
Optimal Sparse Linear Encoders and Sparse PCA

Malik Magdon-Ismail
Rensselaer Polytechnic Institute, Troy, NY 12211

magdon@cs.rpi.edu

Christos Boutsidis
New York, NY

christos.boutsidis@gmail.com

Abstract

Principal components analysis (PCA) is the optimal linear encoder of data. Sparse
linear encoders (e.g., sparse PCA) produce more interpretable features that can
promote better generalization. (i) Given a level of sparsity, what is the best ap-
proximation to PCA? (ii) Are there efficient algorithms which can achieve this
optimal combinatorial tradeoff? We answer both questions by providing the first
polynomial-time algorithms to construct optimal sparse linear auto-encoders; ad-
ditionally, we demonstrate the performance of our algorithms on real data.

1 Introduction

The data matrix is X ∈ R
n×d (a row x

T
i ∈ R

1×d is a data point in d dimensions). auto-encoders
transform (encode) the data into a low dimensional feature space and then lift (decode) it back to
the original space, reconstructing the data through a bottleneck. If the reconstruction is close to the
original, then the encoder preserved most of the information using just a small number of features.
Auto-encoders are important in machine learning because they perform information preserving di-
mension reduction. Our focus is the linear auto-encoder, which, for k < d, is a pair of linear
mappings h : Rd 7→ R

k and g : Rk 7→ R
d, specified by an encoder matrix H ∈ R

d×k and a decoder
matrix G ∈ R

k×d. For data point x ∈ R
d, the encoded feature is z = h(x) = HT

x ∈ R
k and the

reconstructed datum is x̂ = g(z) = GT
z ∈ R

d. The reconstructed data matrix is X̂ = XHG. The

pair (H, G) is a good auto-encoder if X̂ ≈ X under some loss metric (we use squared loss):

Definition 1 (Loss ℓ(H, X)). The loss of encoder H is the minimum possible Frobenius reconstruc-
tion error (over all linear decoders G) when using H as encoder for X:

ℓ(H, X) = minG∈Rk×d ‖X − XHG‖
2

F
= ‖X − XH(XH)†X‖

2

F
.

The loss is defined for an encoder H alone, by choosing the decoder optimally. The literature

considers primarily the symmetric auto-encoder which places the additional restriction that G = H†

[18]. To get the most useful features, one should not place unnecessary constraints on the decoder.
Principal Component Analysis (PCA) is the most famous linear auto-encoder, because it is optimal

(and symmetric). Since rank(XHG) ≤ k, the loss is bounded by ℓ(H, X) ≥ ‖X − Xk‖
2

F
(Xk is

its best rank-k approximation to X). By the Eckart-Young theorem Xk = XVkVT

k, where Vk ∈
R

d×k is the matrix whose columns are the top-k right singular vectors of X (see, for example, e-
Chapter 9 of [14]). Thus, the optimal linear encoder is Hopt = Vk, and the top-k PCA-features are
Zpca = XVk. Since its early beginings, [19], PCA has evolved into a classic tool for data analysis.
While PCA simplifies the data by concentrating the maximum information into a few components,
those components may be hard to interpret. In many applications, it is desirable to “explain” the
features using a few original variables (for example, genes in a biological application or assets in
a financial application). One trades off the fidelity of the features (their ability to reconstruct the
data) with the interpretability of the features using a few original features (sparsity of the encoder
H). We introduce a sparsity parameter r and require that every column of H have at most r non-zero
elements. Every feature in an r-sparse encoding can be “explained” using at most r original features.
We now formally state the sparse linear encoder problem:

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Problem 1: Optimal r-sparse encoder (Sparse PCA)

Given X ∈ R
n×d, ε > 0 and k < rank(A), find an r-sparse encoder H with minimum r,

for which the loss is a (1 + ǫ) relative approximation to the optimal loss,

ℓ(H, X) = ‖X − XH(XH)†X‖
2

F
≤ (1 + ε)‖X − Xk‖

2

F
.

Our Contributions. First, we are proposing the “sparse-PCA” problem defined above in lieu of
traditional sparse-PCA which is based on maximizing variance, not minimizing loss. With no spar-
sity constraint, variance maximization and loss minimization are equivalent, both being solved by
PCA. Historically, variance maximization became the norm for sparse-PCA. However, minimizing
loss better achieves the machine learning goal of preserving information. The table below compares
the 10-fold cross-validation error Eout for an SVM classifier using features from popular variance
maximizing sparse-PCA encoders and our loss minimizing sparse-encoder (k = 6 and r = 7),

d SVM T-Power [23] G-Power-ℓ0 [10] G-Power-ℓ1 [10] Our Algorithm
Eout Eout Loss Var Eout Loss Var Eout Loss Var Eout Loss Var

