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Abstract

Adaptive schemes, where tasks are assigned based on the data collected thus far, are
widely used in practical crowdsourcing systems to efficiently allocate the budget.
However, existing theoretical analyses of crowdsourcing systems suggest that the
gain of adaptive task assignments is minimal. To bridge this gap, we investigate this
question under a strictly more general probabilistic model, which has been recently
introduced to model practical crowdsourcing datasets. Under this generalized
Dawid-Skene model, we characterize the fundamental trade-off between budget
and accuracy. We introduce a novel adaptive scheme that matches this fundamental
limit. A given budget is allocated over multiple rounds. In each round, a subset of
tasks with high enough confidence are classified, and increasing budget is allocated
on remaining ones that are potentially more difficult. On each round, decisions are
made based on the leading eigenvector of (weighted) non-backtracking operator
corresponding to the bipartite assignment graph. We further quantify the gain of
adaptivity, by comparing the tradeoff with the one for non-adaptive schemes, and
confirm that the gain is significant and can be made arbitrarily large depending on
the distribution of the difficulty level of the tasks at hand.

1 Introduction

Crowdsourcing platforms provide labor markets in which pieces of micro-tasks are electronically
distributed to a pool of workers. In typical crowdsourcing scenarios, such as those on Amazon’s
Mechanical Turk, a requester posts a collection of tasks, and a batch is picked up by any worker
who is willing to complete it. The worker is subsequently rewarded for each task he/she completes.
However, some workers are spammers trying to make easy money. Moreover, since the reward is
small and tasks are tedious, errors are common even among those who try. To correct for the errors,
a common approach is to introduce redundancy by assigning each task to multiple workers and
aggregating their responses using some schemes such as majority voting.

A fundamental problem of interest is how to maximize the accuracy of thus inferred solutions, while
using as small number of repetitions as possible. There are two challenges in achieving such an
optimal tradeoff between accuracy and the budget: (a) we need a scheme for deciding which tasks to
assign to which workers; and (b) at the same time infer the true solutions from their responses.

Since the workers are fleeting, the requester has no control over who gets to work on which tasks. It
is impossible to make a trust relationship with the workers. In particular, it does not make sense to
explore reliable workers, and exploit them in subsequent steps. Each arriving worker is completely
new and you may never get him back. Nevertheless, by comparing responses from multiple workers,
we can estimate the true answer to the task, and use it in subsequent steps to learn the reliability of the
workers. Our beliefs on the true answers as well as the difficulty of the tasks and the reliability of the
workers can be iteratively refined, and one can potentially choose to assign more workers to the more
difficult tasks. We would like to understand such intricate interplay of task assignment and inference.
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Setup. We have m binary classification tasks to be completed by workers. We assume a recent gener-
alization of the Dawid-Skene model introduced in [22] to model the responses, which captures the
heterogeneity in the tasks as well as the workers. Precisely, each new arriving worker is parametrized
by a quality parameter pj ∈ [0, 1] (for the j-th arriving worker), which is i.i.d. according to some
prior distribution F . Each task is parametrized by a difficulty parameter qi ∈ [0, 1] (for the i-th task),
which is drawn i.i.d. according to some prior distribution G . When a worker j is assigned a task i,
the task is perceived as a positive task with probability qi, and as a negative task otherwise. Hence, if
qi is close to a half then it is confusing and difficult to correctly classify, and easy if close to one or
zero. When task i is assigned to worker j, the response is a noisy perception of the task:

Aij =

{
1, w.p. qipj + q̄ip̄j ,
−1, w.p. q̄ipj + qip̄j .

, (1)

where q̄i = 1−qi and p̄j = 1−pj . With probability pj , the worker answers truthfully as he perceives
the task, and otherwise gives the opposite answer. Hence, if pj is close to one then he tells the truth
(in his opinion) and if it is close to half he gives random answers. If it is zero, he is also reliable, in
the sense that a requester who can correctly decode his reliability can extract the truths exactly.

