
Supplement to Exponential Family Embeddings

A Inference

We fit the embeddings �Œi � and context vectors ˛Œi � by maximizing the objective function in Equa-
tion (3). We use stochastic gradient descent (sgd).
We first calculate the gradient, using the identity for exponential family distributions that the derivative
of the log-normalizer is equal to the expectation of the sufficient statistics, i.e., EŒt .X/� D r�a.�/.
With this result, the gradient with respect to the embedding �Œj � is
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The gradient with respect to ˛Œj � has the same form. In Supplement B, we detail this expression for
the particular models that we study empirically (Section 3).

The gradient in Equation (4) can involve a sum of many terms and be computationally expensive to
compute. To alleviate this, we follow noisy gradients using sgd. We form a subsample S of the I
terms in the summation, i.e.,
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where jS j denotes the size of the subsample and where we scaled the summation to ensure an unbiased
estimator of the gradient. Equation (5) reduces computational complexity when jS j is much smaller
than the total number of terms. At each iteration of sgd we compute noisy gradients with respect
to �Œj � and ˛Œj � (for each j ) and take gradient steps according to a step-size schedule. We use
Adagrad (Duchi et al., 2011) to set the step-size.

Relation to negative sampling. In language, particularly when seen as a collection of binary
variables, the data are sparse: each word is one of a large vocabulary. When modeling sparse data, we
split the sum in Equation (4) into two contributions: those where xi > 0 and those where xi D 0.
The gradient is
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We compute the first term of the gradient exactly—when the data is sparse there are not many
summations to make—and we estimate the second term with subsampling. Compared to computing
the full gradient, this reduces the complexity when most of the entries xi are zero. But, it retains the
strong information about the gradient that comes from the non-zero entries.

This relates to negative sampling, which is used to approximate the skip-gram objective (Mikolov
et al., 2013b). Negative sampling re-defines the skip-gram objective to distinguish target (observed)
words from randomly drawn words, using logistic regression. The gradient of the stochastic objective
is identical to a noisy but biased estimate of the gradient in Equation (6) for a Bernoulli embedding
(b-emb) model. To obtain the equivalence, preserve the terms for the non-zero data and subsample
terms for the zero data. While an unbiased stochastic gradient would rescale the subsampled terms,
negative sampling does not. It is thus a biased estimate, which down-weights the contribution of the
zeros.

B Stochastic Gradient Descent

To specify the gradients in Equation 4 for the sgd procedure we need the sufficient statistic t .x/,
the expected sufficient statistic EŒt .x/�, the gradient of the natural parameter with respect to the
embedding vectors and the gradient of the regularizer on the embedding vectors. In this appendix we
specify these quantities for the models we study empirically in Section 3.
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B.1 Gradients for Gaussian embedding (g-emb)

Using the notation i D .n; t/ and reflecting the embedding structure �Œi � D �n, ˛Œi � D ˛n, the
gradients with respect to each embedding and each context vector becomes
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B.2 Gradients for nonnegative Gaussian embedding (ng-emb)

By restricting the parameters to be nonnegative we can learn nonnegative synaptic weights between
neurons. For notational simplicity we write the parameters as exp.�/ and exp.˛/ and update them in
log-space. The operator ı stands for element wise multiplication. With this notation, the gradient for
the ng-emb can be easily obtained from Equations 7 and 8 by applying the chain rule.
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B.3 Gradients for Poisson embedding (p-emb)

We proceed similarly as for the g-emb model.
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B.4 Gradients for additive Poisson embedding (ap-emb)

Here, we proceed in a similar manner as for the ng-emb model.
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C Algorithm Details

Model minibatch
size

regularization
parameter

number
iterations

negative
samples

neuro g-emb 100 10 500 n/a
neuro ng-emb 100 0:1 500 n/a
shopping all models n/a 1 3000 10
movies all models n/a 1 3000 10

Table 5: Algorithm details for the models studied in Section 3.

D Complements and Substitutes in the Shopping Data

Table 6 shows some pairs of items with high inner product of embedding vectors and context vector.
The items in the first column have higher probability of being purchased if the item in the second
column is in the shopping basket. We can observe that they correspond to items that are frequently
purchased together (potato chips and beer, potato chips and frozen pizza, two different sodas).

Similarly, Table 7 shows some pairs of items with low inner product. The items in the first column
have lower probability of being purchased if the item in the second column is in the shopping basket.
We can observe that they correspond to items that are rarely purchased together (detergent and toast
crunch, milk and toothbrush), or that are substitutes of each other (two different brands of snacks,
soup, or pasta sauce).

Inner product Item 1 Item 2
2:12 Diet 7 Up lemon lime soda Diet Squirt citrus soda
2:11 Old Dutch original potato chips Budweiser Select 55 Lager beer
2:00 Lays potato chips DiGiorno frozen pizza
2:00 Coca Cola zero soda Coca Cola soda
1:99 Soyfield vanilla organic yogurt La Yogurt low fat mango

Table 6: Market basket: List of several of the items with high inner product values. Items from the
first column have higher probability of being purchased when the item in the second column is in the
shopping basket.

Inner product Item 1 Item 2
�5:06 General Mills cinnamon toast crunch Tide Plus liquid laundry detergent
�5:00 Doritos chilli pepper Utz cheese balls
�5:00 Land O Lakes 2% milk Toothbrush soft adult (private brand)
�5:00 Beef Swanson Broth soup 48oz Campbell Soup cans 10.75oz
�4:99 Ragu Robusto sautéed onion & garlic pasta sauce Prego tomato Italian pasta sauce

Table 7: Market basket: List of several of the items with low inner product values. Items from the
first column have lower probability of being purchased when the item in the second column is in the
shopping basket.
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E Movie Rating Results

Tables 8 and 9 show clusters of ranked movies that are learned by our p-emb model. These rankings
were generated as follows. For each latent dimension k 2 f1; � � � ; Kg we sorted the context vectors
according their value in this dimension. This gives us a ranking of context vectors for every k. Tables 8
and 9 show the 10 top items of the ranking for two different values of k. Similar as in topic modeling,
the latent dimensions have the interpretation of topics. We see that sorting the context vectors this
way reveals thematic structure in the collection of movies. While Table 8 gives a table of movies for
children, Table 9 shows a cluster of science-fiction and action movies (with a few outliers).

# Movie Name Year Rank
1 Winnie the Pooh and the Blustery Day 1968 0:62
2 Cinderella 1950 0:50
3 Toy Story 1995 0:46
4 Fantasia 1940 0:44
5 Dumbo 1941 0:43
6 The Nightmare Before Christmas 1993 0:37
7 Snow White and the Seven Dwarfs 1937 0:37
8 Alice in Wonderland 1951 0:35
9 James and the Giant Peach 1996 0:35

Table 8: Movielens: Cluster for “kids movies”.

# Movie Name Year Rank
1 Die Hard: With a Vengeance 1995 1:25
2 Stargate 1994 1:19
3 Star Trek IV: The Voyage Home 1986 1:14
4 Manon of the Spring (Manon des sources) 1986 1:14
5 Fifth Element, The 1997 1:14
6 Star Trek VI: The Undiscovered Country 1991 1:13
7 Under Siege 1992 1:11
8 GoldenEye 1995 1:07
9 Supercop 1992 1:07

Table 9: Movielens: Cluster for “science-fiction/action movies”.
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