
A.1 Derivation of Conditional Variation Autoencoder

In this section, we will formally derive how we obtain the training objective function in Eq. 1, following
similar derivations in Kingma and Welling [2014], Kingma et al. [2014], Yan et al. [2016]. As mentioned in
Section 3.3, the generative process that samples a difference image v from a θ-parametrized model, conditioned
on an observed image I , consists of two steps. First, the algorithm samples the hidden variable z from a prior
distribution pz(z). Then, given a value of z, the algorithm samples the intensity difference image v from the
conditional distribution pθ(v|I, z). This process is also described in the graphical model in Figure 2(d).

Given a set of training pairs {I(i), v(i)}, the algorithm maximizes the log-likelihood of the conditional marginal
distribution during training ∑

i

log p(v(i)|I(i)). (4)

Recall that I and z are independent as shown in the graphical model in Figure 2. Therefore, based on the Bayes’
theorem, we have

p(v(i)|I(i)) =
pz(z)pθ(v

(i)|I(i), z)

p(z|v(i), I(i))
. (5)

It is hard to directly maximizing the marginal distribution (Eq. 4). We therefore maximize its variational upper-
bound instead, as proposed by Kingma and Welling [2014]. Let qφ(z|v(i), I(i)) be the variational distribution
that approximates the posterior p(z|v(i), I(i)). Then each term in the marginal distribution is upper bounded as

log p(v(i)|I(i)) = Eqφ(z|v(i),I(i))

[
log p(v(i)|I(i))

]
(6)

= Eqφ(z|v(i),I(i))

[
log

pz(z)pθ(v
(i)|I(i), z)

p(z|v(i), I(i))

]
(7)

= Eqφ(z|v(i),I(i))

[
log

pz(z)

qφ(z|v(i), I(i))

]
+ Eqφ(z|v(i),I(i))

[
log

qφ(z|v(i), I(i))

p(z|v(i), I(i))

]
+ Eqφ(z|v(i),I(i))[log pθ(v

(i)|I(i), z)] (8)

= −DKL(qφ(z|v(i), I(i))||pz(z)) +DKL(qφ(z|v(i), I(i))||p(z|v(i), I(i)))

+ Eqφ(z|v(i),I(i))[log pθ(v
(i)|I(i), z)] (9)

≥ −DKL(qφ(z|v(i), I(i))||pz(z)) + Eqφ(z|v(i),I(i))[log pθ(v
(i)|I(i), z)] (10)

∆
= L(θ, φ, v(i)|I(i)) (11)

The first KL-divergence term in Eq. 11 has an analytical form (see Kingma and Welling [2014] for details). To
make the second term tractable, we approximate the variational distribution, qφ(z|x(i), I(i)), by its empirical
distribution. We have

L(θ, φ, v(i)|I(i)) ≈ −DKL(qφ(z|v(i), I(i))||pz(z)) +
1

L

L∑
l=1

[
log pθ(v

(i)|z(i,l), I(i))
]
, (12)

where z(i,l) are samples from the variational distribution qφ(z|v(i), I(i)). Eq. 12 is the variation lower bound
that our network minimizes during training.

In practice, we simply generate one sample of z(i,l) at each iteration (thus L = 1) of stochastic gradient descent,
but different samples are used for different iterations.

A.2 Detailed Network Structure

This section describes the details of our network structure. During training, our motion encoder (Figure 3(a))
takes two adjacent frames in time as input, both at resolution 128× 128. The network then applies six 5× 5
convolutional and batch normalization layers (number of channels are {96, 96, 128, 128, 256, 256}) to the
concatenated images, with some pooling layers in between. The output has a size of 256 × 5 × 5. The
kernel encoder then reshapes the output to a vector, and splits it into a 3,200-dimension mean vectors and a
3,200-dimension variance vector, from which the network samples the latent motion representation z.

Next, the kernel decoder (Figure 3(b)) sends the 3,200 = 128× 5× 5 tensor into two additional convolutional
layers, each with 128 channels and a kernel size of 5. They are then split into four sets, each with 32 kernels of
size 5× 5.
Our image encoder (Figure 3(c)) operates on four different scaled versions of the input image I (256 × 256,
128×128, 64×64, and 32×32). At each scale, there are four sets of 5×5 convolutional and batch normalization
layers (number of channels are {64, 64, 64, 32}), two of which are followed by a 2 × 2 max pooling layer.

10

Therefore, the output size of the four channels are 32× 64× 64, 32× 32× 32, 32× 16× 16, and 32× 8× 8,
respectively. This multi-scale convolutional network allows us to model both global and local structures in the
image, which may have different motions.

The core of our network is a cross convolutional layer (Figure 3(d)) which, as discussed in Section 4.1, applies
the kernels learned by the kernel decoder to the feature maps learned by the image encoder, respectively. The
output size of the cross convolutional layer is identical to that of the image encoder.

Our motion decoder (Figure 3(e)) starts with an up-sampling layer at each scale, making the output of all scales
of the cross convolutional layer have a resolution of 64× 64. This is then followed by one 9× 9 and two 1× 1
convolutional and batch normalization layers, with {128, 128, 3} channels. These final feature maps are then
used to regress the output difference image (Eulerian motion map).

11

	Introduction
	Related Work
	Formulation
	Problem Definition
	A Toy Example
	Conditional Variational Autoencoder

	Method
	Layered Motion Representations and Cross Convolutional Networks
	Network Structure

	Evaluations
	Conclusion
	Derivation of Conditional Variation Autoencoder
	Detailed Network Structure