We define the ground truth of a task as what the majority of the workers agree on, had we asked
all the workers. Accordingly, we assume that EF [pj ] > 1/2 and the true labels are defined as
ti = I{qi>(1/2)} − I{qi<(1/2)} . Otherwise, we do not impose any condition on the distribution of
pj’s. However, we assume qi’s are discrete random variables with support at K points. Our results
do not directly depend on this support size K, and therefore K can be made arbitrarily large. Note
that we focus on only binary tasks with two types of classes, and also the workers are assumed to be
symmetric, i.e. the error probability does not depend on the perceived label of the task. The original
Dawid-Skene model introduced in [3] and analyzed in [9] is a special case, when all tasks are equally
easy, i.e. qi’s are either one or zero. This makes inference easier as all tasks are perceived their true
class; the only source of error is in workers’ noisy responses.

We assume the following task assignment scenario to model practical crowdsourcing systems. It is a
discrete time system, where at the beginning of each time step the requester can create a batch of
tasks. This batch is picked up by a new arriving worker, and his/her responses are collected. To model
real-world constraints we assume there is a limit on how many tasks a single worker can complete,
which we denote by r. The requester (also called task master) has no control over who is arriving
next, but he has control over which of the m tasks are to be solved by the next arriving worker. This
allows for adaptive task assignment schemes, where the requester can choose to include those tasks
that he is most uncertain about based on all the history of responses collected thus far.

We consider all randomized task assignment schemes, whose expected number of assignment per task
is `, and all inference algorithms. We study the minimax rate when the nature chooses the worst case
priors F and G (from a family of priors parametrized by average worker reliability β and average task
difficulty λ defined in (2)), and we choose the best possible adaptive task assignment together with
the best possible inference algorithm. We further propose a novel adaptive approach that achieves
this minimax rate up to a constant factor. Our approach is different from existing adaptive schemes in
[5], where there are multiple types of tasks and the main source of uncertainty is which type the next
arriving worker is expert on. Golden tasks with known answers are used to explore expertise and
tasks are assigned accordingly.

Related work. Existing work on crowdsourcing systems study the standard Dawid-Skene (DS)
model [3], where all tasks are equally difficult and hence qi ∈ {0, 1} for all tasks. Several inference
algorithms have been proposed [3, 17, 6, 16, 4, 7, 11, 23, 10, 21, 2, 8, 14], and the question of task
assignment is addressed in [9], where the minimax rate on the probability of error is characterized and
a matching task assignment scheme and an inference algorithm are proposed. Perhaps surprisingly,
for the standard DS model, a non-adaptive task assignment scheme achieves the fundamental limit.
Namely, given m tasks and a total budget for m` responses, the requester first constructs a bipartite
task-assignment graph with m task nodes, n = m`/r worker nodes, and edges drawn uniformly at
random with degree ` for the task nodes and r for the worker nodes. Then, j-th arriving worker is
assigned a batch of r tasks that are adjacent to the j-th worker node. Together with an inference
algorithm explained in detail in Section 2, this achieves a near-optimal performance. Namely, to
achieve an average probability of error ε, it is sufficient to have total budget O((m/β) log(1/ε)),
where β = EF [(2pj − 1)2] is the quality of the workers defined in (2). Perhaps surprisingly, no
adaptive assignment can improve upon it. Even the best adaptive scheme and the best inference
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algorithm still requires Ω((m/β) log(1/ε)) total budget. Hence, there is no gain in adaptivity. This
negative result relies crucially in the fact that under the standard DS model, all tasks are inherently
equally difficult. Hence, adaptively assigning more workers to relatively more ambiguous tasks
has only a marginal gain. However, simple adaptive schemes are widely used in practice, where
significant gains are achieved; in real-world systems, tasks are widely heterogeneous. To capture such
varying difficulties in the tasks, generalizations of the DS model were proposed in [19, 18, 22, 15]
and significant improvement has been reported on inference problems for real datasets.