ARCENE 10
4 0.44 matrix to large 0.325 2.5 0.01 0.35 2.5 0.01 0.29 1.4 0.005

Gisette 5000 0.44 0.45 1.17 0.1 0.49 1.2 0.02 0.50 1.2 0.02 0.31 1.1 0.02
Madelon 500 0.51 0.46 1.3 0.09 0.33 1.08 0.08 0.46 1.33 0.05 0.24 1.07 0.03

“1” vs “5” 256 0.35 0.30 2.4 0.21 0.34 2.28 0.27 0.33 2.3 0.19 0.01 1.2 0.03
SECOM 691 0.07 0.34 1.3 0.96 0.35 2.9 0.79 0.33 2.9 0.79 0.31 1.0 0.46

Spam 57 0.17 0.20 1.00 1.0 0.22 1.03 1.0 0.20 1.02 1.0 0.21 1.02 1.0

Lower loss gives lower error. Our experiments are not exhaustive, but their role is modest: to moti-
vate minimizing loss as the right machine learning objective for sparse encoders (Problem 1).

Our main contribution is polynomial sparse encoder algorithms with theoretical guarantees that
solve Problem 1. We give a (1+ǫ)-optimal encoder with sparsity O(k/ε) (Theorem 7). This sparsity
cannot be beaten by any algorithm that guarantees a (1+ε)-approximation (Theorem 8). Ours is the
first theoretical guarantee for a k-component sparse linear encoder with respect to the optimal PCA.
Our algorithm constructs sparse PCA features (columns of the encoder H) which preserve almost
as much information as optimal PCA-features. Our second technical contribution (Theorem 11)
is an algorithm to construct sparse features iteratively (typical of sparse-PCA algorithms). Iterative
algorithms are notoriously hard to analyze, and we give the first theoretical guarantees for an iterative
sparse encoder. (Detailed proofs are postponed to a full version.)

Notation. Let ρ ≤ min{n, d} = rank(X) (typically ρ = d). We use A, B, C, . . . for matrices and
a,b, c, . . . for vectors. The Euclidean basis is e1, e2, . . . (dimension can inferred from context). For
an n × d matrix X, the singular value decomposition (SVD) gives X = UΣVT, where the columns
of U ∈ R

n×ρ are the left singular vectors, the columns of V ∈ R
d×ρ are the right singular vectors,

and Σ ∈ R
ρ×ρ is the positive diagonal matrix of singular values σ1 ≥ · · · ≥ σρ; U and V are

orthonormal, UTU = VTV = Iρ. For integer k, we use Uk ∈ R
n×k (resp. Vk ∈ R

d×k) for the

first k left (resp. right) singular vectors, and Σk ∈ R
k×k is the diagonal matrix with the top-k

singular values. We can view a matrix as a row of columns. So, X = [f1, . . . , fd], U = [u1, . . . ,uρ],
V = [v1, . . . ,vρ], Uk = [u1, . . . ,uk] and Vk = [v1, . . . ,vk]. We use f for the columns of X, the
features, and we reserve xi for the data points (rows of X), XT = [x1, . . . ,xn]. A = [a1, . . . ,ak]
is (r1, . . . , rk)-sparse if ‖ai‖0 ≤ ri; if all ri are equal to r, we say the matrix is r-sparse. The

Frobenius (Euclidean) norm of a matrix A is ‖A‖
2

F
=

∑

ij A2
ij = Tr(ATA) = Tr(AAT). The

pseudo-inverse A† of A with SVD UAΣAVT

A is A† = VAΣ
−1

A UT

A; AA† = UAUT

A is a symmetric

projection operator. For matrices A, B with ATB = 0, a generalized Pythagoras theorem holds,

‖A + B‖
2

F
= ‖A‖

2

F
+ ‖B‖

2

F
. ‖A‖

2
is the operator norm (top singular value) of A.

Discussion of Related Work. PCA is the optimal (and most popular) linear auto-encoder. Nonlin-
ear auto-encoders became prominent with auto-associative neural networks [7, 3, 4, 17, 18]. There
is some work on sparse linear auto-encoders (e.g. [15]) and a lot of research on “sparse PCA”. The
importance of sparse factors in dimensionality reduction has been recognized in some early work:
the varimax criterion [11] has been used to rotate the factors to encourage sparsity, and this has
been used in multi-dimensional scaling approaches to dimension reduction [20, 12]. One of the first
attempts at sparse PCA used axis rotations and component thresholding [6]. The traditional formu-
lation of sparse PCA is as cardinality constrained variance maximization: maxv v

TAv subject to
v

T
v = 1 and ‖v‖

0
≤ r, which is NP-hard [14]. The exhaustive algorithm requires O

(

dr2(dr)
)

2

computation which can be improved to O(dq+1) for a rank-q perturbation of the identity [2]. These
algorithms are not practical. Several heuristics exist. [22] and [24] take an L1 penalization view.
DSPCA (direct sparse PCA) [9] also uses an L1 sparsifier but solves a relaxed convex semidefi-
nite program which is further refined in [8] where they also give a tractable sufficient condition for
testing optimality. The simplest algorithms use greedy forward and backward subset selection. For
example, [16] develop a greedy branch and bound algorithm based on spectral bounds with O(d3)
running time for forward selection and O(d4) running time for backward selection. An alternative
view of the problem is as a sparse matrix reconstruction problem; for example [21] obtain sparse
principal components using regularized low-rank matrix approximation. Most existing SPCA algo-
rithms find one sparse principal component. One applies the algorithm iteratively on the residual
after projection to get additional sparse principal components [13].

