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Abstract

We combine Riemannian geometry with the mean field theory of high dimensional
chaos to study the nature of signal propagation in generic, deep neural networks
with random weights. Our results reveal an order-to-chaos expressivity phase
transition, with networks in the chaotic phase computing nonlinear functions whose
global curvature grows exponentially with depth but not width. We prove this
generic class of deep random functions cannot be efficiently computed by any shal-
low network, going beyond prior work restricted to the analysis of single functions.
Moreover, we formalize and quantitatively demonstrate the long conjectured idea
that deep networks can disentangle highly curved manifolds in input space into flat
manifolds in hidden space. Our theoretical analysis of the expressive power of deep
networks broadly applies to arbitrary nonlinearities, and provides a quantitative
underpinning for previously abstract notions about the geometry of deep functions.

1 Introduction

Deep feedforward neural networks have achieved remarkable performance across many domains
[1H6]. A key factor thought to underlie their success is their high expressivity. This informal notion
has manifested itself primarily in two forms of intuition. The first is that deep networks can compactly
express highly complex functions over input space in a way that shallow networks with one hidden
layer and the same number of neurons cannot. The second piece of intuition, which has captured
the imagination of machine learning [[7] and neuroscience [8] alike, is that deep neural networks can
disentangle highly curved manifolds in input space into flattened manifolds in hidden space. These
intuitions, while attractive, have been difficult to formalize mathematically and thus test rigorously. |

For the first intuition, seminal works have exhibited examples of particular functions that can be
computed with a polynomial number of neurons (in the input dimension) in a deep network but
require an exponential number of neurons in a shallow network [9H13]]. This raises a central open
question: are such functions merely rare curiosities, or is any function computed by a generic deep
network not efficiently computable by a shallow network? The theoretical techniques employed in
prior work both limited the applicability of theory to specific nonlinearities and dictated the particular
measure of deep functional complexity involved. For example, [9] focused on ReLLU nonlinearities
and number of linear regions as a complexity measure, while [10] focused on sum-product networks
and the number of monomials as complexity measure, and [[14] focused on Pfaffian nonlinearities and
topological measures of complexity, like the sum of Betti numbers of a decision boundary (however,
see [15] for an interesting analysis of a general class of compositional functions). The limits of
prior theoretical techniques raise another central question: is there a unifying theoretical framework
for deep neural expressivity that is simultaneously applicable to arbitrary nonlinearities, generic
networks, and a natural, general measure of functional complexity?

Code to reproduce all results available at: https://github.com/ganguli-lab/deepchaos

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.


https://github.com/ganguli-lab/deepchaos

Here we attack both central problems of deep neural expressivity by combining Riemannian geometry
[L6] and dynamical mean field theory [17]. This novel combination of tools enables us to show that
for very broad classes of nonlinearities, even random deep neural networks can construct hidden
internal representations whose global extrinsic curvature grows exponentially with depth but not width.
Our geometric framework enables us to quantitatively define a notion of disentangling and verify
this notion in deep random networks. Furthermore, our methods yield insights into the emergent,
deterministic nature of signal propagation through large random feedforward networks, revealing the
existence of an order to chaos transition as a function of the statistics of weights and biases. We find
that the transient, finite depth evolution in the chaotic regime underlies the origins of exponential
expressivity in deep random networks. In a companion paper [18]], we study several related measures
of expressivity in deep random neural networks with piecewise linear activations.

