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(b) Stochastic Online: ft(u) = |u � xt| where
xt = ± 1

2 i.i.d. with probabilities 0.4 and 0.6.

Figure 1: Examples of fast rates on functions without curvature. MetaGrad incurs logarithmic regret
O(lnT ), while AdaGrad incurs O(

p
T ) regret, matching its bound.

A Extra Material Related to Section 3

In this section we gather extra material related to the fast rate examples from Section 3. We first
provide simulations. Then we present the proofs of Theorems 2 and 3. And finally we give an
example in which the unregularized hinge loss satisfies the Bernstein condition.

A.1 Simulations: Logarithmic Regret without Curvature

We provide two simple simulation examples to illustrate the sufficient conditions from Theorems 2
and 3, and to show that such fast rates are not automatically obtained by previous methods for general
functions. Both our examples are one-dimensional (so the full and diagonal algorithms coincide),
and have a stable optimum (that good algorithms will converge to); yet the functions are based on
absolute values, which are neither strongly convex nor smooth, so the gradient norms do not vanish
near the optimum. As our baseline we include AdaGrad [9], because it is commonly used in practice
[22, 27] and because, in the one-dimensional case, it implements GD with an adaptive tuning of the
learning rate that is applicable to general convex functions.

In the first example, we consider offline convex optimization of the fixed function f
t

(u) ⌘ f(u) =
|u � 1

4 |, which satisfies (3), because it is convex. In the second example, we look at stochastic
optimization with convex functions f

t

(u) = |u� x
t

|, where the outcomes x
t

= ± 1
2 are chosen i.i.d.

with probabilities 0.4 and 0.6. These probabilities satisfy (4) with � = 1. Their values are by no
means essential, as long we avoid the worst case where the probabilities are equal.

Figure 1 graphs the results. We see that in both cases the regret of AdaGrad follows its O(

p
T )

bound, while MetaGrad achieves an O(lnT ) rate, as predicted by Theorems 2 and 3. This shows that
MetaGrad achieves a type of adaptivity that is not achieved by AdaGrad. We should be careful in
extending this conclusion to higher dimensions, though: whereas (the diagonal version of) AdaGrad
uses a separate learning rate per dimension, MetaGrad shares learning rates between dimensions
(unless we run a separate copy of MetaGrad per dimension, as suggested in the related work section).

A.2 Proof of Theorem 2

Proof. By (3), applied with w = w

t

, and Theorem 1, there exists a C > 0 (depending on a) such
that, for all sufficiently large T ,

Ru

T

 a ˜Ru

T

� bV u

T

 C
p

V u

T

d lnT + Cd lnT � bV u

T

10



 �

2

CV u

T

+

✓

1

2�
+ 1

◆

Cd lnT � bV u

T

for all � > 0,

where the last inequality is based on p
xy = min

�>0
�

2x+

y

2� for all x, y > 0. The result follows
upon taking � =

2b
C

.

A.3 Proof of Theorem 3

Proof. Abbreviate r̃u
t

= (w

t

� u)

|
g

t

. Then, by (1), Jensen’s inequality and the Bernstein condition,
there exists a constant C > 0 such that, for all sufficiently large T , the expected linearized regret is at
most

E
h

˜Ru

⇤

T

i

 C E


q

V u

⇤
T

d lnT

�

+ Cd lnT  C
q

E [V u

⇤
T

] d lnT + Cd lnT

 C

v

u

u

tB

T

X

t=1

(E [r̃u
⇤

t

])

�

d lnT + Cd lnT.

We will repeatedly use the fact that

x↵y1�↵

= c
↵

inf

�>0

✓

x

�
+ �

↵
1�↵ y

◆

for any x, y � 0 and ↵ 2 (0, 1), (9)

where c
↵

= (1�↵)1�↵↵↵. Applying this first with ↵ = 1/2, x = Bd lnT and y =

P

T

t=1

�

E[r̃u⇤

t

]

�

�

,
we obtain

v

u

u

tB

T

X

t=1

(E[r̃u⇤
t

])

�

d lnT  c1/2�1

T

X

t=1

⇣

E[r̃u
⇤

t

]

⌘

�

+

c1/2

�1
Bd lnT for any �1 > 0.