There are no polynomial algorithms with optimality guarantees. [1] considers sparse PCA with
a non-negativity constraint: they give an algorithm with input parameter k and running time
O(dk+1 log d+ dkr3) which constructs a sparse component within (1− n

r
‖X − Xk‖2/‖X‖2) from

optimal. The running time is not practical when k is large; further, the approximation guarantee
relies on rapid spectral decay of X and only applies to the first component, not to further iterates.

Explained Variance vs. Loss. For symmetric auto-encoders, minimizing loss is equivalent to

maximizing the symmetric explained variance ‖XHH†‖
2

F
due to the identity

var(X) = ‖X‖
2

F
= ‖X(I − HH†) + XHH†‖

2

F
= ‖X − XHH†‖

2

F
+ ‖XHH†‖

2

F

(the last equality is from Pythagoras’ theorem). The PCA auto-encoder is symmetric, V
†
k = VT

k.
So the optimal encoder for maximum variance or minimum loss are the same: PCA. But, when it
comes to approximation, an approximation algorithm for loss can be converted to an approximation
algorithm for variance maximization (the reverse is not true).

Theorem 2. If ‖X − XHH†‖
2

F
≤ (1 + ε)‖X − Xk‖

2

F
, then ‖XHH†‖

2

F
≥

(

1− ρ−k
k

ε
)

‖Xk‖
2

F .

When factors are not decorrelated, explained variance is not well defined [24], whereas loss is well
defined for any encoder. Minimizing loss and maximizing the explained variance are both ways of
encouraging H to be close to Vk. However, when H is constrained (for example to be sparse), these
optimization objectives can produce very different solutions. From the machine learning perspective,
symmetry is an unnecessary constaint on the auto-encoder. All we want is an encoder that produces
a compact representation of the data while capturing as much information as possible.

2 Optimal Sparse Linear Encoder

We show a black-box reduction of sparse encoding to the column subset selection problem (CSSP).
We then use column subset selection algorithms to construct provably accurate sparse auto-encoders.
For X = [f1, . . . , fd], we let C = [fi1 , fi2 . . . , fir] denote a matrix formed using r columns “sampled”

from X, where 1 ≤ i1 < i2 · · · < ir ≤ d are distinct column indices. We can use a matrix Ω ∈ R
d×r

to perform the sampling, C = XΩ, where Ω = [ei1 , ei2 . . . , eir] and ei are the standard basis vectors

in R
d (post-multiplying X by ei “samples” the ith column of X). The columns of C span a subspace

in the range of X. A sampling matrix can be used to construct an r-sparse matrix.

Lemma 3. Let Ω = [ei1 , ei2 . . . , eir] and let A ∈ R
r×k be any matrix. Then ΩA is r-sparse.

Define XC = CC†X, the projection of X onto the column space of C. Let XC,k ∈ R
n×d be the

optimal rank-k approximation to XC obtained via the SVD of XC.

Lemma 4 (See, for example, [5]). XC,k is a rank-k matrix whose columns are in the span of C. Let

X̂ be any rank-k matrix whose columns are in the span of C. Then, ‖X − XC,k‖F ≤ ‖X − X̂‖
F

.

That is, XC,k is the best rank-k approximation to X whose columns are in the span of C. An efficient

algorithm to compute XC,k is also given in [5]. The algorithm runs in O(ndr + (n+ d)r2) time.

2.1 Sparse Linear Encoders from Column Subset Selection

We show that a set of columns C for which XC,k is a good approximation to X can produce a good
sparse linear encoder. In the algorithm below we assume (not essential) that C has full column rank.
The algorithm uses standard linear algebra operations and has total runtime in O(ndr+ (n+ d)r2).

3

Blackbox algorithm to compute encoder from CSSP

Inputs: X ∈ R
n×d; C ∈ R

n×r with C = XΩ and Ω = [ei1 , . . . , eir]; k ≤ r.

Output: r-sparse linear encoder H ∈ R
d×k.

1: Compute a QR-factorization of C as C = QR, with Q ∈ R
n×r, R ∈ R

r×r.
2: Obtain the SVD of R−1(QTX)k, R−1(QTX)k = URΣRVT

R.
(UR ∈ R

r×k, ΣR ∈ R
k×k and VR ∈ R

d×k)
3: Return H = ΩUR ∈ R

d×k.