The generalized DS model serves as the missing piece in bridging the gap between practical gains of
adaptivity and theoretical limitations of adaptivity. We investigate the fundamental question of “do
adaptive task assignments improve accuracy?” under this generalized Dawid-Skene model of Eq. (1).

Contributions. To investigate the gain of adaptivity, we first characterize the fundamental lower
bound on the budget required to achieve a target accuracy. To match this fundamental limit, we
introduce a novel adaptive task assignment scheme. Our approach consists of multiple rounds of
non-adaptive schemes, and we provide sharp analyses on the performance at each round, which guides
the design of the task assignment in each round adaptively using the data from previous rounds. The
proposed adaptive task assignment is simple to apply in practice, and numerical simulations confirm
the superiority compared to state-of-the-art non-adaptive schemes. Under a certain assumption on
the choice of parameters in the algorithm, which requires a moderate access to an oracle, we can
prove that the performance of the proposed adaptive scheme matches that of the fundamental limit
up to a constant factor. Finally, we quantify the gain of adaptivity by proving a strictly larger lower
bound on the budget required for any non-adaptive schemes. Precisely, we show that the minimax
rate on the budget required to achieve a target average error rate of ε scales as Θ((m/λβ) log(1/ε)).
The dependence on the prior F and G are solely captured in β (the quality of the crowd as a whole)
and λ (the quality of the tasks as a whole). We show that the fundamental tradeoff for non-adaptive
schemes is Θ((m/λminβ) log(1/ε)), requiring a factor of λ/λmin larger budget for non-adaptive
schemes. This factor of λ/λmin is precisely how much we gain by adaptivity, and this gain can be
made arbitrarily large in the worst case distribution G .

2 Main Results

The following quantities are fundamental in capturing the dependence of the minimax rate on the
distribution of task difficulties and worker reliabilities:

λ ≡ EG

[
1

(2qi − 1)2

]−1

, α ≡ EG [(2qi − 1)2], and β ≡ EF [(2pj − 1)2] . (2)

Let n denote the total number of workers used, and Tj denote the set of all tasks assigned to worker
j ∈ [n] and Wi denote the set of all workers assigned to task i ∈ [m] until the adaptive task
assignment scheme has terminated. We consider discrete distribution G with K types of tasks of
varying difficulty levels. Define effective difficulty level of each task i to be λi ≡ (2qi − 1)2, and
λmin = mini∈[m] λi. A task with a small λi is more difficult, since qi close to 1/2 means the task is
more ambiguous. Let δa denote fraction of total tasks having difficulty level λa for a ∈ [K] such that∑
a∈[K] δa = 1, and δmax ≡ maxa∈[K] δa, δmin ≡ mina∈[K] δa.

2.1 Fundamental limit under the adaptive scenario

We prove a lower bound on the minimax error rate: the error that is achieved by the best inference
algorithm t̂ using the best adaptive task assignment scheme τ under a worst case worker distribution
F and the worst-case true answers t for the given distribution of difficulty level λi’s. Note that given
λi, either qi = (1 +

√
λi)/2 in which case ti = 1 or qi = (1−

√
λi)/2 and ti = −1. Let T` be the

set of all task assignment schemes that use at most m` queries in total, and let Fβ be the set of all the
worker distributions such that expectation of worker quality is β, i.e. Fβ ≡ {F |EF [(2pj−1)2] = β}.
Then we can show the following lower bound on the minimax rate on the probability of error. A
proof of this theorem is provided in Section 4 in the supplementary material.
Theorem 2.1. When β < 1, there exists a positive constant C ′ such that for each task i ∈ [m],

min
τ∈T`,t̂

max
t∈{±1}m,F∈Fβ

P[ti 6= t̂i|λi] ≥
1

2
e−C

′λiβ E[|Wi| |λi] .
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This proves a lower bound on per task probability of error that decays exponentially with exponent
scaling as λiβE[|Wi| |λi]. The easier the task (λi large), the more reliable the workers are (β large),
and the more workers assigned to that task (|Wi| large), the smaller the achievable error. To get a
lower bound on the average probability of error, suppose we know the difficulties of the tasks and
assign `a workers to tasks of difficulty λa. With average budget constraint