If � = 1, then
P

T

t=1

�

E[r̃u⇤

t

]

�

�

= E[ ˜Ru

⇤

T

] and the result follows by taking �1 =

1
2Cc1/2

. Alterna-

tively, if � < 1, then we apply (9) a second time, with ↵ = �, x = E[r̃u⇤

t

] and y = 1, to find that, for
any �2 > 0,

v

u

u

tB

T

X

t=1

(E[r̃u⇤
t

])

�

d lnT  c
�

c1/2�1

T

X

t=1

✓

E[r̃u⇤

t

]

�2
+ �

�/(1��)
2

◆

+

c1/2

�1
Bd lnT

=

c
�

c1/2�1

�2
E[ ˜Ru

⇤

T

] + c
�

c1/2�1�
�/(1��)
2 T +

c1/2

�1
Bd lnT.

Taking �1 =

�2

2c�c1/2C
, this yields

E[ ˜Ru

⇤

T

]  �
1/(1��)
2 T +

4C2c21/2c�Bd lnT

�2
+ 2Cd lnT.

We may optimize over �2 by a third application of (9), now with x = 4C2c21/2c�Bd lnT , y = T and
↵ = 1/(2� �), such that ↵/(1� ↵) = 1/(1� �):

E[ ˜Ru

⇤

T

]  1

c1/(2��)

⇣

4C2c21/2c�Bd lnT
⌘1/(2��)

T (1��)/(2��)
+ 2Cd lnT

= O
⇣

(Bd lnT )
1/(2��)

T (1��)/(2��)
+ d lnT

⌘

,

which completes the proof.

A.4 Unregularized Hinge Loss Example

As shown by Koolen, Grünwald, and Van Erven [19], the Bernstein condition is satisfied in the
following classification task:

11



Lemma 8 (Unregularized Hinge Loss Example). Suppose that (X1, Y1), (X2, Y2), . . . are i.i.d. with
Y
t

taking values in {�1,+1}, and let f
t

(u) = max{0, 1� Y
t

hu,X
t

i} be the hinge loss. Assume
that both U and the domain for X

t

are the d-dimensional unit ball. Then the (B,�)-Bernstein
condition is satisfied with � = 1 and B =

2�max
kµk , where �max is the maximum eigenvalue of E [XX

|
]

and µ = E[YX], provided that kµk > 0.

In particular, if X
t

is uniformly distributed on the sphere and Y
t

= sign(h¯u,X
t

i) is the noiseless
classification of X

t

according to the hyperplane with normal vector ¯

u, then B  cp
d

for some
absolute constant c > 0.

Thus the version of the Bernstein condition that implies an O(d lnT ) rate is always satisfied for
the hinge loss on the unit ball, except when kµk = 0, which is very natural to exclude, because it
implies that the expected hinge loss is 1 (its maximal value) for all u, so there is nothing to learn. It
is common to add `2-regularization to the hinge loss to make it strongly convex, but this example
shows that that is not necessary to get logarithmic regret.

B Master Regret Bound (Proof of Lemma 4)

Proof. To prove Lemma 4, we start by bounding e�↵`

⌘
t (w

⌘
t ) by its tangent at w⌘

t

= w

t

:

e�↵`

⌘
t (w

⌘
t )  1 + ↵⌘ (w

t

�w

⌘

t

)

|
g

t

for any ⌘ 2 (0, 2
3DG

]. (10)

For the full case, where ↵ = ↵full
= 1, this follows directly from the “prod bound” ex�x

2  1 + x
with x = ⌘ (w

t

�w

⌘

t

)

|
g

t

, which has previously been used in the prediction with expert advice
setting [3, 11, 16] and holds for any x � �2/3. In the diagonal case, (10) does not hold with ↵ = 1,
but it can be proved with ↵ = ↵diag

= 1/d by an application of Jensen’s inequality combined with a
separate prod bound per dimension:

e�↵`

⌘
t (w

⌘
t )

= e
P

i
1
d (⌘(wt,i�w

⌘
t,i)gt,i�⌘

2(wt,i�w

⌘
t,i)

2
g

2
t,i)

Jensen


X

i

1

d
e(⌘(wt,i�w

⌘
t,i)gt,i�⌘

2(wt,i�w

⌘
t,i)

2
g

2
t,i)

prod bound


X

i

1

d

�

1 + ⌘(w
t,i

� w⌘

t,i

)g
t,i

�

= 1 + ↵⌘(w
t

�w

⌘

t

)

|
g

t

.