2 A mean field theory of deep nonlinear signal propagation

Consider a deep feedforward network with D layers of weights W', ..., WP and D + 1 layers of

neural activity vectors x°, ..., x”, with IV; neurons in each layer /, so that x' € RN and W' is an
N; x N;_; weight matrix. The feedforward dynamics elicited by an input x° is given by
x'=¢m) hl=W!xI"t4+b! forl=1,...,D, (1)

where b' is a vector of biases, h' is the pattern of inputs to neurons at layer /, and ¢ is a single
neuron scalar nonlinearity that acts component-wise to transform inputs h’ to activities x'. We
wish to understand the nature of typical functions computable by such networks, as a consequence
of their depth. We therefore study ensembles of random networks in which each of the synaptic
weights WfJ are drawn i.i.d. from a zero mean Gaussian with variance o2 /N;_1, while the biases
are drawn i.i.d. from a zero mean Gaussian with variance o7. This weight scaling ensures that the
input contribution to each individual neuron at layer [ from activities in layer [ — 1 remains O(1),
independent of the layer width IV;_;. This ensemble constitutes a maximum entropy distribution over
deep neural networks, subject to constraints on the means and variances of weights and biases. This
ensemble induces no further structure in the resulting set of deep functions, so its analysis provides
an opportunity to understand the specific contribution of depth alone to the nature of typical functions
computed by deep networks.

In the limit of large layer widths, IN; > 1, certain aspects of signal propagation through deep
random neural networks take on an essentially deterministic character. This emergent determinism
in large random neural networks enables us to understand how the Riemannian geometry of simple
manifolds in the input layer x° is typically modified as the manifold propagates into the deep layers.
For example, consider the simplest case of a single input vector x°. As it propagates through the
network, its length in downstream layers will change. We track this changing length by computing
the normalized squared length of the input vector at each layer:
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This length is the second moment of the empirical distribution of inputs h! across all N; neurons
in layer [. For large NN;, this empirical distribution converges to a zero mean Gaussian since each
h! =3 W ¢(hi™") + bl is a weighted sum of a large number of uncorrelated random variables
- i.e. the weights W' ; and biases bt, which are independent of the activity in previous layers. By

propagating this Gaussian distribution across one layer, we obtain an iterative map for ¢! in (@):

2
¢ = V(qlil|ow,ob) = 03,/ quﬁ(\/ql*lz> +0§, for [=2,...,D, 3)
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where Dz = j;?e_ 7 is the standard Gaussian measure, and the initial condition is ¢! = 02 ¢" + a?,

where ¢° = Nioxo -xY is the length in the initial activity layer. See Supplementary Material (SM)

for a derivation of (3). Intuitively, the integral over z in (3) replaces an average over the empirical
distribution of h! across neurons 7 in layer [ at large layer width N;.

The function V in (@) is an iterative variance, or length, map that predicts how the length of an input in
(2) changes as it propagates through the network. This length map is plotted in Fig. for the special
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Figure 1: Dynamics of the squared length ¢’ for a sigmoidal network (¢(h) = tanh(h)) with 1000
hidden units. (A) The iterative length map in (3) for 3 different o, at o, = 0.3. Theoretical
predictions (solid lines) match well with individual network simulations (dots). Stars reflect fixed
points ¢* of the map. (B) The iterative dynamics of the length map yields rapid convergence of ¢’
to its fixed point ¢* , independent of initial condition (lines=theory; dots=simulation). (C) ¢* as a
function of o, and o3. (D) Number of iterations required to achieve < 1% fractional deviation off
the fixed point. The (o}, 0y,) pairs in (A,B) are marked with color matched circles in (C,D).

case of a sigmoidal nonlinearity, ¢(h) = tanh(h). For monotonic nonlinearities, this length map is
a monotonically increasing, concave function whose intersections with the unity line determine its
fixed points ¢* (o4, 0p). For o, = 0 and o, < 1, the only intersection is at ¢* = 0. In this bias-free,
small weight regime, the network shrinks all inputs to the origin. For o, > 1 and o}, = 0, the ¢* = 0
fixed point becomes unstable and the length map acquires a second nonzero fixed point, which is
stable. In this bias-free, large weight regime, the network expands small inputs and contracts large
inputs. Also, for any nonzero bias o}, the length map has a single stable non-zero fixed point. In such
a regime, even with small weights, the injected biases at each layer prevent signals from decaying to
0. The dynamics of the length map leads to rapid convergence of length to its fixed point with depth
(Fig. [1B.D), often within only 4 layers. The fixed points ¢*(c.,, 03,) are shown in Fig. [I|C.