In step 2, even though R−1(QTX)k is an r × d matrix, it has rank k, hence the dimensions of
UR, ΣR, VR depend on k, not r. By Lemma 3, the encoder H is r-sparse. Also, H has orthonormal
columns, as is typically desired for an encoder (HTH = UT

RΩ
TΩUR = UT

RUR = I). In every column
of our encoder, the non-zeros are at the same r coordinates which is much stronger than r-sparsity.
The next theorem shows that our encoder is good if C contains a good rank-k approximation XC,k.

Theorem 5 (Blackbox encoder from CSSP). Given X ∈ R
n×d, C = XΩ ∈ R

n×r with Ω =
[ei1 , . . . , eir] and k ≤ r, let H be the r-sparse linear encoder produced by the algorithm above in
O(ndr + (n+ d)r2) time. Then, the loss satisfies

ℓ(H, X) = ‖X − XH(XH)†X‖
2

F
≤ ‖X − XC,k‖

2

F
.

The theorem says that if we can find a set of r columns within which a good rank-k approximation
to X exists, then we can construct a good sparse linear encoder. What remains is to find a sampling

matrix Ω which gives a good set of columns C = XΩ for which ‖X − XC,k‖
2

F
is small. The main

tool to obtain C and Ω was developed in [5] which gave a constant factor deterministic approxima-
tion algorithm and a relative-error randomized approximation algorithm. We state a simplified form
of the result and then discuss various ways in which this result can be enhanced. Any algorithm to
construct a good set of columns can be used as a black box to get a sparse linear encoder.

Theorem 6 (Near-optimal CSSP [5]). Given X ∈ R
n×d of rank ρ and target rank k:

(i) (Theorem 2 in [5]) For sparsity parameter r > k, there is a deterministic algorithm which
runs in time TVk

+ O(ndk + dk3) to construct a sampling matrix Ω = [ei1 , . . . , eir] and
corresponding columns C = XΩ such that

‖X − XC,k‖
2

F
≤

(

1 + (1−
√

k/r)−2

)

‖X − Xk‖
2

F
.

(ii) (Simplified Theorem 5 in [5]) For sparsity parameter r > 5k, there is a randomized algorithm
which runs in time O(ndk + dk3 + r log r) to construct a sampling matrix Ω = [ei1 , . . . , eir]
and corresponding columns C = XΩ such that

E

[

‖X − XC,k‖
2

F

]

≤

(

1 +
5k

r − 5k

)

‖X − Xk‖
2

F
.

Our “batch” sparse linear encoder uses Theorem 6 in our black-box CSSP-encoder.

“Batch” Sparse Linear Encoder Algorithm

Inputs: X ∈ R
n×d; rank k ≤ rank(X); sparsity r > k.

Output: r-sparse linear encoder H ∈ R
d×k.

1: Use Theorem 6-(ii) to compute columns C = XΩ ∈ R
n×r, with inputs X, k, r.

2: Return H computed with X, C, k as input to the CSSP-blackbox encoder algorithm.

Using Theorem 6 in Theorem 5, we have an approximation guarantee for our algorithm.

Theorem 7 (Sparse Linear Encoder). Given X ∈ R
n×d of rank ρ, the target number of sparse PCA

vectors k ≤ ρ, and sparsity parameter r > 5k, the “batch” sparse linear encoder algorithm above
runs in time O(ndr + (n+ d)r2 + dk3) and constructs an r-sparse encoder H such that:

E

[

‖X − XH(XH)†X‖
2

F

]

≤

(

1 +
5k

r − 5k

)

‖X − Xk‖
2

F
.

Comments. The expectation is over the random choices in the algorithm, and the bound can be
boosted to hold with high probability or even deterministically. 2. The guarantee is with respect to

‖X − Xk‖
2

F
(optimal dense PCA): sparsity r = O(k/ε) suffices to mimic top-k (dense) PCA.

4

We now give the lower bound on sparsity, showing that our result is worst-case optimal. Define the
row-sparsity of H as the number of its rows that are non-zero. When k=1, the row-sparsity equals
the sparsity of the single factor. The row-sparsity is the total number of dimensions which have non-
zero loadings among all the factors. Our algorithm produces an encoder with row-sparsity O(k/ε)
and comes within (1 + ε) of the minimum possible loss. This is worst case optimal:

Theorem 8 (Lower Bound). There is a matrix X for which any linear encoder that achieves a
(1 + ε)-approximate loss as compared to PCA must have a row-sparsity r ≥ k/ε.

The common case that in the literature is with k = 1 (top sparse component). Our lower bound
shows that Ω(1/ε)-sparsity is required and our algorithm asymptotically achieves this lower bound.
To prove Theorem 8, we show the converse of Theorem 5: a good linear auto-encoder with row-
sparsity r can be used to construct r columns C for which XC,k approximates X.

Lemma 9. Suppose H is a linear encoder for X with row-sparsity r and decoder G. Then, BHG =
CY, where C is a set of r columns of X and Y ∈ R

r×d.