We proceed to show that the potential �
T

is non-increasing:

�

T+1 � �

T

=

X

⌘

⇡⌘

1e
�↵

PT
t=1 `

⌘
t (w

⌘
t )
⇣

e�↵`

⌘
t (w

⌘
T+1) � 1

⌘


X

⌘

⇡⌘

1e
�↵

PT
t=1 `

⌘
t (w

⌘
t )↵⌘

�

w

T+1 �w

⌘

T+1

�|
g

T+1 = 0,

where the inequality is the tangent bound (10), and the final equality is by definition of the master
prediction (in fact, it can be taken as the motivation for the master’s definition)

w

T+1 =

P

⌘

⇡⌘

T+1⌘w
⌘

T+1
P

⌘

⇡⌘

T+1⌘
=

P

⌘

⇡⌘

1e
�↵

PT
t=1 `

⌘
t (w

⌘
t )⌘w⌘

T+1
P

⌘

⇡⌘

1e
�↵

PT
t=1 `

⌘
t (w

⌘
t )⌘

.

Since �0 = 1 is trivial, this completes the proof of the lemma.

C Slave Regret Bound (Proof of Lemma 5)

Proof. For any distributions P and Q on Rd, let KL(PkQ) = E
P

[ln

dP
dQ ] denote the Kullback-Leibler

divergence of P from Q, and let µ
P

= E
P

[u] denote the mean of P . In addition, let N (µ,⌃) denote
a normal distribution with mean µ and covariance matrix ⌃.

In round t, we play according to the mean of a multivariate Gaussian distribution P
t

. In the first
round, this is a normal distribution, which plays the role of a prior:

P1 = N (0, D2
I).

12



Then we update using the exponential weights update, followed by a projection onto P = {P : µ

P

2
U}, such that the mean stays in the allowed domain U :

d ˜P
t+1(u) =

e�`

⌘
t (u) dP

t

(u)

R

Rd e�`

⌘
t (u

0) dP
t

(u

0
)

, P
t+1 = argmin

P2P
KL(Pk ˜P

t

).

To see that Algorithm 2 implements this algorithm, we prove by induction that
P
t

= N (w

⌘

t

,⌃⌘

t

).

For t = 1 this is clear, and if it holds for any t then it can be verified by comparing densities that
˜P
t+1 = N (

e

w

⌘

t+1,⌃
⌘

t+1). Since it is well-known that the KL-projection of a Gaussian N (µ,⌃) onto
P is another Gaussian N (⌫,⌃) with the same covariance matrix and mean ⌫ 2 U that minimizes
1
2 (⌫ �µ)

|⌃�1
(⌫ �µ), it then follows that P

t+1 = N (w

⌘

t+1,⌃
⌘

t+1). For completeness we provide
a proof of this last result in Lemma 9 of Appendix F.

It now remains to bound the regret. Since P is convex, the Pythagorean inequality for Kullback-
Leibler divergence implies that

KL(Qk ˜P
t+1) � KL(QkP

t+1) + KL(P
t+1k ˜Pt+1) � KL(QkP

t+1)

for all Q 2 P . The following telescoping sum therefore gives us that

KL(QkP1) �
T

X

t=1

KL(QkP
t

)�KL(QkP
t+1) �

T

X

t=1

KL(QkP
t

)�KL(Qk ˜P
t+1)

=

T

X

t=1

� ln E
Pt

[e�`

⌘
t (u)

]� E
Q

[`⌘
t

(u)]. (11)

This may be interpreted as a regret bound in the space of distributions, which we will now relate to
our regret of interest. If M

t

= M

full
t

, then Lemma 10 in Appendix G implies that

� ln E
Pt

[e�`

⌘
t (u)

] � `⌘
t

(w

⌘

t

)

because w

⌘

t

is the mean of P
t

. Alternatively, if M
t

= M

diag
t

then P
t

has diagonal covariance ⌃⌘

t

,
and we can use Lemma 10 again to draw the same conclusion.