3 Transient chaos in deep networks

Now consider the layer-wise propagation of two inputs x%! and x%2. The geometry of these two
inputs as they propagate through the network is captured by the 2 by 2 matrix of inner products:

N
1
qtlzb = ﬁl E hé(XO,a) hi(X07b) a, be {17 2} (4)
=1

The dynamics of the two diagonal terms are each theoretically predicted by the length map in (3). We
derive (see SM) a correlation map C that predicts the layer-wise dynamics of ¢},:
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where ¢ty = ¢4, (gt ¢5,)~1/? is the correlation coefficient. Here z; and 2, are independent standard

Gaussian variables, while u; and uo are correlated Gaussian variables with covariance matrix
(ugup) = qflgl. Together, (3) and () constitute a theoretical prediction for the typical evolution of
the geometry of 2 points in (4) in a fixed large network.

Analysis of these equations reveals an interesting order to chaos transition in the o,, and o}, plane. In
particular, what happens to two nearby points as they propagate through the layers? Their relation to
each other can be tracked by the correlation coefficient c}., between the two points, which approaches
a fixed point ¢* (o, o) at large depth. Since the length of each point rapidly converges to ¢* (o, 03),
as shown in Fig. [IBD, we can compute c* by simply setting ¢}, = ¢by = ¢* (04, 03) in &) and
dividing by ¢* to obtain an iterative correlation coefficient map, or C-map, for c},:

clp = qi*C(clgl, 7 q" |ow,0). (6)
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This C-map is shown in Fig. PJA. It always has a fixed point at ¢* = 1 as can be checked by direct
calculation. However, the stability of this fixed point depends on the slope of the map at 1, which is
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See SM for a derivation of (7). If the slope x; is less than 1, then the C-map is above the unity line,
the fixed point at 1 under the C-map in (6) is stable, and nearby points become more similar over time.
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Figure 2: Dynamics of correlations, ¢!, in a sigmoidal network with ¢(h) = tanh(h). (A) The
C-map in (@) for the same o, and o3, = 0.3 as in Fig. [TA. (B) The C-map dynamics, derived from
both theory, through () (solid lines) and numerical simulations of (I) with N; = 1000 (dots) (C)
Fixed points ¢* of the C-map. (D) The slope of the C-map at 1, x1, partitions the space (black dotted
line at y; = 1) into chaotic (x1 > 1, ¢* < 1) and ordered (x; < 1, ¢* = 1) regions.

Conversely, if 1 > 1 then this fixed point is unstable, and nearby points separate as they propagate
through the layers. Thus we can intuitively understand x; as a multiplicative stretch factor. This
intuition can be made precise by considering the Jacobian J! ;= wi y ¢’ (héfl) at a point héfl with
length ¢*. J is a linear approximation of the network map from layer I — 1 to [ in the vicinity of h*~.
Therefore a small random perturbation h'~' +u will map to h! + Ju. The growth of the perturbation,
[[Ju||3/||u|2 becomes x1(q*) after averaging over the random perturbation u, weight matrix W',
and Gaussian distribution of héfl across ¢. Thus x; directly reflects the typical multiplicative growth
or shrinkage of a random perturbation across one layer.

The dynamics of the iterative C-map and its agreement with network simulations is shown in Fig.
[2B. The correlation dynamics are much slower than the length dynamics because the C-map is closer
to the unity line (Fig. [ZA) than the length map (Fig. [T]A). Thus correlations typically take about 20
layers to approach the fixed point, while lengths need only 4. The fixed point c* and slope x; of
the C-map are shown in Fig. 2ICD. For any fixed, finite 0}, as o, increases three qualitative regions
occur. For small o,,, c* = 1 is the only fixed point, and it is stable because x; < 1. In this strong
bias regime, any two input points converge to each other as they propagate through the network. As
0 increases, x; increases and crosses 1, destabilizing the ¢* = 1 fixed point. In this intermediate
regime, a new stable fixed point c* appears, which decreases as ¢, increases. Here an equal footing
competition between weights and nonlinearities (which de-correlate inputs) and the biases (which
correlate them), leads to a finite ¢*. At larger o, the strong weights overwhelm the biases and
maximally de-correlate inputs to make them orthogonal, leading to a stable fixed point at ¢* = 0.