∑
a∈[K] `aδa ≤ `,

min
τ∈T`,t̂

max
t∈{±1}m,F∈Fβ

1

m

m∑

i=1

P[ti 6= t̂i] ≥ min
`a:

∑
a∈[K] δa`a=`

K∑

a=1

1

2
δae
−C′`aλaβ (3)

=
1

2
e−C

′`λβ

( K∑

a=1

δae
−λ∑

a 6=a′ (δa′/λa′ ) log(λa/λa′ )
)
,

where the equality follows from solving the optimization problem. Note that the summand in the
bound does not depend upon the budget `, and it is lower bounded by δmin > 0. The error scales as
e−C

′`λβ , where λ = 1/(E[1/λi]) as defined in (2), and captures how difficult the set of tasks are
collectively. This gives a lower bound on the budget Γ required to achieve error ε; there exists a
constant C ′′ such that if

Γε ≤ C ′′
m

λβ
log

(
δmin

ε

)
, (4)

then no task assignment scheme (adaptive or not) with any inference algorithm can achieve error less
than ε. Intuitively, β captures the (collective) quality of the workers as specified by F and λ captures
the (collective) difficulty of the tasks as specified by G . This recovers the known fundamental limit
for standard DS model where all tasks have λi = 1 and hence λ = 1 in [9]: Γε > C ′′′mβ log

(
1
ε

)
.

2.2 Upper bound on the achievable error rate

We present an adaptive task assignment scheme and an iterative inference algorithm that asymp-
totically achieve an error rate of C1e

−(Cδ/4)`λβ , when m grows large and ` = Θ(logm) where
C1 = log2(2δmax/δmin) log2(λ1/λK). This matches the lower bound in (3) and the expected num-
ber of queries (or task-worker assignments) is bounded by m`. Comparing it to a fundamental lower
bound in Theorem 2.1 establishes the near-optimality of our approach, and the sufficient condition to
achieve average error ε is for the average total budget to be larger than,

Γε ≥ C ′
m

λβ
log
(C1

ε

)
. (5)

2.2.1 Adaptive algorithm

Since difficulty level is varying across the tasks, it is intuitive to assign fewer workers to easy tasks
and more workers to hard tasks. Suppose we know the difficulty levels, then optimizing the lower
bound (3) over ˜̀

i’s, it suggests to assign ˜̀
i ' `(λ/λi) workers to the task i with difficulty λi, when

given a fixed budget of ` workers per task on average. However, the difficulty levels are not known.
Non-adaptive schemes can be arbitrarily worse (see Theorem 2.4). We propose a novel approach of
adaptively assigning workers in multiple rounds, refining our belief on λi, and making decisions on
the tasks with higher confidence.

The main algorithmic component is the sub-routine in line 8-13 of Algorithm 1. For a choice of the
(per task) budget `t, we collect responses according to a (`t, rt = `t) regular random graph on |M |
tasks and |M | workers. The leading eigen-vector of the non-backtracking operator on this bipartite
graph, weighted by the ±1 responses reveals a noisy observation of the true class and the difficulty
levels of the tasks. Let x ∈ R|M | denote the top left eigenvector, computed as per Algorithm 2.
Then the i-th entry xi asymptotically converges in the large number of tasks m limit to a Gaussian
random variable with mean proportional to the difficulty level (2qi − 1), with mean and variance
specified in Lemma 5.1 in the the supplementary material. This non-backtracking operator approach
to crowdsourcing was first introduced in [7] for the standard DS model, is a single-round non-adaptive
scheme, and uses a threshold of zero to classify tasks based on the sign of xi’s. We generalize their
analysis to this generalized DS model in Theorem 2.3 for finite sample regime, and further give a
sharper characterization based on central limit theorem in the asymptotic regime (Lemma 5.1 in the
supplementary material).