To control E
Q

[`⌘
t

(u)], we may restrict attention (without loss of generality by a standard maximum
entropy argument) to normal distributions Q = N (µ, D2⌃) with mean µ 2 U and covariance
⌃ � 0 (expressed relative to the prior variance D2). Then, using the cyclic property and linearity of
the trace,

E
Q

[`⌘
t

(u)] = �⌘(w
t

� µ)

|
g

t

+ ⌘2(w|
t

M

t

w

t

� 2µ

|
M

t

w

t

+ E
Q

[tr(u

|
M

t

u)])

= �⌘(w
t

� µ)

|
g

t

+ ⌘2(w|
t

M

t

w

t

� 2µ

|
M

t

w

t

+ tr(E
Q

[uu

|
]M

t

))

= �⌘(w
t

� µ)

|
g

t

+ ⌘2(w|
t

M

t

w

t

� 2µ

|
M

t

w

t

+ tr((D2⌃+ µµ

|
)M

t

))

= �⌘(w
t

� µ)

|
g

t

+ ⌘2
�

(µ�w

t

)

|
M

t

(µ�w

t

) +D2
tr(⌃M

t

)

�

= `⌘
t

(µ) + ⌘2D2
tr(⌃M

t

).

Finally, it remains to work out

KL(QkP1) =

1

2D2
kµk2 + 1

2

(� ln det⌃+ tr(⌃)� d) .

We have now bounded all the pieces in (11). Putting them all together with the choice µ = u and
optimizing the bound in ⌃ gives:
T

X

t=1

`⌘
t

(w

⌘

t

)�
T

X

t=1

`⌘
t

(u)  1

2D2
kuk2 + 1

2

inf

⌃�0

(

� ln det⌃+ tr

 

⌃

 

I + 2⌘2D2
T

X

t=1

M

t

!!

� d

)

=

1

2D2
kuk2 + 1

2

ln det

 

I + 2⌘2D2
T

X

t=1

M

t

!

, (12)

where the minimum is attained at ⌃ =

⇣

I + 2⌘2D2
P

T

t=1 Mt

⌘�1
.
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D Composition Proofs

Throughout this section we abbreviate S

T

=

P

T

t=1 Mt

.

D.1 Proof of Theorem 6

Proof. We start with

0

Lemma 4
� 1

↵
ln�

T

� 1

↵
ln⇡⌘

1 �
T

X

t=1

`⌘
t

(w

⌘

t

)

Lemma 5
� 1

↵
ln⇡⌘

1 �
T

X

t=1

`⌘
t

(u)� 1

2D2
kuk2 � 1

2

ln det

�

I + 2⌘2D2
S

T

�

.

Now expanding the definition (6) of the surrogate losses we find

⌘

T

X

t=1

(w

t

� u)

|
g

t

 1

2D2
kuk2 � 1

↵
ln⇡⌘

1 + ⌘2V u

T

+

1

2

ln det

�

I + 2⌘2D2
S

T

�

,

in which we may divide by ⌘ to obtain the claim.

D.2 Proof of Theorem 7

Proof. In principle we would like to directly select the ⌘ that optimizes the regret bound from
Theorem 6. But unfortunately we cannot tractably minimize that bound, since ⌘ occurs in the ln det.
To bring the ⌘ out, we apply the variational form from (12) to Theorem 6 to obtain

˜Ru

T

 inf

⌃�0
⌘
i

�

V u

T

+D2
tr (⌃S

T

)

�

+

1
D

2 kuk2 � 2
↵

ln⇡⌘i
1 � ln det(⌃) + tr (⌃)� d

2⌘
i

(13)

for all grid points ⌘
i

. This leads to an upper bound by plugging in a near-optimal choice for ⌃, which
we choose as

full diag

⌃ =(I + cS
T

)