Thus the equation X1 (04, o) = 1 yields a phase transition boundary in the (o, o) plane, separating
it into a chaotic (or ordered) phase, in which nearby points separate (or converge). In dynamical
systems theory, the logarithm of x; is related to the well known Lyapunov exponent which is positive
(or negative) for chaotic (or ordered) dynamics. However, in a feedforward network, the dynamics is
truncated at a finite depth D, and hence the dynamics are a form of transient chaos.

4 The propagation of manifold geometry through deep networks

Now consider a 1 dimensional manifold x°(#) in input space, where  is an intrinsic scalar coordinate
on the manifold. This manifold propagates to a new manifold h!(#) = h!(x°(#)) in the vector
space of inputs to layer [. The typical geometry of the manifold in the {’th layer is summarized
by ¢' (61, 02), which for any 6, and 0, is defined by (@) with the choice x*¢ = x°(6;) and x** =



x%(02). The theory for the propagation of pairs of points applies to all pairs of points on the
manifold, so intuitively, we expect that in the chaotic phase of a sigmoidal network, the manifold
should in some sense de-correlate, and become more complex, while in the ordered phase the
manifold should contract around a central point. This theoretical prediction of equations (3) and
(3) is quantitatively confirmed in 51mulat10ns in Fig. EL when the input is a simple manifold, the
circle, h'(6) = /Nig [u’ cos(d) + u' sin(6#)], where u’ and u' form an orthonormal basis for a 2

dimensional subspace of R™* in which the circle lives. The scaling is chosen so that each neuron has
input activity O(1). Also, for simplicity, we choose the fixed point radius ¢ = ¢* in Fig.
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Figure 3: Propagating a circle through three random sigmoidal networks with varying o, and fixed
op = 0.3. (A) Projection of hidden inputs of simulated networks at layer 5 and 10 onto their first
three principal components. Insets show the fraction of variance explained by the first 5 singular
values. For large weights (bottom), the distribution of singular Values gets flatter and the projected
curve is more tangled. (B) The autocorrelation, ¢}, (A8) = [ df ¢ (6,60 + A@)/q*, of hidden inputs
as a function of layer for simulated networks. (C) The theoretical predictions from (6) (solid lines)
compared to the average (dots) and standard deviation across 6 (shaded) in a simulated network.

To quantitatively understand the layer-wise growth of complexity of this manifold, it is useful to turn
to concepts in Riemannian geometry [L6]]. First, at each point 6, the manifold h(6) (we temporarily
suppress the layer index [) has a tangent, or velocity vector v(6) = Jph(#). Intuitively, curvature
is related to how quickly this tangent vector rotates in the ambient space R as one moves along
the manifold, or in essence the acceleration vector a(f) = dyv(6). Now at each point 6, when both
are nonzero, v(f) and a(f) span a 2 dimensional subspace of R™. Within this subspace, there is a
unique circle of radius R(6) that has the same position, velocity and acceleration vector as the curve
h(6) at 6. This circle is known as the osculating circle (Fig. [4JA), and the extrinsic curvature £ (6) of
the curve is defined as xk(0) = 1/R(6). Thus, intuitively, small radii of curvature R(#) imply high
extrinsic curvature #(#). The extrinsic curvature of a curve depends only on its image in R and
is invariant with respect to the particular parameterization § — h(6). For any parameterization, an
explicit expression for x(6) is given by x(0) = (v-v)~%/2,/(v - v)(a-a) — (v - a)2 [16]. Note that
under a unit speed parameterization of the curve, so that v(#) - v(6) = 1, we have v() - a(d) = 0,
and k(0) is simply the norm of the acceleration vector.