4



This provides us a sub-routine that reveals (2qi − 1)’s we want, corrupted by additive Gaussian noise.
This resembles the setting in racing algorithms introduced in [12] where the goal is to choose the
variable (i.e. task) with largest mean (i.e. easiest) with minimal budget. However, our goal is to
identify the sign of the mean of the variables (i.e. classes) with sufficient accuracy. The key idea is
to classify the easier tasks first with minimal budget, and then classify the remaining more difficult
tasks with more budget allocated per task. We can set a threshold Xt,u at each round, and make a
permanent decision on a subset of tasks that have large xi’s in absolute value, since those are the
tasks we are most confident about in its class, i.e. sign(2qi− 1). We are now left to choose the budget
`t and the threshold Xt,u for each round.

We prescribe a choice using following notations. Assume that λa’s are indexed such that λ1 >
λ2 > . . . > λK . For simplicity, assume that λK = λ12−(T−1) for some T ∈ Z+ \ {1}. Given the
distribution {λa, δa}a∈[K], we first bin it to get another distribution {λ̃a, δ̃a}a∈[T ] which is supported
at most at T points. We take λ̃1 = λ1 and λ̃a+1 = λ̃a2−1 for each a ∈ [T − 1]. δ̃a is the total
fraction of tasks whose difficulty λi is smaller than λ12−(a−2) and larger than λ12−(a−1). Precisely,
δ̃a =

∑
a′∈[K] δa′I

{
λ1/2

(a−1) ≤ λa′ < λ1/2
(a−2)

}
, for a ∈ [T ] . The choice of 2 for the ratio of

λ̃a’s is arbitrary and can be further optimized for a given distribution of λi’s. For ease of notations in
writing the algorithm, we re-index the binned distribution to get {λ̃a, δ̃a}a∈[T̃ ], for T̃ ≤ T , such that

δ̃a 6= 0 for all a ∈ T̃ . Note that T̃ ≤ dlog2(λ1/λK)e.
We start with a set of all tasks M = [m]. A fraction of tasks are classified in each round and the
un-classified ones are taken to the next round. At round t ∈ {1, . . . , T̃}, our goal is to classify
sufficient fraction of those tasks in the same difficulty group {i ∈ M : λi = λt} to be classified
with desired level of accuracy. If `t is too low and/or threshold Xt,u too small, then misclassification
rate will be too large. If `t is too large, we are wasting our budget unnecessarily. If Xt,u is too
large, not enough tasks will be classified. We choose `t = `Cδλ̃/λ̃t and an appropriate Xt,u to
ensure that the misclassification probability is at most C1e

−(Cδ/4)λβ` based on the central limit
theorem on the leading eigen vector (see (21) in the supplementary material). We run this sub-routine
st = max{0, dlog2(δ̃t(1 + γt)/δ̃t+1γt+1)e} times to ensure that enough fraction from t-th group is
classified. We make sure that the expected number of unclassified tasks is at most equal to the number
of tasks in the next group, i.e., difficulty level λi = λt+1. We provide a near-optimal performance
guarantee for γt = 1 for all t ∈ [T̃ ], and γt provides an extra degree of freedom for practitioners to
further optimize the efficiency.

Note that statistically, the fraction of the t-th group (i.e. tasks with difficulty λ̃t) that get classified
before the t-th round is very small as the threshold set in these rounds is more than their absolute
mean message. Most tasks with λ̃t will get classified in round t. Further, the binning of the original
given distribution to get {λ̃a, δ̃a} ensures that `t+1 ≥ 2`t. It ensures that the total extraneous budget
spent on λ̃t tasks is not more than a constant times the allocated budget of those tasks, and the
constant can be made one, by changing the initial choice of `1 by a constant factor.