�1 ⌃ =

1

D2
diag(V u

T,1, . . . , V
u

T,d

)S

�1
T

,

where c :

= rk(S

T

)

⇣

D

2

V

u
T

� 1
tr(ST )

⌘

is non-negative because V u

T

 D2
P

T

t=1 kgtk2 = D2
tr(S

T

)

by Cauchy-Schwarz. We proceed to bound terms involving ⌃ above. In the diagonal case, we use
that D2

tr (⌃S

T

) = V u

T

and ⌃ � I because V u

T,i

 D2
P

T

t=1 g
2
t,i

by Cauchy-Schwarz. In the full
case, we also have ⌃ � I . In addition, we observe that S

T

and ⌃ share the same eigenbasis, so
we may work in that basis. As ⌃S

T

has rk(S

T

) non-zero eigenvalues, we may pull out a factor
rk(S

T

) and replace the trace by a uniform average of the eigenvalues. Then Jensen’s inequality for
the concave function x 7! x

1+cx

for x � 0 gives

D2
tr(⌃S

T

)

Jensen
 D2

tr(S

T

)

⇣

1 +

c

rk(ST ) tr(ST

)

⌘

= V u

T

.

Thus, in both cases we have D2
tr(⌃S

T

)  V u

T

and ⌃ � I , which implies that tr(⌃)  tr(I) = d
and that

⌅

T

:

= � ln det⌃ � 0.

Finally, by construction of the grid, for any ⌘ 2 [

1
5DG

p
T

, 2
5DG

] there exists a grid point ⌘
i

2 [

⌘

2 , ⌘],
and the prior costs of this grid point satisfy

� ln⇡⌘i
1  2 ln(2 + i)  2 ln

�

3 +

1
2 log2 T

�

.

Plugging these bounds into (13) and abbreviating

A :

=

1

D2
kuk2 + 4

↵
ln

�

3 +

1
2 log2 T

�

+ ⌅

T

� 4 ln 3,
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we obtain
˜Ru

T

 2⌘V u

T

+

A

⌘
.

Subsequently tuning ⌘ optimally as

⌘̂ =

s

A

2V u

T

�
p
2 ln 3

DG
p
T

� 1

5DG
p
T

is allowed when ⌘̂  2
5DG

, and gives ˜Ru

T


p

8V u

T

A. Alternatively, if ⌘̂ � 2
5DG

, then we plug
in ⌘ =

2
5DG

and obtain ˜Ru

T

 4
5DG

V u

T

+

5
2DGA  5DGA, where the second inequality follows

from the constraint on ⌘̂. In both cases, we find that
˜Ru

T


p

8V u

T

A+ 5DGA,

which results in the first claim of the theorem upon observing that, for the full version of the algo-
rithm, ⌅

T

 rk(S

T

) ln

⇣

D

2 tr(ST )
V

u
T

⌘

by Jensen’s inequality and ⌅

T

 ln det

⇣

I +

D

2 rk(ST )
V

u
T

S

T

⌘

by
monotonicity of ln det.

To prove the second claim, we instead take the comparator covariance ⌃ = I equal to the prior
covariance and again use V u

T

 D2
tr(S

T

) to find

˜Ru

T

 ⌘
i

�

V u

T

+D2
tr (S

T

)

�

+

1
D

2 kuk2 � 2
↵

ln⇡⌘i
1

2⌘
i

 2⌘
i

D2
tr (S

T

) +

1
D

2 kuk2 � 2
↵

ln⇡⌘i
1

2⌘
i

 2⌘D2
tr (S

T

) +

1
D

2 kuk2 + 4
↵

ln

�

3 +

1
2 log2 T

�

⌘

for all ⌘ 2 [

1
5DG

p
T

, 2
5DG

]. Tuning ⌘ as

⌘̂ =

s

1
D

2 kuk2 + 4
↵

ln

�

3 +

1
2 log2 T

�

2D2
tr (S

T

)

�
r

4 ln 3

2D2G2T
� 1

5DG
p
T

is allowed when ⌘̂  2
5DG

, and gives

˜Ru

T



s

8D2
tr (S

T

)

✓

1

D2
kuk2 + 4

↵
ln

�

3 +

1
2 log2 T

�

◆

.