Given Lemma 9, a sketch of the rest of the argument is as follows. Section 9.2 of [5] demonstrates
a matrix for which there do not exist r good columns. Since a good r-sparse encoder gives r good
columns, no r-sparse encoder can be (1 + k/r)-optimal: No linear encoder with row-sparsity r
achieves a loss within (1 + k/r) of PCA. Our construction is asymptotically worst case optimal.
The lower bound holds for general linear auto-encoders, and so this lower bound also applies to

the symmetric auto-encoder HH†, the traditional formulation of sparse PCA. When k = 1, for any

r-sparse unit norm v, there exists X for which ‖X − Xvv
T‖

2

F
≥ (1 + 1

r
)‖X − X1‖

2

F
, or in terms of

the symmetric explained variance v
TBTBv ≤ ‖B1‖

2

F
− 1

r
‖B − B1‖

2

F
.

3 Iterative Sparse Linear Encoders

Our CSSP-based algorithm is “batch” in that all k factors are constructed simultaneously. Every
feature in the encoder is r-sparse with non-zero loadings on the same set of r original dimensions;
and, you cannot do better with a row-sparsity of r. Further, the batch algorithm does not distinguish
between the k-factors. That is, there is no top component, second component, and so on.

The traditional techniques for sparse PCA construct the factors iteratively. We can too: run our batch
algorithm in an iterative mode, where in each step we set k = 1 and compute a sparse factor for a
residual matrix. By constructing our k features iteratively (and adaptively), we identify an ordering
among the k features. Further, we might be able to get each feature sparser while still maintaining a
bound on the row-sparsity. We now give an iterative version of our algorithm. In each iteration, we
augment H by computing a top sparse encoder for the residual obtained using the current H.

Iterative Sparse Linear Encoder Algorithm

Inputs: X ∈ R
n×d; rank k ≤ rank(X); sparsity parameters r1, . . . , rk.

Output: (r1, . . . , rk)-sparse linear encoder

1: Set the residual ∆ = X and H = [].
2: for i = 1 to k do
3: Use the batch algorithm to compute encoder h for ∆, with k = 1 and r = ri.
4: Add h to the encoder: H ← [H,h].
5: Update the residual ∆: ∆← X − XH(XH)†X.

6: Return the (r1, . . . , rk)-sparse encoder H ∈ R
n×k.

The next lemma bounds the reconstruction error for this iterative step in the algorithm.

Lemma 10. Suppose, for k ≥ 1, Hk = [h1, . . . ,hk] is an encoder for X, satisfying

‖X − XHk(XHk)
†X‖

2

F
= err.

Given a sparsity r > 5 and δ ≤ 5/(r−5), one can compute in time O(ndr+(n+d)r2) an r-sparse
feature hk+1 such that the reconstruction error of the encoder Hk+1 = [h1, . . . ,hk,hk+1] satisfies

E

[

‖X − XHk+1(XHk+1)
†X‖

2

F

]

= (1 + δ)(err − ‖X − XHk(XHk)
†X‖

2

2
).

5

Lemma 10 gives a bound on the reconstruction error for an iterative addition of the next sparse
encoder vector. To see how Lemma 10 is useful, consider target rank k = 2. First construct h1 with

sparsity r1 = 5 + 5/ε, which gives (1 + ε)‖X − X1‖
2

F
loss. Now construct h2, also with sparsity

r2 = 5 + 5/ε. The loss for H = [h1,h2] is bounded by

ℓ(H, X) ≤ (1 + ε)2‖X − X2‖
2

F
+ ε(1 + ε)‖X − X1‖

2

2
.

On the other hand, our batch algorithm uses sparsity r = 10 + 10/ε in each encoder h1,h2 and

achieves reconstruction error (1 + ε)‖X − X2‖
2

F
. The iterative algorithm uses sparser features,

but pays for it a little in reconstruction error. The second term is small, O(ε), and depends on

‖X − X1‖
2

2
= σ2

2 , which in practice is smaller than ‖X − X2‖
2

F
= σ2

3 + · · · + σ2
d. Using the

iterative algorithm, we can tailor the sparsity of each encoder vector separately to achieve a desired
accuracy. It is algebraically intense to prove a bound for a general choice of the sparsity parameters
r1, . . . , rk, so for simplicity, we prove a bound for a specific choice of the sparsity parameters which
slowly increase with each iterate. The proof idea is similar to our example with k = 2.

Theorem 11 (Iterative Encoder). Given X ∈ R
n×d of rank ρ and k < ρ, set rj = 5 + ⌈ 5j/ε ⌉ in

our iterative encoder to compute the (r1, . . . , rk)-sparse encoder H = [h1,h2, . . . ,hk]. Then, for
every ℓ = 1, . . . , k, the encoder H = [h1,h2, . . . ,hk] has reconstruction error

E

[

‖X − XHℓ(XHℓ)
†X‖

2

F

]

≤ (eℓ)ε‖X − Xℓ‖
2

F
+ εℓ1+ε‖Xℓ − X1‖

2

F
. (1)

The running time to compute all the encoder vectors is O(ndk2ε−1 + (n+ d)k3ε−2).