2.2.2 Performance Guarantee

Since we are not wasting any budget on any of the tasks, with the right choice of the constant Cδ,
we are guaranteed that this algorithm uses at most m` assignments in expectation. One caveat is
that, the threshold Xt,u depends on αt,u = (1/|M |)∑i∈[M ] λi, which is the average difficulty of
the remaining tasks. As the remaining tasks are changing over the course of the algorithm, we
need to estimate this value in each sub-routine. We provide an estimator of αt,u in Algorithm 3 (in
the supplementary material) that only uses the sampled responses that are already collected. All
numerical results are based on this estimator. However, analyzing the sensitivity of the performance
with respect to the estimation error in αt,u is quite challenging, and for a theoretical analysis, we
assume we have access to an oracle that provides the exact value of αt,u, replacing Algorithm 3.

Theorem 2.2. Suppose Algorithm 3 returns the exact value of αt,u = (1/|M |)∑i∈[M ] λi. With

the choice of γa = 1 for all a ∈ [T̃ ] and Cδ = (4 + dlog(2δmax/δmin)e)−1 for any given dis-
tribution of task difficulty {λa, δa}a∈[K] of m tasks and an average number of workers per task
` = Θ(logm), the expected number of queries made by Algorithm 1 is asymptotically bounded by
limm→∞

∑
t∈[T̃ ],u∈st `tE[|Mt,u|]/(m`) ≤ 1, where Mt,u is the number of tasks remaining at round
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(t, u). Further, Algorithm 1 returns estimates {t̂i}i∈[m] that asymptotically achieves,

lim
m→∞

1

m

m∑

i=1

P[ti 6= t̂i] ≤ C1e
−(Cδ/4)`λβ , (6)

where C1 = log2(2δmax/δmin) log2(λ1/λK) for λβ scaling as 1/` such that `λβ = Θ(1).

A proof of this theorem is provided in Section 5 in the supplementary material. This shows the near-
optimal sufficient condition of our approach in (5). The constant Cδ can be improved by optimizing
over the choice of γa’s by minimizing the expected number of queries that the algorithm makes.

Algorithm 1 Adaptive Task Assignment and Inference Algorithm

Require: m, {λ̃a, δ̃a}a∈[T̃ ], `, Cδ , {γa}a∈[T̃ ], α, β, µ = E[2pj − 1]

Ensure: Estimate {t̂i}i∈[m]

1: M ← {1, 2, · · · ,m}, λ̃ =
(∑

a∈[T̃ ](δ̃a/λ̃a)
)−1

2: for all t = 1, 2, · · · , T̃ do
3: `t ← (`Cδλ̃)/λ̃t, rt ← `t

4: st ← max
{

0,
⌈
log
(
δ̃t(1+γt)

δ̃t+1γt+1

)⌉}
I{t < T̃}+ 1 I{t = T̃}

5: for all u = 1, 2, · · · , st do
6: if M 6= ∅ then
7: n← |M | , k ←

√
log |M |

8: Draw E ∈ {0, 1}|M |×n ∼ (`t, rt)-regular random graph
9: Collect answers {Ai,j ∈ {1,−1}}(i,j)∈E

10: {xi}i∈M ← Algorithm 2
[
E, {Ai,j}(i,j)∈E , k

]

11: αt,u ← Algorithm 3 [E, {Ai,j}(i,j)∈E , `t, rt]
12: Xt,u ←

√
λ̃tµ`t

(
(`t − 1)(rt − 1)αt,uβ

)k−1I{t < T̃}+ 0 I{t = T̃}
13:

{
t̂i = I{xi > Xt,u} − I{xi < −Xt,u}

}
i∈M , M ← {i ∈M : |xi| ≤ Xt,u}

14: end if
15: end for
16: end for

Algorithm 2 Message-Passing Algorithm

Require: E ∈ {0, 1}|M |×n, {Aij ∈ {1,−1}}(i,j)∈E , kmax

Ensure: {xi ∈ R}i∈[|M |]
1: for all (i, j) ∈ E do
2: Initialize y(0)

j→i with random Zj→i ∼ N (1, 1)
3: end for
4: for all k = 1, 2, · · · , kmax do
5: for all (i, j) ∈ E do
6: x

(k)
i→j ←

∑
j′∈Wi\j Aij′y

k−1
j′→i

7: end for
8: for all (i, j) ∈ E do
9: y

(k)
j→i ←

∑
i′∈Tj\iAi′jx

k
i′→j

10: end for
11: end for
12: for all i ∈ [m] do
13: xi ←

∑
j∈Wi

Aijy
kmax−1
j→i

14: end for

In Figure 1, we compare performance of our algorithm with majority voting and also non-adaptive
version of our Algorithm 1, where we assign to each task ` (the given budget) number of workers in
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one round and set classification threshold Xt,u = 0 so as to classify all the tasks. This non-adaptive
special case has been introduced for the standard DS model in [9].

We make a slight modification to Algorithm 1. In the final round, when the classification threshold
is set to zero, we include all the responses collected thus far when running the message passing
Algorithm 2, and not just the fresh samples collected in that round. This creates dependencies between
rounds, which makes the analysis challenging. However, in practice we see improved performance
and it allows us to use the given fixed budget efficiently.

We run synthetic experiments with m = 1800 and fix n = 1800 for the non-adaptive version. The
crowds are generated from the spammer-hammer model with hammer probability equal to 0.3. In
the left panel, we take difficulty level λa to be uniformly distributed over {1, 1/4, 1/16}, that gives
λ = 1/7. In the right panel, we take λa = 1 with probability 3/4, otherwise we take it to be 1/4 or
1/16 with equal probability, that gives λ = 4/13. As predicted from the theoretical analysis, our
adaptive algorithm improves significantly over its non-adaptive version. In particular, for the left
panel, the non-adaptive algorithm’s error scaling depends on smallest λi that is 1/16 while for the
adaptive algorithm it scales with λ = 1/7. In the figure, it can be seen that the adaptive algorithm
requires approximately (7/16)` queries to acheive the same error as achieved by the non-adaptive
one using ` queries. This gap widens in the right panel to approximately (13/64) as predicted, and
the adaptive algorithm achieves zero error as the number of queries increase. For a fair comparison
with the non-adaptive version, we fix total budget to be m` and assign workers in each round until
the budget is exhausted. Cδ is 1 and st = 1 for t ∈ {1, 2, 3}.
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Figure 1: Algorithm 1 improves significantly over its non-adaptive version and majority voting.

2.3 Achievable error rate under the non-adaptive scenario

Consider a non-adaptive version of our approach where we apply it for one round using an (`, r)
random regular graph, where ` is the given budget. Naturally, the classification threshold is set to
Xt,u = 0 so as to classify all the tasks. We provide a sharp upper bound on the achieved error, that
holds for all (non-asymptotic) regimes of m. Define σ2

k as

σ2
k ≡ 2β

µ2
(
ˆ̀̂r(αβ)2

)k−1
+ 3

(
1 +

1

r̂αβ

)
1− 1/

(
ˆ̀̂r(αβ)2

)k−1

1− 1/
(
ˆ̀̂r(αβ)2

) . (7)

This captures the effective variance in the sub-Gaussian tail of the messages xi’s after k iterations
of the inference algorithm (Algorithm 2), as shown in the proof of the following theorem (see the
supplementary material in Section 6).
Theorem 2.3. For any ` > 1 and r > 1, suppose m tasks are assigned according to a random
(`, r)-regular graph drawn from the configuration model. If µ > 0, ˆ̀̂rα2β2 > 1, and r̂α > 1, then
for any t ∈ {±1}m, the estimate t̂i = sign(xi) after k iterations of Algorithm 2 achieves