Alternatively, if ⌘̂ � 2
5DG

, then we plug in ⌘ =

2
5DG

and obtain

˜Ru

T

 4

5DG
D2

tr (S

T

) +

5

2

DG

✓

1

D2
kuk2 + 4

↵
ln

�

3 +

1
2 log2 T

�

◆

 5DG

✓

1

D2
kuk2 + 4

↵
ln

�

3 +

1
2 log2 T

�

◆

,

where the second inequality follows from the constraint on ⌘̂. In both cases, the second claim of the
theorem follows.

E Discussion of the Choice of Grid Points and Prior Weights

We now think about the choice of the grid and corresponding prior. Theorem 6 above implies that any
two ⌘ that are within a constant factor of each other will guarantee the same bound up to a constant
factor. Since ⌘ is a continuous parameter, this suggests choosing a prior that is approximately uniform
for ln ⌘, which means it should have a density that looks like 1/⌘. Although Theorem 6 does not
show it, there is never any harm in taking too many grid points, because grid points that are very
close together will behave as a single point with combined prior mass. If we disregard computation,
we would therefore like to use the prior discussed by Chernov and Vovk [4], which is very close to
uniform on ln ⌘ and has density

⇡(⌘) =

C

⌘ log22(
5
2DG⌘)

,
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where we include the factor 5
2DG to make the prior invariant under rescalings of the problem, and C

is a normalizing constant that makes the prior integrate to 1. To adapt this prior to a discrete grid, we
need to integrate this density between grid points and assign prior masses:

⇡⌘i
1 :

=

Z

⌘i

⌘i+1

⇡(⌘) d⌘ =

C ln(2)

� log2(
5
2DG⌘)

�

�

�

�

⌘i

⌘i+1

.

For the exponentially spaced grid in (8), this evaluates to the prior weights ⇡⌘i
1 specified there.

F Projection of Gaussians

It is well-known that the projection of a Gaussian onto the set of distributions with mean in the convex
set U is also a Gaussian with the same covariance matrix. This result follows easily from, for instance,
Theorems 1.8.5 and 1.8.2 of Ihara [15], but we include a short proof for completeness:

Lemma 9. Let ˜P
t

= N (µ,⌃) be Gaussian and let P
t

= argmin

P : µP2U KL(Pk ˜P
t

) be its projec-
tion onto the set of distributions with mean in U . Then P

t

is also Gaussian with the same covariance
matrix:

P
t

= N (⌫,⌃)

for ⌫ 2 U that minimizes 1
2 (⌫ � µ)

|⌃�1
(⌫ � µ).

Proof. Let P be an arbitrary distribution with mean ⌫ 2 U , and let R = N (⌫,⌃). Then by
straight-forward algebra and nonnegativity of Kullback-Leibler divergence it can be verified that

KL(Pk ˜P
t

) = KL(PkR) + KL(Rk ˜P
t

) � KL(Rk ˜P
t

).

Thus the minimum over all P is achieved by a Gaussian with the same covariance matrix as ˜P
t

. It
remains to find the mean of the projection, which is the ⌫ 2 U that minimizes

KL(Rk ˜P
t

) =

1

2

(⌫ � µ)

|⌃�1
(⌫ � µ),

as required.

G Gaussian Exp-concavity

Exp-concavity of `⌘
t

(u) means that E
h

e�`

⌘
t (u)

i

 e�`

⌘
t (µ) for any distribution on u 2 Rd. Although

this does not hold for general distributions with support outside of U , it does hold if we restrict
attention to certain types of Gaussians:
Lemma 10 (Gaussian exp-concavity). Let 0 < ⌘  1

5DG

. Consider a Gaussian distribution with
mean µ 2 U and arbitrary covariance ⌃ � 0 in the full case or diagonal ⌃ � 0 in the diagonal
case. Then

E
u⇠N (µ,⌃)

h

e�`

⌘
t (u)

i

 e�`

⌘
t (µ)

Proof. We first consider the full case. Abbreviating r :

= (w

t

� µ)

|
g

t

and s := (µ� u)

|
g

t

, from
the definition (6) of `⌘

t

we get

`⌘
t

(µ)� `⌘
t

(u) = ⌘(µ� u)

|
g

t

� ⌘2 (2(µ�w

t

)

|
g

t

g

|
t

(µ� u) + (µ� u)

|
g

t

g

|
t

(µ� u))

= ⌘s� ⌘2
�

2rs+ s2
�

.