Another measure of the curve’s complexity is the length LF of its image in the ambient Euclidean
space. The Euclidean metric in R" induces a metric g¥(6) = v(6) - v(0) on the curve, so that the

distance d£¥ moved in RY as one moves from 6 to & + d6 on the curve is dCF = \/gF (0)df. The
total curve length is £F = J /9% (0)d6. However, even straight line segments can have a large

Euclidean length. Another interesting measure of length that takes into account curvature, is the
length of the image of the curve under the Gauss map. For a K dimensional manifold M embedded in



A osculating circle tangent vectors Grassmanian F

& —
—-

T 108
10°
104
10%
102
10!
100

1071

incipal curvature

curvature K(6)

5 3 =& B

expansion (gg )

asaaééé”

23233 5w
length in Grassmanian (f

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35
layer layer layer layer

Figure 4: Propagation of extrinsic curvature and length in a network with 1000 hidden units. (A)
An osculating circle. (B) A curve with unit tangent vectors at 4 points in ambient space, and
the image of these points under the Gauss map. (C-E) Propagation of curvature metrics based
on both theory derived from iterative maps in (B)), (6) and (8) (solid lines) and simulations using
(I (dots). (F) Schematic of the normal vector, tangent plane, and principal curvatures for a 2D
manifold embedded in R3. (G) average principal curvatures for the largest and smallest 4 principal
curvatures (K41, . . . , K+4) across locations # within one network. The principal curvatures all grow
exponentially as we backpropagate to the input layer. Panels F,G are discussed in Sec. 5.

RY, the Gauss map (Fig. Ié-_t[B) maps a point § € M toits K dimensional tangent plane TpM € S n,
where & iy is the Grassmannian manifold of all K dimensional subspaces in RY. In the special case
of K =1, & n is the sphere SN—1 with antipodal points identified, since a 1-dimensional subspace
can be identified with a unit vector, modulo sign The Gauss rnap takes a point 6 on the curve and
maps it to the unit velocity vector v( 0)/\/v . In particular, the natural metric on
S¥—=1 induces a Gauss metric on the curve, given by g (9) (89v(9)) (0p¥(0)), which measures
how quickly the unit tangent vector v(6) changes as 6 changes. Thus the distance dﬁ moved in
the Grassmannian & gy as one moves from 6 to ¢ + df on the curve is dLC = /g 0)df, and the
length of the curve under the Gauss map is LE = \/ 0)df. Furthermore, the Gauss metric is
related to the extrinsic curvature and the Euclidean metric Via the relation g% (0) = k(0)%g”(0) [16].

To illustrate these concepts, it is useful to compute all of them for the circle h!(6) defined above:
gP(0) = Nq, LF = 2r\/Nq, k(0) = 1/v/Ngq, g¢(0) = 1, and LE = 27. As expected, x(6) is
the inverse of the radius of curvature, which is v/N¢q. Now consider how these quantities change
if the circle is scaled up so that h(f) — xh(6). The length £ and radius scale up by Y, but the
curvature « scales down as Y1, and so L& does not change. Thus linear expansion increases length
and decreases curvature, thereby maintaining constant Grassmannian length £ .

We now show that nonlinear propagation of this same circle through a deep network can behave very
differently from linear expansion: in the chaotic regime, length can increase without any decrease
in extrinsic curvature! To remove the scaling with N in the above quantities, we will work with the
renormalized quantities & = V Nk, g% = % g%, and LF = L. Thus, 1/(%)? can be thought

of as a radius of curvature squared per neuron of the osculating circle, while (£F)? is the squared
Euclidean length of the curve per neuron. For the circle, these quantities are ¢ and 2mq respectively.
For simplicity, in the inputs to the first layer of neurons, we begin with a circle h' () with squared
radius per neuron ¢! = ¢*, so this radius is already at the fixed point of the length map in (3). In the
SM, we derive an iterative formula for the extrinsic curvature and Euclidean metric of this manifold
as it propagates through the layers of a deep network:
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where X1 is the stretch factor defined in (7) and x> is defined analogously as

X2 = ai/ Dz [¢" (VI2)]”. ©)



X2 is closely related to the second derivative of the C-map in () at ci5* = 1; this second derivative is
X2¢*. See SM for a derivation of the evolution equations for extrinsic geometry in (8).