Comments. This is the first theoretical guarantee for iterative sparse encoders. Up to a small additive
term, we have a relative error approximation because (eℓ)ε = 1 + O(ǫ log ℓ) grows slowly with ℓ.
Each successive encoder vector has a larger sparsity (as opposed to a fixed sparsity r = 5k + 5k/ε
in the batch algorithm). If we used a constant sparsity rj = 5 + 5k/ε for every encoder vector in
the iterative algorithm, the relative error term becomes 1+O(εℓ) as opposed to 1+O(ε log ℓ). Just
as with the PCA vectors v1,v2, . . ., we have a provably good encoder for any ℓ by taking the first ℓ
factors h1, . . . ,hℓ. In the batch-encoder H = [h1, . . . ,hk], we cannot guarantee that h1 will give a
reconstruction comparable with X1. The detailed proof is in the supplementary matrrial.

Proof. (Sketch) For ℓ ≥ 1, we define two quantities Qℓ, Pℓ for that will be useful in the proof.

Qℓ = (1 + ε)(1 + 1

2
ε)(1 + 1

3
ε)(1 + 1

4
ε) · · · (1 + 1

ℓ
ε);

Pℓ = Qℓ − 1 = (1 + ε)(1 + 1

2
ε)(1 + 1

3
ε)(1 + 1

4
ε) · · · (1 + 1

ℓ
ε)− 1.

Using Lemma 10 and induction, we can prove a bound on the loss of Hℓ.

E

[

‖X − XHℓ(XHℓ)
†X‖

2

F

]

≤ Qℓ‖X − Xℓ‖
2

F
+Qℓ

ℓ
∑

j=2

σ2
j

Pj−1

Qj−1

. (∗)

When ℓ = 1, the claim is that E[‖X − XH1(XH1)
†X‖

2

F
] ≤ (1+ε)‖X − X1‖

2

F
(since the summation

is empty), which is true by construction of H1 = [h1] because r1 = 5 + 5/ε. For the induction

step, we apply Lemma 10 with δ = ε/(ℓ + 1), condition on err = ‖X − XHℓ(XHℓ)
†X‖

2

F
whose

expectation is given in (∗), and use iterated expectation. The details are given in the supplementary
material. The first term in the bound (1) follows by bounding Qℓ using elementary calculus:

logQℓ =
ℓ

∑

i=1

log
(

1 +
ε

i

)

≤
ℓ

∑

i=1

ε

i
≤ ε log(eℓ),

where we used log(1 + x) ≤ x for x ≥ 0 and the well known upper bound log(eℓ) for the ℓth
harmonic number 1 + 1

2
+ 1

3
+ · · · + 1

ℓ
. Thus, Qℓ ≤ (eℓ)ε. The rest of the proof is to bound the

second term in (∗) to obtain the second term in (1). Obeserve that for i ≥ 1,

Pi = Qi − 1 = ε
Qi

Q1

+
Qi

Q1

− 1 ≤ ε
Qi

Q1

+Qi−1 − 1 = ε
Qi

Q1

+ Pi−1,

where we used Qi/Q1 ≤ Qi−1 and we define P0 = 0. After some algebra which we omit,

ℓ
∑

j=2

σ2
j

Pj−1

Qj−1

≤
ε

Q1

‖Xℓ − X1‖
2

F
+

ℓ
∑

j=3

σ2
j

Pj−2

Qj−2

.

6

2 4 6 8 10
1

1.1

1.2

1.3

1.4

Sparsity r

In
fo

rm
a

ti
o

n
 L

o
s
s

PitProps

Batch
Iterative
Tpower
Gpower−0
Gpower−1

5 10 15 20 25 30 35
1

1.1

1.2

1.3

1.4

1.5

1.6

Sparsity r

In
fo

rm
a
ti
o
n
 L

o
s
s

Lymphoma

Batch
Iterative
Tpower
Gpower−0
Gpower−1

10 20 30 40
1

1.1

1.2

1.3

1.4

1.5

1.6

Sparsity r

In
fo

rm
a

ti
o

n
 L

o
s
s

Colon

Batch
Iterative
Tpower
Gpower−0
Gpower−1

2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity r

S
y
m

m
e

tr
ic

 V
a

ri
a

n
c
e

PitProps

Batch
Iterative
Tpower
Gpower−0
Gpower−1

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

Sparsity r

S
y
m

m
e
tr

ic
 V

a
ri
a
n
c
e

Lymphoma

Batch
Iterative
Tpower
Gpower−0
Gpower−1

10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

Sparsity r

S
y
m

m
e

tr
ic

 V
a

ri
a

n
c
e

Colon

Batch
Iterative
Tpower
Gpower−0
Gpower−1

Figure 1: Performance of the sparse encoder algorithms on the PitProps data (left), Lymphoma data (middle)
and Colon data (right) data: We Information loss (top) and symmetric explained variance (bottom) with k = 2.
Our algorithms give the minimum information loss which decreases inversely with r as the theory predicts. It
is no surprise that existing sparse-PCA algorithms do better at maximizing symmetric explained variance.