P
[
ti 6= t̂

(k)
i

∣∣λi
]
≤ e−`βλi/(2σ

2
k) +

3`r

m
(ˆ̀̂r)2k−2. (8)

Therefore, the average error rate is bounded by

1

m

m∑

i=1

P[ti 6= t̂
(k)
i ] ≤ EG

[
e
−`βλi
2σ2
k

]
+

3`r

m
(ˆ̀̂r)2k−2. (9)

7



The second term, which is the probability that the resulting (`, r) regular random graph is not locally
tree-like, can be made small for large m as long as k = O(

√
logm) (which is the choice we make

in Algorithm 1). Hence, the dominant term in the error bound is the first term. Further, when we
run our algorithm for large enough numbers of iterations, σ2

k converges linearly to a finite limit
σ2
∞ ≡ limk→∞ σ2

k such that σ2
∞ = 3

(
1+1/(r̂αβ)

)
(ˆ̀̂rαβ)2/((ˆ̀̂rαβ)2−1), which for large enough

r̂αβ and ˆ̀̂r is upper bounded by a constant. Hence, for a wide range of parameters, the average
error in (9) is dominated by EG

[
e−`βλi/2σ

2
k

]
=
∑
a δae

−C`βλa . When all δ’s are strictly positive,
the error is dominated by the difficult tasks with λmin = mina λa, as illustrated in Figure 2. Hence, it
is sufficient to have budget Γε ≥ C ′′m/(λminβ) log(1/ε) to achieve an average error of ε > 0. Such
a scaling is also necessary as we show in the next section.

This is further illustrated in Figure 2. The error decays exponentially in ` and β as predicted,
but the rate of decay crucially hinges on the difficulty level. We run synthetic experiments with
m = n = 1000 and the crowds are generated from the spammer-hammer model where pj = 1 with
probability β and 1/2 otherwise. We fix β = 0.3 and vary ` in the left figure and fix ` = 30 and
vary β in the right figure. We let qi’s take values in {0.6, 0.8, 1} with equal probability such that
α = 1.4/3. The error rate of each task grouped by their difficulty is plotted in the dashed lines,
matching predicted e−Ω(`β(2qi−1)2). The average error rates in solid lines are dominated by those of
the difficult tasks, which is a universal drawback for all non-adaptive schemes.
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Figure 2: Non-adaptive schemes suffer as average error is dominated by difficult tasks.

2.4 Fundamental limit under the non-adaptive scenario

Theorem 2.3 implies that it suffices to assign ` ≥ (c/(βλi)) log(1/ε) to achieve an error smaller than
ε for a task i. We show in the following theorem that this scaling is also necessary. Hence, applying
one round of Algorithm 1 is near-optimal in the non-adaptive scenario compared to a minimax rate
where the nature chooses the worst distribution of worker pj’s among the set of distributions with the
same β. We provide a proof of the theorem in Section 7 in the supplementary material.
Theorem 2.4. There exists a positive constant C ′ and a distribution F of workers with average
reliability E[(2pj − 1)2] = β s.t. when λi < 1, if the number of workers assigned to task i by
any non-adaptive task assignment scheme is less than (C ′/(βλi)) log(1/ε), then no algorithm can
achieve conditional probability of error on task i less than ε for any m and r.

Since in this non-adaptive scheme, task assignments are done a priori, there are on average ` workers
assigned to any set of tasks of the same difficulty. Hence, if the total budget is less than

Γε ≤ C ′
m

λminβ
log

δmin

ε
, (10)

then no algorithm can achieve average error less than ε, where λmin = mina λa. Compared to the
adaptive case in (4) (nearly achieved in (5)), the gain of adaptivity is a factor of λ/λmin. The RHS
is negative when δmin < ε, and can be tightened to C ′(m/λaβ) log(

∑a
b=1 δb/ε) where a is the

smallest integer such that
∑a
b=1 δb > ε.
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