5 is often easier to use than Equation (D.3) when checking whether a particular measure ν
has a regularly varying tail. For example, for the three-parameter beta process, we have∫ x

0

uν(du) = γ
Γ(1 + β)

Γ(1− α)Γ(β + α)

∫ x

0

u−α(1− u)β+α−1du

∼ γ Γ(1 + β)

Γ(1− α)Γ(β + α)

∫ x

0

u−αdu, x ↓ 0

= γ
Γ(1 + β)

Γ(1− α)Γ(β + α)

1

1− α
x1−α,

so the tail of ν is regularly varying when the discount parameter α satisfies α ∈ (0, 1) with `(x−1)
equal to the constant function

`(x−1) =
γ

1− α
Γ(1 + β)

Γ(1− α)Γ(β + α)
. (D.5)

Note that the two-parameter beta process does not exhibit this behavior (since in this case, α = 0).

Given the two formulations of a measure ν with a regularly varying tail above, we are ready to
characterize the asymptotics of the earlier Poissonized expectations.
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Lemma D.6. If the tail of ν is regularly varying as per Equation (D.3), then as n→∞,

E (|V ′n|) = Θ(nα`(n)), E (|E′n|) = Θ(n), E
(
|Ē′n|

)
= O

(
`(
√
n) min

(
n

1+α
2 , `(n)n

3α
2

))
.

Proof. Throughout this proof we use c to denote a constant; the precise value of c changes but is
immaterial. We also define the tail of ν as ν̄(x) :=

∫ 1

x
ν(dw), for notational brevity. Furthermore,

recall that we assume the rate measure ν satisfies
∫
wν(dw) <∞.

We first examine the expected number of Poissonized vertices,

E (|V ′n|) =

∫ [
1− exp

(
−
∫

(1− e−nwv)ν(dv)

)]
ν(dw),

by splitting the integral into two parts. First, by the assumption that the tail of ν is regularly varying,∫ 1

n−1

[
1− exp

(
−
∫

(1− e−nwv)ν(dv)

)]
ν(dw) ≤

∫ 1

n−1

ν(dw) ∼ cnα`(n). (D.6)

Next, we upper bound the integral term∫ n−1

0

[
1− exp

(
−
∫

(1− e−nwv)ν(dv)

)]
ν(dw) ≤

∫ n−1

0

∫
(1− e−nwv)ν(dv)ν(dw)

≤
∫ n−1

0

∫
nwvν(dv)ν(dw)

≤
(∫

vν(dv)

)
n

∫ n−1

0

wν(dw)

∼ cnα`(n), (D.7)
where the asymptotic behavior in the last line follows from Lemma D.5. Thus, combining the upper
bounds on Equation (D.6) and Equation (D.7) gives the bound for the entire integral: E (|V ′n|) =
O(nα`(n)).

Now we bound the integral below:∫ 1

n−1

[
1− exp

(
−
∫

(1− e−nwv)ν(dv)

)]
ν(dw)

≥
∫ 1

n−1

[
1− exp

(
−
∫

(1− e−v)ν(dv)

)]
ν(dw)

=

(∫ 1

n−1

ν(dw)

)(
1− exp

(
−
∫

(1− e−v)ν(dv)

))
∼ cnα`(n),

where the last line follows from the assumption that the tail of ν is regularly varying. The second
piece of the integral on [0, n−1] is bounded below by 0, and in combination, we have that nα`(n) =
O (E (|V ′n|)). Now combining this with the previous upper bound result, we have E (|V ′n|) =
Θ(nα`(n)).

The expected number of Poissonized multigraph edges satisfies E (E′n) = Θ(n), since

E(|E′n|) =
n

2

∫∫
wvν(dw)ν(dv) =

n

2

∫
wν(dw)

∫
vν(dv) =

c2

2
n.

For the Poissonized binary graph edges, we split the integral into two pieces. We first upper bound the
integral on the interval [0, n−1/2] and apply Theorem D.5 to get the following asymptotic behavior:

1

2

∫ n−1/2

0

∫
(1− exp (−nwv)) ν(dw) ν(dv) ≤ 1

2

∫ n−1/2

0

∫
nwv ν(dw) ν(dv)

=
n

2

(∫
wν(dw)

)∫ n−1/2

0

vν(dv)

∼ cn(n−1/2)1−α`(n1/2)

= cn
1+α
2 `(n1/2).
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We then bound the second portion on the interval [n−1/2, 1] by linearizing at v = n−1/2. Using
integration by parts and an Abelian theorem [12, Sec. XIII.5, Thm. 4] for the Laplace transform, for
some constants b, d > 0, we have

1

2

∫ 1

n−1/2

∫
(1− exp (−nwv)) ν(dw) ν(dv)

≤ 1

2

∫ 1

n−1/2

∫ (
1− exp

(
−n1/2w

)
+ nw exp

(
−n1/2w

)
(v − n−1/2)

)
ν(dw) ν(dv)

=
1

2

(∫ 1

n−1/2

ν(dv)

)∫
n1/2 exp(−n1/2w) ν̄(w) dw

+
1

2

∫ 1

n−1/2

(nv − n1/2) ν(dv)

∫
w exp(−n1/2w) ν(dw)

∼ bnα`2(n1/2) +
1

2

∫ 1

0

v ν(dv)n1/2

∫
n1/2

(
exp(−n1/2w)− n1/2w exp

(
−n1/2w

))
ν̄(w) dw

≤ bnα`2(n1/2) +
1

2

∫ 1

0

v ν(dv) n1/2

∫
n1/2 exp(−n1/2w) ν̄(w) dw

∼ bnα`2(n1/2) + dn1/2nα/2`(n1/2)

= O(n
1+α
2 `(n1/2)).