Intriguingly for a sigmoidal neural network, these evolution equations behave very differently in
the chaotic (y; > 1) versus ordered (y; < 1) phase. In the chaotic phase, the Euclidean metric g¥
grows exponentially with depth due to multiplicative stretching through ;. This stretching does
multiplicatively attenuate any curvature in layer [ — 1 by a factor 1/ (see the update equation for
&l in (8)), but new curvature is added in due to a nonzero y2, which originates from the curvature of
the single neuron nonlinearity in (9). Thus, unlike in linear expansion, extrinsic curvature is not lost,
but maintained, and ultimately approaches a fixed point x*. This implies that the global curvature
measure £ grows exponentially with depth. These highly nontrivial predictions of the metric and
curvature evolution equations in (8] are quantitatively confirmed in simulations in Figure §[C-E.

Intuitively, this exponential growth of global curvature £ in the chaotic phase implies that the curve
explores many different tangent directions in hidden representation space. This further implies that
the coordinate functions of the embedding h!(#) become highly complex curved basis functions
on the input manifold coordinate 6, allowing a deep network to compute exponentially complex
functions over simple low dimensional manifolds (Figure [S]A-C, details in SM).
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Figure 5: Deep networks in the chaotic regime are more expressive than shallow networks. (A)
Activity of four different neurons in the output layer as a function of the input, 6 for three networks
of different depth (width N; = 1,000). (B) Linear regression of the output activity onto a random
function (black) shows closer predictions (blue) with deeper networks (bottom) than shallow networks
(top). (C) Decomposing the prediction error by frequency shows shallow networks cannot capture high
frequency content in random functions but deep networks can (yellow=high error). (D) Increasing
the width of a one hidden layer network up to 10, 000 does not decrease error at high frequencies.

5 Shallow networks cannot achieve exponential expressivity

Consider a shallow network with 1 hidden layer x!, one input layer x", with x! = ¢(W!x?) + b!,
and a linear readout layer. How complex can the hidden representation be as a function of its width
Ny, relative to the results above for depth? We prove a general upper bound on L (see SM):

Theorem 1. Suppose ¢(h) is monotonically non-decreasing with bounded dynamic range R, i.e.
maxy, ¢(h) — miny, ¢(h) = R. Further suppose that x°(0) is a curve in input space such that no 1D
projection of 9px(6) changes sign more than s times over the range of 0. Then for any choice of W1
and b' the Euclidean length of x'(0), satisfies L¥ < Ny(1 + s)R.

For the circle input, s = 1 and for the tanh nonlinearity, R = 2, so in this special case, the normalized
length £¥ < 21/Nj. In contrast, for deep networks in the chaotic regime £ grows exponentially
with depth in h space, and so consequently also in x space. Therefore the length of curves typically
expand exponentially in depth even for random deep networks, but can only expand as the square
root of width no matter what shallow network is chosen. Moreover, as we have seen above, it is the
exponential growth of £¢ that fundamentally drives the exponential growth of £& with depth. Indeed
shallow random networks exhibit minimal growth in expressivity even at large widths (Figure 5D).

6 Classification boundaries acquire exponential local curvature with depth

We have focused so far on how simple manifolds in input space can acquire both exponential
Euclidean and Grassmannian length with depth, thereby exponentially de-correlating and filling up



hidden representation space. Another natural question is how the complexity of a decision boundary
grows as it is backpropagated to the input layer. Consider a linear classifier y = sgn(3 - x” — ;)
acting on the final layer. In this layer, the N — 1 dimensional decision boundary is the hyperplane
B-xP — 3y = 0. However, in the input layer x°, the decision boundary is a curved N — 1 dimensional
manifold M that arises as the solution set of the nonlinear equation G(x°) = 8- xP(x°) — 8y = 0,
where x (x) is the nonlinear feedforward map from input to output.