Since u ⇠ N (µ,⌃) implies s ⇠ N (0, v) with v = g

|
t

⌃g

t

, the claim collapses to

1 � E
u⇠N (µ,⌃)

h

e`
⌘
t (µ)�`

⌘
t (u)

i

= E
s⇠N (0,v)

h

e⌘s�⌘

2
(

2rs+s

2
)

i

=

e
⌘2v(1�2⌘r)2

2(1+2⌘2v)

p

1 + 2⌘2v
,

which is equivalent to

(1� 2⌘r)2⌘2v 
�

1 + 2⌘2v
�

ln

�

1 + 2⌘2v
�

.
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The left-hand side is maximized over r 2 [�DfullGfull, DfullGfull
] at r = �DfullGfull. So it suffices to

establish
v(1 + 2⌘DfullGfull

)

2⌘2 
�

1 + 2⌘2v
�

ln

�

1 + 2⌘2v
�

.

Now the right-hand is convex in v and hence bounded below by its tangent at v = 0, which is 2⌘2v.
The proof is completed by observing that (1 + 2⌘DfullGfull

)

2  2 by the assumed bound on ⌘.

It remains to consider the diagonal case. There the surrogate loss (6) is a sum over dimensions, say
`⌘
t

(u) =

P

d

i=1 `
⌘

t,i

(u
i

). For a Gaussian with diagonal covariance matrix ⌃ the coordinates of u are
independent, and hence

E
u⇠N (µ,⌃)

h

e�`

⌘
t (u)

i

=

d

Y

i=1

E
ui⇠N (µi,⌃i,i)

h

e�`

⌘
t,i(ui)

i


d

Y

i=1

e�`

⌘
t,i(µi)

= e�`

⌘
t (µ),

where the inequality is the result for the full case applied to each dimension separately.

H Bernstein for Linearized Excess Loss

Let f : U ! R be a convex function drawn from distribution P with stochastic optimum u

⇤
=

argmin

u2U E
f⇠P[f(u)]. For any w 2 U , we now show that the Bernstein condition for the excess

loss X :

= f(w)� f(u⇤
) implies the Bernstein condition with the same exponent � for the linearized

excess loss Y :

= (w � u

⇤
)

|rf(w). These variables satisfy Y � X by convexity of f and
Y  C :

= DfullGfull.
Lemma 11. For � 2 (0, 1], let X be a (B,�)-Bernstein random variable:

E[X2
]  B E[X]

� .

Then any bounded random variable Y  C with Y � X pointwise satisfies the (B0,�)-Bernstein
condition

E[Y 2
]  B0 E[Y ]

�

for B0
= max

n

B, 2
�

C2��

o

.

Proof. For � 2 (0, 1) we will use the fact that

z� = c
�

inf

�>0

✓

z

�
+ �

�
1��

◆

for any z � 0,

with c
�

= (1� �)1���� . For � =

⇣

1��

�

E[Y ]

⌘1��

we therefore have

E[X2
]�B0 E[X]

� � E[X2
]�B0c

�

✓

E[X]

�
+ �

�
1��

◆

� E[Y 2
]�B0c

�

✓

E[Y ]

�
+ �

�
1��

◆

= E[Y 2
]�B0 E[Y ]

� , (14)

where the second inequality holds because x2 � c
�

B0x/� is a decreasing function of x  C for
�  c�B

0

2C , which is satisfied by the choice of B0. This proves the lemma for � 2 (0, 1). The claim
for � = 1 follows by taking the limit � ! 1 in (14).
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