Using this reduction it is now an elementary task to prove by induction that
ℓ

∑

j=2

σ2
j

Pj−1

Qj−1

≤
ε

Q1

ℓ−1
∑

j=1

‖Xℓ − Xj‖
2

F
.

Since ‖Xℓ − Xj‖
2

F
≤ ‖Xℓ − X1‖

2

F
(ℓ− j)/(ℓ− 1), we have that

ℓ
∑

j=2

σ2
j

Pj−1

Qj−1

≤
ε‖Xℓ − X1‖

2

F

Q1(ℓ− 1)

ℓ−1
∑

j=1

ℓ− j =
εℓ‖Xℓ − X1‖

2

F

2Q1

.

Using (∗), we have that

‖X − XHℓ(XHℓ)
†X‖

2

F
≤ (eℓ)ε‖X − Xℓ‖

2

F
+

εℓ‖Xℓ − X1‖
2

F

2
·
Qℓ

Q1

.

The result finally follows because

log
Qℓ

Q1

=

ℓ
∑

i=2

log
(

1 +
ε

i

)

≤ ε

ℓ
∑

i=2

1

i
≤ ε(log(eℓ)− 1) = ε log ℓ,

and so Qℓ/Q1 ≤ ℓε.

4 Demonstration

We empirically demonstrate our algorithms against existing state-of-the-art sparse PCA methods.
The inputs are X ∈ R

n×d, the number of components k and the sparsity parameter r. The output
is the sparse encoder H = [h1,h2, . . . ,hk] ∈ R

n×k with ‖hi‖0 ≤ r; H is used to project X onto

some subspace to obtain a reconstruction X̂ which decomposes the variance into two terms:

‖X‖
2

F
= ‖X − X̂‖

2

F
+ ‖X̂‖

2

F
= Loss + Explained Variance

For symmetric auto-encoders, minimizing loss is equivalent to maximizing the symmetric explained
variance, the path traditional sparse-PCA takes,

Symmetric Explained Variance = ‖XHH†‖
2

F
/‖Xk‖

2

F
≤ 1

To capture how informative the sparse components are, we can use the normalized loss:

Loss = ‖X − XH(XH)†X‖
2

F
/‖X − Xk‖

2

F
≥ 1.

7

We report the symmetric explained variance primarily for historical reasons because existing sparse
PCA methods have constructed auto-encoders to optimize the symmetric explained variance.

We implemented an instance of the sparse PCA algorithm of Theorem 7 with the deterministic
technique described in part (i) in Theorem 6. (This algorithm gives a constant factor approximation,
as opposed to the relative error approximation of the algorithm in Theorem 7, but it is deterministic
and simpler to implement.) We call this the “Batch” sparse linear auto-encoder algorithm. We
correspondingly implement an “Iterative” version with fixed sparsity r in each principal component.
In each step of the iterative sparse auto-encoder algorithm we use the above batch algorithm to select
one principal component with sparsity at most r.

We compare our to the following state-of-the-art sparse PCA algorithms: (1) T-Power: truncated
power method [23]. (2) G-power-ℓ0: generalized power method with ℓ0 regularization [10]. (3)
G-power-ℓ1: generalized power method with ℓ1 regularization [10]. All these algorithms were
designed to operate for k = 1 (notice our algorithms handle any k) so to pick k components, we use
the “deflation” method suggested in [13]. We use the same data sets used by these prior algorithms
(all available in [23]): PitProps (X ∈ R

13×13); Colon (X ∈ R
500×500); Lymphoma (X ∈ R

500×500).

The qualitative results for different k are simi-
lar so we only show k = 2 in Figure 1. The
take-away is that loss and symmetric variance give
very different sparse encoders (example encoders
[h1,h2] with r = 5 are shown on the right).
This underlines why the correct objective is im-
portant. The machine learning goal is to preserve
as much information as possible, which makes
loss the compeling objective. The figures show
that as r increases, our algorithms deliver near-
optimal 1+O(1/r) normalized loss, as the theory
guarantees. The “iterative” algorithm has better
empirical performance than the batch algorithm.