At any point x* on the decision boundary in layer [, the gradient VG is perpendicular to the N — 1
dimensional tangent plane 7.~ M (see Fig. @:). The normal vector VG, along with any unit tangent
vector v € T« M, spans a 2 dimensional subspace whose intersection with M yields a geodesic
curve in M passing through 2* with velocity vector V. This geodesic will have extrinsic curvature
k(x*, V). Maximizing this curvature over v yields the first principal curvature k1 (x*). A sequence
of successive maximizations of x(x*, V), while constraining ¥ to be perpendicular to all previous
solutions, yields the sequence of principal curvatures k1 (Xx*) > ko(x*) > -+ > ky_1(x*). These
principal curvatures arise as the eigenvalues of a normalized Hessian operator projected onto the

tangent plane T,- M: H = ||[VG||7 ' P- OGP where P =1 — VGVGT is the projection operator

oxoxT
onto 7.« M and VG is the unit normal vector [[16]. Intuitively, near x*, the decision boundary M
can be approximated as a paraboloid with a quadratic form H whose N — 1 eigenvalues are the
principal curvatures £1, . .., ky—1 (Fig. BF).

We compute these curvatures numerically as a function of depth in Fig. G (see SM for details).
We find, remarkably, that a subset of principal curvatures grow exponentially with depth. Here
the principal curvatures are signed, with positive (negative) curvature indicating that the associated

geodesic curves towards (away from) the normal vector VG. Thus the decision boundary can
become exponentially curved with depth, enabling highly complex classifications. Moreover, this
exponentially curved boundary is disentangled and mapped to a flat boundary in the output layer.

7 Discussion

Fundamentally, neural networks compute nonlinear maps between high dimensional spaces, for
example from RNt — RNP and it is unclear what the most appropriate mathematics is for under-
standing such daunting spaces of maps. Previous works have attacked this problem by restricting
the nature of the nonlinearity involved (e.g. piecewise linear, sum-product, or Pfaffian) and thereby
restricting the space of maps to those amenable to special theoretical analysis methods (combinatorics,
polynomial relations, or topological invariants). We have begun a preliminary exploration of the
expressivity of such deep functions based on Riemannian geometry and dynamical mean field theory.
We demonstrate that networks in a chaotic phase compactly exhibit functions that exponentially grow
the global curvature of simple one dimensional manifolds from input to output and the local curvature
of simple co-dimension one manifolds from output to input. The former captures the notion that deep
neural networks can efficiently compute highly expressive functions in ways that shallow networks
cannot, while the latter quantifies and demonstrates the power of deep neural networks to disentangle
curved input manifolds, an attractive idea that has eluded formal quantification.

Moreover, our analysis of a maximum entropy distribution over deep networks constitutes an im-
portant null model of deep signal propagation that can be used to assess and understand different
behavior in trained networks. For example, the metrics we have adapted from Riemannian geometry,
combined with an understanding of their behavior in random networks, may provide a basis for
understanding what is special about trained networks. Furthermore, while we have focused on the
notion of input-output chaos, the duality between inputs and synaptic weights imply a form of weight
chaos, in which deep neural networks rapidly traverse function space as weights change (see SM).
Indeed, just as autocorrelation lengths between outputs as a function of inputs shrink exponentially
with depth, so too will autocorrelations between outputs as a function of weights. Finally, while our
length and correlation maps can be applied directly to piecewise linear nonlinearities (e.g. ReLUs),
deep piecewise linear functions have 0 local curvature. To characterize how such functions twist
across input space, our methods can compute tangent vector auto-correlations instead of curvature.

But more generally, to understand functions, we often look to their graphs. The graph of a map from
RN — RND js an RN dimensional submanifold of RN +tNp and therefore has both high dimension
and co-dimension. We speculate that many of the secrets of deep learning may be uncovered by
studying the geometry of this graph as a Riemannian manifold, and understanding how it changes
with both depth and learning.
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