Therefore we have that E
(
|Ē′n|

)
= O(n

1+α
2 `(n1/2)).

To get the other bound, we split the integral into three pieces. First,

1

2

∫ n−1

0

∫
(1− exp (−nwv)) ν(dw) ν(dv)

≤ 1

2

∫ n−1

0

∫
nwv ν(dw) ν(dv)

=
n

2

(∫
w ν(dw)

)∫ n−1

0

v ν(dv)

∼ cn(n−1)1−α`(n) = cnα`(n).

Next, integration by parts yields

1

2

∫ 1

n−1/2

∫
(1− exp (−nwv)) ν(dw) ν(dv)

≤ 1

2

∫ 1

n−1/2

∫
(1− exp(−nw)) ν(dw) ν(dv)

=
1

2

(∫ 1

n−1/2

ν(dv)

)∫
n exp(−nw) ν̄(w) dw

∼ c
(
n−1/2

)−α
`(n1/2)nα`(n)

= cn
3α
2 `(n)`(n1/2).
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Finally, integration by parts yields the final upper bound

1

2

∫ n−1/2

n−1

∫
(1− exp (−nwv)) ν(dw) ν(dv)

≤ 1

2

∫ n−1/2

n−1

∫
(1− exp(−n1/2w)) ν(dw) ν(dv)

=
1

2

(∫ n−1/2

n−1

ν(dv)

)∫
n1/2 exp

(
−n1/2w

)
ν̄(w) dw

∼
(
c1n

α`(n)− c2n
α
2 `(n1/2)

)(
c3n

α/2`(n1/2)
)

∼ cn 3α
2 `(n)`(n1/2).

Therefore E
(
|Ē′n|

)
= O(`(n)`(n1/2)n

3α
2 ).

Finally, we show that |En|, |Ēn|, and |Vn| are asymptotically equivalent to their expectations almost
surely; thus, the asymptotic results for the expectation sequences applies to the random sequences.

Lemma (5.1, main text). The number of edges and vertices for both the multi- and binary graphs
satisfy

|En|
a.s.∼ E (|En|) , |Ēn|

a.s.∼ E
(
|Ēn|

)
|V̄n| = |Vn|

a.s.∼ E (|Vn|) , n→∞.

Proof. We use Xn to refer to |En|, |Ēn|, or |Vn|, since the proof technique is the same for all. Since
we need to show Xn/E (Xn)

a.s.→ 1, by the Borel-Cantelli lemma it is sufficient to show that for any
ε > 0, ∑

n

P (|Xn − E (Xn)| > εE (Xn)) <∞.

By the union bound, and the fact that Xn can be expressed as a countable sum of indicators combined
with the note after Theorem 4 in Freedman [13],

P (|Xn − E (Xn)| > εE (Xn))

≤ P (Xn > (1 + ε)E (Xn)) + P (Xn < (1− ε)E (Xn))

≤ 2 exp

(
−ε

2E (Xn)

2

)
.

Since E(Xn) ≥ nβ for some β > 0, the expression is summable and the result holds.

Combining the results of Lemmas 5.1, D.4, and D.6 gives us the main theorem, which we state here
for completeness.

Theorem (5.3, main text). If the tail of ν is regularly varying as per Equation (D.3), then as n→∞,

|Vn|
a.s.
= Θ(nα`(n)), |En|

a.s.
= Θ(n), |Ēn|

a.s.
= O

(
`(n1/2) min

(
n

1+α
2 , `(n)n

3α
2

))
.

Remark D.7. Finally, to conclude that there exists a class of sparse, edge-exchangeable graphs,
we examine the asymptotics from this result in more detail. In the multigraph case, we see that
the number of vertices increases at the same rate as nα`(n), and the number of edges increases
linearly in n. So |En| grows at the same rate as |Vn|1/α`(n)−1/α. When α ∈ (1/2, 1), the ex-
ponent 1/α lies in the range (1, 2), and thus this parameter range for α results in sparse graph
sequences. For binary graphs, the number of edges |Ēn| grows at a rate that is bounded by

`(
√
n) min

{
|Vn|

1+α
2α `(n)−

1+α
2α , |Vn|

3
2 `(n)−

1
2

}
. Since min

{
1+α
2α , 3

2

}
≤ 3/2 < 2, binary graphs are

sparse for any α ∈ (0, 1). Note that `(n) does not affect the growth rate throughout since it is a
slowly-varying function; i.e., for all c > 0, `(cn) ∼ `(n). For the three-parameter beta process,
which we examined in our simulations, the function ` is a constant function, as in Equation (D.5).
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We have shown that edge exchangeability admits sparse graphs by proving the existence of sparse
graph sequences in a wide subclass of graph frequency models: those frequency models with weights
generated from Poisson point processes whose rate measures have power law tails. Notably, we have
shown the existence of a range of sparse and dense behavior in this wide class of graph frequency
models, as desired.
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