Batch Iter. TP GP-ℓ0 GP-ℓ1
h1 h2

0 0

−0.8−0.3

0 0

0−0.8

0 0

0 0

0 0

−0.3 0.3

0 0

0 0

0 0

0 0

0.5−0.4

h1 h2

0 0

−0.6−0.8

0−0.4

0−0.2

0 0

0 0

−0.7−0.1

0 0

−0.3 0

−0.1 0

0 0

0−0.2

0 0

h1 h2

0.5 0

0.5 0

0 0.6

0 0.6

0 0

0 0.3

0.4 0

0 0

0.4 0

0.4−0.2

0 0

0 0.3

0 0

h1 h2

0.7 0

0.7 0

0 0.7

0 0.7

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

h1 h2

0.6 0

0.6 0

0 0.7

0 0.7

0 0

0 0

0 0

0 0

0.5 0

0 0

0 0

0 0

0 0

Summary. Loss minimization and variance maximization give very different encoders under a spar-
sity constraint. The empirical performance of our loss minimization algorithms follows the theory.
Our iterative algorithm is empirically better though it has a slightly worse theoretical guarantee.

5 Discussion

Historically, sparse PCA was cardinality constrained variance maximization. Variance per se has
no intrinsic value, and is hard to define for non-orthogonal or correlated encoders, which is to be
expected once you introduce a sparsity constraint. Our definition of loss is general and captures the
machine learning goal of preserving as much information as possible.

We gave theoretical guarantees for sparse encoders. Our iterative algorithm has a weaker bound
than our batch algorithm, yet the iterative algorithm is better empirically. Iterative algorithms are
tough to analyze, and it remains open whether a tighter analysis can be given. We conjecture that
the iterative algorithm is as good or better than the batch algorithm, though proving it seems elusive.

Finally, we have not optimized for running times. Considerable speed-ups may be possible without
sacrificing accuracy. For example, in the iterative algorithm (which repeatedly calls the CSSP algo-
rithm with k = 1), it should be possible significantly speed up the generic algorithm (for arbitrary
k) to a specialized one for k = 1. We leave such implementation optimizations for future work.

Acknowledgments. Magdon-Ismail was partially supported by NSF:IIS 1124827 and by the Army
Research Laboratory under Cooperative Agreement W911NF-09-2-0053 (the ARL-NSCTA). The
views and conclusions contained in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation here on.

8

References

[1] M. Asteris, D. Papailiopoulos, and A. Dimakis. Non-negative sparse PCA with provable guarantees. In
Proc. ICML, 2014.

[2] M. Asteris, D. Papailiopoulos, and G. Karystinos. Sparse principal component of a rank-deficient matrix.
In Proc. ISIT, 2011.

[3] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural Networks, 2:53–58, 1988.

[4] H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value decomposition.
Biological Cybernetics, 59:291–294, 1988.

[5] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal column-based matrix reconstruction.
SIAM Journal on Computing, 43(2), 2014.

[6] J. Cadima and I. Jolliffe. Loadings and correlations in the interpretation of principal components. Applied
Statistics, 22:203–214, 1995.

[7] G. Cottrell and P. Munro. Principal components analysis of images via back propagation. In Proc. SPIE
1001, Visual Communications and Image Processing ’88, 1988.

[8] A. d’Aspremont, F. Bach, and L. E. Ghaoui. Optimal solutions for sparse principal component analysis.
Journal of Machine Learning Research, 9:1269–1294, June 2008.

[9] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA
using semidefinite programming. SIAM Review, 49(3):434–448, 2007.

[10] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre. Generalized power method for sparse principal
component analysis. The Journal of Machine Learning Research, 11:517–553, 2010.

[11] H. Kaiser. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3):187–200,
1958.

[12] J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychome-
trika, 29(1):1–27, 1964.

[13] L. W. Mackey. Deflation methods for sparse PCA. In Proc. NIPS, pages 1017–1024, 2009.

[14] M. Magdon-Ismail. Np-hardness and inapproximability of sparse pca. arXiv:1502.05675, 2015.

[15] A. Makhzani and B. Frey. k-sparse autoencoders. In ICLR, 2014.

[16] B. Moghaddam, Y. Weiss, and S. Avidan. Generalized spectral bounds for sparse LDA. In ICML, 2006.

[17] E. Oja. Data compression, feature extraction and autoassociation in feedforward neural networks. In
Artificial Neural Networks, volume 1, pages 737–745, 1991.

[18] E. Oja. Principal components, minor components and linear neural networks. Neural Networks, 5:927–
935, 1992.

[19] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine,
2:559–572, 1901.

[20] J. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-
18(5):401–409, 1969.

[21] H. Shen and J. Z. Huang. Sparse principal component analysis via regularized low rank matrix approxi-
mation. Journal of Multivariate Analysis, 99:1015–1034, July 2008.

[22] N. Trendafilov, I. T. Jolliffe, and M. Uddin. A modified principal component technique based on the lasso.
Journal of Computational and Graphical Statistics, 12:531–547, 2003.

[23] X.-T. Yuan and T. Zhang. Truncated power method for sparse eigenvalue problems. The Journal of
Machine Learning Research, 14(1):899–925, 2013.

[24] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Computational &
Graphical Statistics, 15(2):265–286, 2006.

9

